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Abstract

In this paper we introduce the Boundary Element Tearing and Inter-
connecting (BETI) methods as boundary element counterparts of the well-
established Finite Element Tearing and Interconnecting (FETI) methods.
In some practical important applications such as far field computations,
handling of singularities and moving parts etc., BETI methods have cer-
tainly some advantages over their finite element counterparts. This claim
is especially true for the sparse versions of the BETI preconditioners resp.
methods. Moreover, there is an unified framework for coupling, handling,
and analyzing both methods. In particular, the FETI methods can be-
nefit from preconditioning components constructed by boundary element
techniques. The first numerical results confirm the efficiency and the ro-
bustness predicted by our analysis.

1 Introduction

The Finite Element Tearing and Interconnecting (FETI) methods were intro-
duced by Farhat and Roux in 1991 [12], see also [13] for a more detailed descrip-
tion by the same authors. The classical FETT methods are non-overlapping Do-
main Decomposition (DD) methods and assume a conform triangulation of the
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total computational domain. In contrast to the iterative substructuring method,
the Finite Element (FE) subspaces are given on each subdomain (substructure)
including its boundary separately. The global continuity is then enforced by
Lagrange multipliers, resulting in a saddle point problem that can be solved
iteratively via its dual problem. Once the Lagrange multipliers are known, the
primal variables can be easily calculated. The iteration process is nothing but a
Preconditioned Conjugate Gradient (PCG) subspace iteration. The projection
to the subspace ensures not only the solvability of the local FE Neumann prob-
lems involved in each iteration step and in each subdomain, but also the global
information exchange. The FETI preconditioners typically involve the solution
of a FE Dirichlet problem in each subdomain (multiplication by the usual DD
Schur complement). Thus, in their standard exact versions, every iteration step
of the FETI methods is quite expensive (see [24] for a first inexact version).
Nevertheless, the FETI method is one of the most widely used DD methods in
parallel codes including commercial codes. This fact is certainly related to the
wide applicability of the FETI methods, the possibility of the use of standard
Neumann and Dirichlet solvers in the solution process, the moderate depen-
dence of the iteration number on the complexity of the problem [5, 25, 29], the
scalability [35] and, last but not least, the robustness [5, 25]. More precisely, for
elliptic problems, Mandel and Tezaur proved that the relative condition number
of the dual system preconditioned by the so-called Dirichlet FETI preconditioner
grows at most as O((1 +1log(H/h))?) or O((1+log(H/h))?) for the general case
and for the case without cross points in the decomposition of the domain, re-
spectively [29]. Here, H and h denote the average diameters of the subdomains
and the finite elements, respectively. Thus, the number of unknowns belong-
ing to one subdomain behaves like O((H/h)~?), where d denotes the dimension
of the computational domain. Klawonn and Widlund introduced new FETI
preconditioners and showed the O((1 + log(H/h))?) behavior of the relative
condition number in the general case that permits cross points in the domain
decomposition [25]. Moreover, they proved robustness with respect to jumps
in the coefficients of the elliptic Partial Differential Equations (PDE). Similar
results have recently been obtained by Brenner within the Schwarz framework
[4, 5]. We refer the reader to [11] for some further development of the FETI
methodology (FETI-2 and FETI-DP) and further references.

In this paper we generalize the tearing and interconnecting technique to symmet-
ric Galerkin boundary element (BE) equations. During the last decade iterative
substructuring solvers for symmetric BE element equations have been devel-
oped by Hsiao and Wendland [23], Langer [26], Steinbach [36, 38], Haase, Heise,
Kuhn and Langer [15], Carstensen, Kuhn and Langer [7], Hsiao, Schnack and
Wendland [20] Hsiao, Steinbach and Wendland [21] for elliptic boundary value
problems in bounded and unbounded, two and three-dimensional domains, and
have been successfully applied to real-life problems. Parallel implementations
showed high performance on several platforms [15]. The key ingredients of an
inexact DD BE preconditioner are preconditioners for the local discrete single
layer potential operators and for the global discrete Steklov—Poincaré operator



(BE Schur complement). The problem of constructing effective discrete bounded
extension operators as a key component in the inexact FE DD preconditioner
(see, e.g., [16]) does not appear in inexact DD BE preconditioners. In contrast
to iterative BE substructuring methods, the (exact) Boundary Element Tearing
and Interconnecting (BETI) Methods needs the inversion of the local (subdo-
main) discrete Steklov—Poincaré operators and some preconditioner for the dual
problem. In this sense the BETI methods are dual to the iterative BE substruc-
turing methods. The inversion of the local discrete Steklov—Poincaré operators
leads to the parallel solution of symmetric, but indefinite local problems. This
corresponds to the solution of local FE Neumann problems in the FETI method.
The BETI preconditioners for the dual problem are based on the parallel mul-
tiplications by the local discrete hypersingular operators which are available
in the symmetric BETT scheme anyway. No solution of local Dirichlet prob-
lems is required. Moreover, using some sparse multiplication technique for the
discrete hypersingular operators, we only need, up to some logarithmic factor,
O((H/h)4~1) arithmetical operations for one application of the sparse hyper-
singular BETT preconditioner. Thus, the cost for the preconditioning operation
is almost proportional to the number of unknowns on the subdomain interfaces.
As in the FETI method the BETI preconditioner can be scaled in such a way
that the relative spectral condition number grows only like O((1 + log(H/h))?)
and is independent of the jumps in the coefficients of the PDE. These properties
are clearly reflected in our numerical experiments with the scaled hypersingular
BETT preconditioner.

The rest of the paper is organized as follows. In Section 2, we introduce the
BETI method for a symmetric DD BE discretization, propose some BETI pre-
conditioners, and discuss the algorithmical aspects. Section 3 is devoted to the
convergence analysis of the BETI method. Section 4 contains first numerical
results for the BETI method. Finally, in Section 5, we draw some conclusions
for using and developing the tearing and interconnecting technique in both the
boundary and finite element worlds.

2 Formulation of BETI
As a model problem we consider the Dirichlet boundary value problem
—divja(z)Vu(z)] =0 forz €, wu(z)=g(z) forz el =00 (2.1)

where the bounded Lipschitz domain Q@ C R? (d = 2, 3) is provided with some
non—overlapping quasi regular domain decomposition
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with the average subdomain size H, i.e. there exists some generic positive
constant ¢ such that (see, e.g., [5])

H; := diamQ;, H := max H;, ¢-H < H; foralli=1,...,p

i=1,...,p
We assume that, for s = 1,...,q < p, the subdomains ; does not touch the
Dirichlet boundary I' = 9€2. Such subdomains are called floating subdomains.
Moreover, we assume that the coefficient a(x) is piecewise constant,

a(z) =a; forz e Q. (2.2)
Instead of (2.1) we consider local boundary value problems
—a;Aui(z) =0 forz € Q;, wui(x)=g(z) forzel;NT (2.3)

together with the transmission conditions

0 0
ui(z) = uj(x), ai(?—niui(w) + ajaTjuj(x) =0 forzely;. (2.4)
The fundamental solution of the Laplace operator is given by
1
—2—10g|a:—y| for d = 2,
w
U*(z,y) = 11
S as— for d = 3.
4m |z —y|

The solution of the local subproblems (2.3) can be represented in the form

- 9 0
= /U (:U,y)%ui(y)dsy—/an. (x,y9)ui(y)ds, forx € ; (2.5)

called representation formula. Hence we have to find the complete Cauchy data
[wi, t; == %ui] on I';. From (2.5) we derive a system of boundary integral

equations,
u; 11— K; Vi U;
2 —_ 2 7 7 7
(5) = ("0 yla) () oo

using the standard notations for the local single layer potential operator V;,
double layer potential operator K;, adjoint double layer potential operator K,
and the hypersingular integral operator D; defined by

(Viti)(z) = /U* z,y)ti(y)dsy, ¢ € Ty,
(Kiug)(z) = /6—%[] z,y)ui(y)dsy, = € Ty,
(Kit;)(z) := /6an* z,y)ti(y)dsy, v € T';, and
(Diuy)(z) = — 9 iU*(;t: Ju;i(y)dsy,, © € T;
. © Ong ) Ony Y v v
T



respectively. The mapping properties of all of these boundary integral operators
are well known [9], in particular, the local single layer potential V; : H “1/2(ry) —
H'/2(T;) is H=1/2(T;)-elliptic and therefore invertible [22]; for d = 2 we assume
diam 2; < 1 that can be always obtained by scaling the computational domain.
Using (2.6) the local Dirichlet—-Neumann map can be written as

ti(x) = D,~+(%I+K{)W‘1(%I+K,~) wi(z) = (Siu)(z) forz €T; (2.7)

where S; : H'/2(T;) — H~'/(T;) denotes the local Steklov—Poincaré operator.
The transmission problem (2.3) and (2.4) then reads as follows: Find u; €
H'Y2(T;) with u;(z) = g(z) for z € T; N T and u; = u; on T';; such that

;i (Siui) (@) + o (Sju;)(z) =0 forx € Ty;. (2.8)

Let H'/?(T's) be the trace space of H'(f) restricted to the skeleton I's. If we
define u; = up, for u € HY?(Ts) the continuity condition u; = u; on T'y; is
satisfied automatically. Hence we have to find @ € H'/?(T's) with @(z) = 0 for
2 € I such that

Zai/[(siﬁm)(w) + (Sgir) (@) ]vyr, (v)dsz = 0 (2.9)

for all v € HY/?(T's) with v(z) = 0 for € T where § € H'/?(T's) is some
arbitrary but fixed extension of the given Dirichlet data g € H'/?(T).

Since the local Steklov—Poincaré operators S; are defined via (2.7) in an implicit
form only, we have to introduce computable approximations S; first.

For v; € HY/?(T;) the application of S;v; is given by

(S;vi)(z) = (Div;)(x) + (151 + K})w;(z) forz €Ty,
where w; € H~'/2(T;) is the unique solution of
(Viws, Ti) Lo (ry) = ((%I + Ki)vi, i) Lo(r;) for all 7 € H*1/2(1“,-). (2.10)
Let Z;p = span{¢i}ni, C H™1/2(T;) be some local boundary element space,
e.g. of piecewise constant basis functions 1}, with respect to local quasi regular

boundary meshes with average mesh size h;. Instead of (2.10) we consider the
Galerkin problem: Find w; p € Z; p such that

1
(Viwi,hyTi,h)LQ(F,-) = <(§I + Ki)vi,n,h)h(pi) for all Ti.h € Zih- (2.11)

This variational problem possesses a unique solution satisfying the a priori error
estimate [22]

[|lwi = winllg-172r;) < i 'n’higgi’h llwi = Ti,n||z-172(1,)- (2.12)



Now we can define an approximate Steklov—Poincaré operator as

(Sivs) (@) = (Divi) () + (%1 + KD)win(e) forzeTi  (213)

Theorem 2.1 [38] The approzimate Steklov—Poincaré operator S; as defined in
(2.13) is bounded,

||§i'vi||H—1/2(Fi) < ¢ ||Uz'||H1/2(1",-) f07‘ all v; € HI/Q(F,')
and satisfies the a priori error estimate

11(Si = Si)villmr-1/2(rsy < €+ T:felgh [[Sivi = Ti,n|lH-172(1,)-

i

Moreover, there holds the estimate
<§ivi7v’i>L2(Fi) > (Dvi, vi)py(r;)  for allv; € H'2(Ty).

Hence, the approximate Steklov—Poincaré operator §i is elliptic whenever the
hypersingular boundary integral operator D; and therefore the exact Steklov—
Poincaré operator S; is elliptic.

Now, instead of (2.9) we consider a perturbed variational problem to find u €
H'/?(T'g) with %(z) = 0 for z € T such that

Zai/[(@-ﬂm)(x) + (Sgir,) @)]vyr; (2)ds, = 0 (2.14)
i=1 s

for all v € H'Y/?(T's) with v(z) = 0 for z € T'. Let
W, = span{g,, } Mo | ¢ {U € HY/*(g) : v(z) =0forz € F}

be a boundary element space on the skeleton I's of, e.g., piecewise linear ba-
sis functions ¢,,, with respect to a quasi regular boundary mesh with mesh
size hg. We define also local restrictions of W}, onto I';, in particular, W;, =
span{pi }Mi . Obviously, for any ¢ € W; there exists a unique basis func-
tion ¢, € Wy with ¢!, = ¢, r,. By using the isomorphisms

M,' MO
v €RY uin =) vimph € Wi, v€RM™ & up = vnpn € Wy
m=1 n=1

there exist connectivity matrices 4; € RM:*Mo guch that v; = A;v.
The Galerkin variational formulation of (2.14) reads: Find u; € W}, such that

Zai/[(@ﬂhm)(m) + (Sgir,)@)]vnr, (@)ds, = 0 (2.15)
i=1 I

for all v, € W}. Applying standard arguments we can state the following result,
see [38]:



Theorem 2.2 There exists a unique solution up, € Wy of the Galerkin varia-
tional problem (2.15) satisfying the a priori error estimate

p
la=Tnllgrr2rs) < ex 10f lla=vnllzqes) +o ;Ti,higfzi’h||sm—n,h||H_1,2(Fi).

Corollary 2.1 When assuming the optimal regularity @ € H*(T's) as well as
St € H;M(I‘i) fori=1,...,p, we obtain the a priori error estimate

p
L~ ~  33/2 s ~ 3/2 .
&= @l lprrarsy < - B2 - Hlallamg) + 8-y 037 - ||Sidlla o
i=1
The Galerkin variational problem (2.15) is equivalent to a system of linear equa-

tions,
p

p
Zaz’Aing',hAiﬂ = ZA,TL (2.16)

i=1 i=1

with the discrete Steklov—Poincaré operator

~ 1 1
Si,n = Dijn + (§M1Th + KV G M + Kin) (2.17)

’ 2

and the boundary element matrices

Vinll, k] = (Vithh, ¥F) La(ra).
Din[m,n] = (Dith, Php)rars)s
Kinll,n] = (K@h, 08 Loy,

Miplt,n] = (‘P%:W)Lz(ri)

fork,4=1,...,.N;ym,n=1,...,M;and i = 1,...,p. When using the standard
boundary element approach, the above stiffness matrices V; 5, K; » and D; j, are
dense. Therefore, the memory demand and the effort for one matrix-by-vector
multiplication is proportional to N?. However, using sparse boundary element
techniques such as the Fast Multipole Method (FMM) [14], we can reduce the
complexity to O(N;) up to some polylogarithmical factor that is (log N;)? in
case of the FMM.

To derive the boundary element tearing and interconnecting algorithm we start
with the solution of the linear system (2.16). This is equivalent to the solution
of a minimization problem,

F(@ = min, F(v) (218)

where the linear functional is given as

F(v) := Zp: [%(gi,hAiQ; Aiw) = (f,, Aw)| - (2.19)

i=1



By introducing local vectors v; = A;v we obtain

Fo) = Flor,- ) = Y [5Gmene) - (Fu)] . (220)

i=1

To describe the connection across the interfaces we introduce the constraint

P
S By =0 221
i=1

where B; € RM*M: | Each row of the matrix B = (By, ..., B,) is connected with

a pair of matching nodes across the interface. The entries of such a row are 1
and —1 for the indices corresponding to the matching nodes and 0 otherwise.
Therefore, (2.21) implies that the corresponding boundary element functions
v;,h, are continuous across the interface (coupling boundaries) I'c =T'g \ T, i.e.
vin = vjp on I; NT; # 0. We assume here that the number of constraints
at some matching node is equal to the number of matching subdomain minus
one. This method of a minimal number of constraints respectively multipliers
is called non-redundant, see, e.g., [25] for the use of redundant constraints.
Now the solution of (2.18) is equivalent to

F(u) = F(uy,...,u,) = min F(ug,..-,0,)- (2.22)

P
vy "“721,:'21 Biﬂi:Q
i=

By introducing the Lagrange multiplier A € RM | the solution of the minimiza-
tion problem (2.22) is given by solving the linear system

algl,h B;r Uy i1
B - =l . (2.23)
oszp,h B;— Yy ip
B, ... B, 0 A 0
For i =1,...,q the discrete local (subdomain) Steklov—Poincaré operators §,~,h

are singular due to the lack of a Dirichlet boundary condition. In this case, the
local equations

;S nl; = f.- B\ (2.24)
are solvable only when assuming the compatibility condition
(f,— B’ \e) =0, (2.25)

where e; = (1,...,1)T € RM:_ Instead of (2.24) we solve a modified system,
@ [gi,h + Biese] |4 = f, = B A, (2.26)

where ; € R} is some positive constant. Note that (2.26) is unique solvable
for any right hand side, but yielding the normalization condition

T~
Qiﬁi—o



when assuming the compatibility condition (2.25). Hence we can write the
general solution of (2.24) as

_ 14 .
gizg,S;'h(ii—B;—A)—l—’yigi fori=1,...,q (2.27)
K3

where the application of
~+ ~ +1-1
Sin = [Si,h + Biee; ]

means the solution of (2.26) and where 7; € R has to be determined. In the re-
maining subdomains Q;, i = ¢+1,...,p, the discrete Steklov—Poincaré operator
Si,n is invertible,

~ L. o7 .

u; = Si,h(L’ B; A fori=q+1,...,p. (2.28)

Q;

By defining G = (Blgl ... quq) € RM*4 we obtain from (2.23)

a P
1~ 1~
Y =BiSHBf + > —BiS;\B] |A-Gy= (2.29)
, az 3 . az ) —
i=1 i=q+1
1 N
= Z _.BiSiJ,rhii + Z —BiSi v 1,
) (67 . a5
i=1 i=q+1
This can be written as
FA-Gy=d (2.30)
subject to the constraint, see (2.25),
GTA=(¢g] f)i=1:q =: € (2.31)

Defining now the orthogonal projection P = I — G(GTG)~*G” from the space
A := RM onto the subspace Ag = ker GT = (rangeG)* with respect to the
scalar product (-,-) = (-,-)a = (-, -)rm, we can split the definition of A from the
definition of . Indeed, applying P to (2.30) gives the equation

PF) = Pd (2.32)

since PGy = 0. Together with the solvability condition (2.31), equation (2.32)
is the final dual problem to find A € A. Once ) is defined, we obtain

v=(GTG)'GT(FA-4d) (2.33)

from (2.30) and finally @, from (2.27) and (2.28), respectively. We mention that
in the case of jumping coefficients the scalar product in A has to be changed
according to the proposal made in [25], see also [4, 5]. Of course, the change of
the scalar product changes the orthoprojection P too.



Algorithm 1 FETI subspace PCG iteration.

{initialization}
A =GGTGe) e {forcing the constrains GTA® = ¢ for the initial guess}
&’ = P(d—- F)\° {compute the defect and project to the subspace Ag}
w’ =C'd {precondition step}
0 =20 = Pu® {project the correction to the subspace Ag}
50 = (woa_o) (§07£lo)

{begin iteration loop}
for n = 0 step 1 until 3, < efy do

" = PFs™ {matrix-by-vector multiplication + projection}

a, = (z",s")

a=pn/an

AT = A" s {update of the iterate}

d" =d" —az” {update of the defect}

wtl = 0-1gnt? {precondition step}

2" = pynt! {project the correction to the subspace Ag}

Bntr = (w™, &™) = (2", 4

B = Bnt1/Bn

sl =z — Bsm {update of the search direction in the subspace Ag}
end for

{end iteration loop}

The dual problem (2.31)—(2.32) is now solved by a preconditioned conjugate
gradient (PCQ) iteration in the subspace Ag that is presented in Algorithm 1
as a projected PCG method. _

The matrix by vector multiplication F's™ involves the application either of S;’h

(1=1,...,q) or of 5;,1 (t=¢q+1,...,p). In the first case we have to solve the
linear system

azl:zh+ﬂz ]Q_r (234)
where e/ r; = 0 ensures the normalization condition e v; = 0, while in the
second case we have to solve

@i S; pv; = 1. (2.35)

Similar to the FE counterpart (cf. e.g. [27]), for i = 1,...,q, the solution of
(2.34) is equivalent to the solution of the extended system

Vin —iM;n - Kip w; | 0 (2.36)
M+ K, Dig + Biese] Y4 ari ) -

In the same way, for i =g+ 1,...,p, (2.35) is equivalent to

Vi —iMin—Kip w; 0
1T KT 2 D, =1 L - (2.37)
s Mip + Ky ish v, ali

10



Note that both matrices in (2.36)—(2.37) are positive definite but block skew—
symmetric. Besides a direct solution procedure one may use preconditioned
iterative schemes as discussed in [37] to solve (2.36) and (2.37).
When applying a Cholesky decomposition of the local discrete local single layer
potentials V; , only, the matrix-by-vector multiplication of the discrete Steklov—
Poincaré operator §i,h can be performed easily. Hence we can use a precon-
ditioned conjugate gradient scheme as iterative solution procedure for (2.34)
and (2.35). As preconditioner we may use a Galerkin matrix of the discrete
single layer potential, see [30, 32, 39]. More precisely, the application of the
preconditioner is given by

Csi = M Vin ;! (2.38)

3

where
Vinlm,n] = (Vigh, b)) oy Minm,n] = (04, 04 ) o)

form,n=1,...,M;,i=1,...,p. B

We mention that an alternative approach to realize the pseudoinverse S;fh of the
local Steklov—Poincaré operators by discrete counterparts of the local Poincaré—
Steklov (Neumann-Dirichlet map) operator is explicitely available in the bound-
ary element method. We will exploit this approach in connection with sparse
approximation techniques in a forthcoming paper.

The orthoprojection P ensures the solvability of the local Neumann problems
and the global information exchange. The application of P = I —G(GTG)~'GT
to some vector w € A involves the direct solution of a small system with the
g X ¢ system matrix GTG that plays the role of some kind of a coarse grid
problem that can be generated and factorized in advance.

The BETI preconditioner C' should be spectrally equivalent to the BETI oper-
ator F on the subspace Ag = kerGT, i.e.

Y(CAN) < (FAD) <F(CAN) forall A € Ag (2.39)

with positive spectral equivalence constants v and 7 such that the relative spec-
tral condition number k(PC~1 PT PT F P) respectively its bound v / 7 is as small
as possible and the preconditioning operation C~'d is as cheap as possible.

In contrast to the FETI method, we do not build C~! from the local Schur
complements S; j , but from the local discrete hypersingular operators D p.
Thus, the BETI preconditioner will not require any solution of local Dirichlet
problems. At first we propose the following three BETI preconditioners which
are adapted to different situations:

e Hypersingular BETI preconditioner I (for moderate changing coefficients,
no cross points):

P
C~!'=BD,BT = Z «;B;D; , BT (2.40)

i=1

11



with Dy, = diag(a;D;.p)i=1:p;
e Hypersingular BETI preconditioner II (for moderate changing coefficients):

C~'=(BB")'BD,BT(BBT)™; (2.41)

e Scaled hypersingular BETI preconditioner:
c~!'=Bc;'BN)'BC'DLC' BT (BC'BT) ! (2.42)

where C = diag(Cly,;)i=1:p and Co; = diag(ci);=1.n, with appropriately
chosen weights cf, see [25] and [5].

The block diagonal components D; ;, of Dy, arise from the discretization of the
hypersingular integral operator D; on I';. Therefore, this M; x M; matrix is fully
populated. The matrix-by-vector multiplication D; pd; requires M? operations
that behaves like O((H;/h;)? and O((H;/h;)* for d = 2 and d = 3, respectively.
Especially in 3D a reduction of the complexity of this multiplication operation
is highly desirable. In addition to this we want to reduce the memory demand
from M? to O(M;) (up to some possible polylogarithmic factor). These goals
can be achieved by using sparse approximations 51’,11 of D; j, such as multipole
representations [14, 8, 33], panel clustering [19], adaptive cross approximation
[1, 2], H- resp. H2-matrix techniques [18, 17], and wavelets [6, 34].

Using integration by parts [31], the bilinear form of the hypersingular boundary
integral operator D; can be rewritten as

1 curlp, u(y) - curlp v(x
(Diu, v) Ly(ry) = E// L (|?;jc) r: )dsydsx (2.43)
r; T;

-yl

for the case d = 3 (similarly, for d = 2), where
curlp, = n;(z) x Vyu*(z) forz €Ty

and u* is an extension of u into a neighborhood of I';. When using a bound-
ary element mesh of plane triangles and piecewise linear basis functions ¢!,
curlr, i € R® is piecewise constant. Then the local Galerkin matrix D;p can
be represented in the form
Vin
Din = Cj Vin Ci.n, (2.44)
Vih

where V; 5, is the Galerkin matrix of the related single layer potential with piece-
wise constant basis functions, and where C; j, is a matrix describing the piecewise

constant surface curl. Hence a fast realization 5,-7 p, of the discrete hypersingular

integral operator is reduced to three fast applications V; ;, of the discrete single
layer potential which can be done by a fast multipole method [14, 33]. Ob-
viously, this approach is kernel-preserving with kerD; , = kerD; ;. Replacing

12



D; p, by l~),~,h in (2.42), we arrive at the sparse version of the scaled hypersingular
BETT preconditioner:

c~' = (BC;'BT)"'BC;'D,C; ' BT(BC;'BT) ™! (2.45)

called scaled sparse hypersingular BETI Erecondltloner where C, is the same
scahng matrix as before, and Dy, = diag(D; p)i=1:p is a sparse approximation of

= diag(D;,p)i=1:p by means of the symmetric multipole technique described
above. Now the preconditioning operation C~'d" ™! in Algorithm 1 is almost
optimal with respect to the operation count.

3 Convergence Analysis

The crucial point in the analysis of BETI methods is the observation that the BE
(subdomain) Schur complement Sggrar,; = S; 5 can be related to some FE (sub-
domain) Schur complement Sggam,; via the spectral equivalence in H 1/2(Ty).
Before establishing this basic spectral equivalence, we prove the spectral equiv-
alence of D; , and S; . Here and in the following we use the notation A, ~ By
for the spectral equivalence of some symmetric and positive semidefinite (of
course, with the same kernel) matrices Ay and Bj, with independent of h, H,
p and the coefficients jumps, positive spectral equivalence constants ¢ and ¢
(called universal constants), i.e. for all vectors v form the corresponding Eu-
clidian vector space the following spectral equivalence inequalities are valid:

¢(Bpu,v) < (Apv,v) < ¢(Bpy,v), (3.1)

or, briefly, c B, < A, < €By.

Lemma 3.1 The discrete hypersingular boundary integral operator D;  is spec-
trally equivalent to the discrete Steklov—Poincaré operator S;p, i.e.

~ 1 4,1
Dip >~ Sin:=Din+ (§M1Th + KiTh)W,hl(§Mz‘,h + Ki p)- (3.2)
Proof. For v; € RM: we put w; := V[,}(%Mi,h + Kin)v;. Then we have
1
(Sl hY;, z) = (D’l h—u_z) ((iMz,Th +Kz—,rh)wzayz)

= (D WU, U 1)+(‘/i,hwiawi) Z (D ,hU;, 0 z)

since V; j, is positive definite. To prove the upper estimate we first consider the
bilinear form of the continuous Steklov—Poincaré operator, for v; € H'/?(T;) we
define w; = V;7' (31 + K;)v; € H™Y/%(T';) and we have

K3

1 1
(Sivi,vi)poryy =  (Divs,vi) Loy + (( I+ K)V; (514— Ki)vi, vi) Ly (ry)

(Djv;, Uz)Lz(I‘i) + <Vzwz> w’i)LQ(Fi) :

13



In the same manner we conclude
<§ivi>vi>L2(Fi) = (Div’hvi)Lz(Fi) + (‘/;'wi,h,wi,h)LQ(Fi),

where w; p, € Z; , is the unique solution of (2.12). From the Galerkin orthogo-
nality we obtain

(Viwi,hy Wi n) Lo (ry) < AViws, i) po(ry)
and therefore
(§,~vi,vi)L2(pi) < (Sivi7vi)L2(Fi) for all v; € H1/2(P).

Since S; and D; are spectrally equivalent, we proved that the spectral equiva-
lence inequalities

¢psSBEM,i < Din < €psSpEMm,i (3.3)

hold with ¢ps = 1 and some universal positive constant c¢pg. This completes
the proof. n

This observation now allows us to carry over the FETI analysis to BETI meth-
ods. More precisely, only for this purpose, we generate a quasi-regular finite
element mesh in every subdomain €; starting from the subdomain boundary
mesh. This is always possible since the subdomain boundary mesh was sup-
posed to be quasi-regular as well. The same discretization parameter h; can be
used to describe the quasi-regularity of the mesh. We assume a triangular mesh
for d = 2 and a tetrahedral mesh for d = 3. Let us now denote the subdomain
finite element stiffness matrix derived from the Laplace operator on the basis
of linear elements by Krga,;. Numbering the unknowns on the subdomain
boundary I'; first, then Krga,; has the following block structure:
Kc: Kcergi
Kreum, ( Kios Ki ) ) (3.4)

where the indices C' and I indicate the correspondence to the subdomain bound-
ary and the interior unknowns, respectively. The finite element Schur com-
plement matrix arising from the elimination of the interior unknowns can be
represented in the form (see, e.g. [16])

SreEMm,; = Ko — KCI,in,,-lKIc,z'- (3.5)

Lemma 3.2 The local boundary element Schur complement matriz Spem,; =
g,-,h is spectrally equivalent to the local finite element Schur complement matrixz
SFEM,i; i.e.

SpEM,i ~ SFEM,i (3.6)

foralli=1,...,p.

14



Proof. It is well-known [10] that the energy of the local hypersingular oper-
ator is equivalent to the H'/?(T';)-semi-norm squared, i.e. there exist universal
positive constants ¢, and ¢p such that for all v; , € W; , and the corresponding
coefficient vectors v; € RM: the equivalence inequalities

Cp |'Uz',h|%{1/2(ri) < (Di,hQi;Qi) = <Divi7h7viah>L2(Fi) < ¢p |Ui,h|§{1/2(ri) (3.7)

hold. Now, from Lemma 3.1 and the equivalence inequalities (3.7), we immedi-
ately get the inequalities

Cp |Uz',h|ip/2(ri) < (SBEM,v;,v;) < CB |vi,h|%{1/2(pi) (3.8)

with universal positive constants cg and ¢g. Similar equivalence inequalities
are true for the finite element Schur complement Srga,;. Indeed, there are
universal positive constants ¢y and ¢r such that for all v;;, € W) and the
corresponding coefficient vectors v; € RM: the equivalence inequalities

QF"U’i,h|§{l/2(Fi) S (SFEM,I'QI')Qi) S Ccr |Uz',h|i[1/2(pz.) (39)

are valid (see, e.g., [3], lemma 3.8, p. 8 in [2§], or theorem 3.5, p.64 in [38] for
the proof). Combining (3.8) and (3.9) gives the spectral equivalence inequalities

Cpicp SrEM; < SEM, < CBCR' SFEM, (3.10)

that completes the proof. ]

The following lemma shows that the same spectral equivalence is true for the
corresponding Moore-Penrose pseudoinverses on the subspace BiT Aop.

Lemma 3.3 There are universal positive constants c5 and €5y such that

Hr(SrpariBi A BTN < (Sppv, B A BIA) < @hp(Sppar:Bi A, Bi )
(3.11)
for all A € Ag and for alli=q+1,...,p and

chr(SkpmiBi A Bi A) < (ShpuiBi A BiA) < Ehp(Shpn,Bi A, B,f ) |
3.12
for all A € Ay and for alli=1,...,q.

Proof. For all i = ¢+ 1,...,p, the local boundary and finite element
Schur complements Sprum,; and Sren,; are symmetric and positive definite
(spd). It is well-known that, for spd matrices A and B, the spectral equivalence
inequalities ¢ B, < A < ¢By imply the spectral equivalence inequalities
QA,:I < B,:l < EA,;I and vice versa. Therefore, for the non-floating
subdomains, the spectral inequalities (3.11) follow from inequalities (3.6). The
same is true for the floating subdomains, i.e. for all i = 1,...,q. Indeed, for v,
satisfying e/ v; = 0 we have

[SeEM,: + Bieie] | v; = SpEMm,iv; -
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On the other hand, for A € Ay we have
v; = Stpns = [Seem,i+ Beel | Bf A withe/ v, =0.

Using analogues considerations for the Moore-Penrose pseudoinverse of the finite

element Schur complement, St ; = [Srmwm,i+Bie;ef 171, the assertion follows

from the spd matrices SBEM,z' + ﬁiQiQZT and SFEM,i + ﬂigigi. |

Using these lemmas and the results obtained for the FETI method, we can prove
our first main result for the scaled hypersingular BETI preconditioner (2.42).

Theorem 3.1 For the scaled hypersingular BETI preconditioner (2.42), the
condition estimate

2
k(PC'PTPTFP)<c (1 + log %) (3.13)

holds, where the positive constant c is independent of h, H, p and the a;’s
(coefficient jumps). The matriz-by-vector operation D; pv; that is the most ex-
pensive operation in the preconditioning step costs ops(D; yv;) = O((H/h)? and
ops(D; ;) = O((H/h)* arithmetical operation for d =2 and for d = 3, respec-
tively.

Proof. In a first step, we show that the inverse of the scaled hypersingular
BETT preconditioner (2.42)

Cppri = (BC;'BT)™'BC;'D,C;' BT (BC;'BT)™! (3.14)
is spectrally equivalent to the FETI preconditioner
Crerr = (BCZ'BT)™'BC; ' SppmCy BT (BC'BT) ™! (3.15)
that was proposed by Klawonn and Widlund in [25], where
Srem = diag(iSFEM,i)i=1:p- (3.16)

Indeed, using Lemma 3.1 and Lemma 3.2, we get

p
(CorridA) = Y ai(DniCy B (BC;'BT)™'A\,C B (BC;'BT)™'))
=1
p
< ©¢ps Z a;(SBEM,iw;, w;)
i=1
P
< epstpcp! Z a;i(SrEM,iw;, w;)
i=1
= ¢pstpcy (CrpriA,A) for all A € Ay, (3.17)
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where w; substitutes C, ;B (BC;'BT)~'A. Therefore, we proved that
(CreTIA Q) < Coc (CBETIAA) for all A € Ag (3.18)
with oo = EDSEBQIZl. Similarly, we get
coo (CBeTIiA A) < (CreriA,A) forall A € Ag (3.19)

with coo = QDSQBEE‘I. Therefore, Cgrr ~ Crerr-
Now, using Lemma 3.2, inequalities (3.18)-(3.19), and the FETI spectral equiv-
alence inequalities

7\ 2
(Creri\, A) < (FreTi) A) < crETI (1 +log ﬁ) (CreTIAN)  (3.20)

for all A € Ag, which were proved by Klawonn and Widlund in [25], theorem 1
(see also Brenner [4, 5]), where cppry is a positive universal constant and

P
1

.

Frerr = Z EBiS;,CEM,iBi )
i=1

we finally obtain

(FA, Q)

1
L (S iBIABIN)

p
i=1

P
1
< e Y (St B A BIY)

i
i=1 ¢

I\ 2
< ChpcreTI (1+10g E) (CreTIA A)

7\ 2
< CocChpCrETI (1 + log E) (CerrIA,A) forall A € Ag.

Similarly, we get
(FA, Q) > coochip(CerrrA, X)) for all X € Ag.

Therefore, we verified the spectral equivalence inequalities (2.39) with the con-
stants 7 = QCCQEF and 7 = ECCEEFCFETI (1 + 10g(H/h))2), i.e. the condition
estimate (3.13) is proved. The complexity estimates given in Theorem 3.1 im-
mediately follow from the fact that D; p is fully-populated. ]

In order to prove the same condition number estimate for the sparse version,
we need an additional result formulated in the following lemma.

Lemma 3.4 The sparse representations of the discrete local hypersingular op-
erators D; , are symmetric, positive semidefinite, and spectrally equivalent to
their full counterparts Dy p, i.e.

_5@},, ~ Di,h fOT' olli = ]., ..y D (321)

In particular, kerﬁi,h =kerD;p foralli=1,...,p.
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Proof. The sparse representations of the discrete local hypersingular
operators are given as

- -
Din = Cy, Vi Cin

Vi

where the 17;-,;1 are sparse representations of the discrete local single layer poten-
tials. Since the transformation matrix Cj ;, describing the surface curl coincides
with the exact representation in (2.44), we conclude ker 1~),-’h = ker D; ,. Now,
the spectral equivalence inequalities (3.21) follow from the spectral equivalence
inequalities XN/i,h ~ Vin. This can be obtained when choosing the multipole
parameters in an appropriate way, see [33] for details. [ |

Theorem 3.2 For the scaled sparse hypersingular BETI preconditioner (2.45),
the condition estimate

H 2
k(PC'PTPTFP)<c (1 + log ﬁ> (3.22)

holds, where the positive constant ¢ is independent of h, H, p and the a;’s (coeffi-
cient jumps). Now the matriz-by-vector operation D; pu; only costs ops(D; pv;) =
O((H/h)*Y(1 +1og %£)?) arithmetical operation.

Proof. Taking into account Lemma 3.4, we can easily prove estimates of
the type (3.17) - (3.19) with D, ;, replaced by D;j. The rest of the proof is
identical to the proof of Theorem 3.1. [ |

4 Numerical Results
As a first test example we consider the boundary value problem

—Au(z) =0 forzeQ, wu(z)=g(z) forzel =00

d —
where g(z) =4 5 z; and Q = Q; UQ, C R? is given as depicted in Figure 1 for

=1

d=2andd=3.

The trial space Wy, = span{gom}%(’:l is formed by piecewise linear basis func-
tions ¢, with respect to a uniform mesh on the coupling boundary I'1a. The
local boundary element spaces Z; ) = span{¢i}g;1 are spanned by piecewise
constant basis functions ¢ with respect to a uniform mesh of the local sub-
domain boundaries I';. The local single layer potentials V;j are inverted by
applying a Cholesky decomposition (d = 2) or a sufficiently accurate (up to the
discretization error) inner conjugate gradient iteration (d = 3). The resulting
linear system (2.29) is solved by a preconditioned conjugate gradient scheme
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0 0y Q Q
1 2

Figure 1: Domain decomposition with p = 2 subdomains (d = 2, 3).

either by using no preconditioner (C' = I) or the hypersingular BETT precon-
ditioner (2.40). As stopping criteria a relative error reduction of ¢ = 108 was
used. The number of iterations needed are shown in Table 1 (d = 2) and in
Table 2 (d = 3), where L denotes the refinement level. In order to have a com-
plexity comparison with the finite element discretization, we also indicate the
number N;™ of local finite element unknowns that would correspond to the
boundary unkowns. It can clearly be seen from both tables that the grow in the
number of iterations in the unpreconditioned case (C = I) is stopped by our
hypersingular BETI preconditioner (2.40) as expected by our analysis.

L[ M| N, |[N™ [CT=T]C T =(240)
3] 7 | 32 | 49 4 4
4115 | 64 | 225 8 7
5| 31 | 128 | 961 11 10
6| 63 | 256 | 3969 13 10
7 | 127 | 512 | 16129 17 10
8 | 255 | 1024 | 65025 | 25 10

Table 1: Numerical results for p = 2 subdomains (d = 2).

L[ M| N, [NF™ [ CTI=]]C L= (240)
2| 25 | 384 | 343 6 6
3| 113 | 1536 | 3357 11 9
4 | 481 | 6144 | 29791 13 11

Table 2: Numerical results for p = 2 subdomains (d = 3).

As a second test example we consider a potential equation with piecewise con-
stant coefficients,

—divja(z)Vu(z)] =0 forz € Q, wu(z)=g(z) forz el =00

where  and a(z) are as depicted in Figure 2, and g(z) = 4(x1 + x2).
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a(r)=ap | alz)=1

Figure 2: Domain decomposition with piecewise constant coefficients.

Table 3 presents the number of iterations for different preconditioners, different
refinement levels L, and different jumps in the coefficients. Again we have a
very good agreement with our analysis. Without preconditioner the numbers
of iterations grow with growing refinement levels and the iteration is sensitive
against coefficient jumps. The hypersingular BETI preconditioner II is better
than the hypersingular BETT preconditioner I (we have a cross point !), but both
preconditioners are sensitive against coefficient jumps. Only the scaled hyper-
singular BETT preconditioner (2.45) is really stable against coefficient jumps and
shows only a log(H/h) grow (H=constant !) in the number of PCG iterations
as predicted by our analysis.

5 Concluding Remarks

In this paper we presented the boundary element counterpart BETT of the FETT
method that is nowadays well established in the finite element community. Our
BETT preconditioners were constructed from the discrete hypersingular opera-
tor that is available in the symmetric domain decomposition boundary element
method anyway. Our analysis showed and our numerical experiments confirmed
that the BETI methods exhibit the same nice numerical and practical properties
as the FETI methods.

The standard boundary element discretization leads to fully populated matrices.
This drawback of the boundary element method can be avoided by means of
sparse approximation techniques. We exploited this technique for the construc-
tion of the symmetric and positive definite scaled sparse hypersingular BETI
preconditioner (2.45) that appears to be almost optimal with respect to the
operation count as well as the memory demand. Up to some polylogarithmic
factor the complexity of these resources is proportional to the number of the
subdomain boundary unknowns. In a forthcoming paper we will develop sparse
inexact BETT versions the total complexity of which is basically proportional to
the number of the subdomain boundary unknowns. It follows from our analysis
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LI N, | M [CT=T[C"=(240) [ C " =(241) [ C" T =(2.42)
Qg = 1
4 64 61 17 16 11 11
5 | 128 125 21 17 12 12
6 | 256 | 253 30 17 13 13
7| 512 | 509 40 18 14 14
8 | 1024 | 1021 54 19 14 14
Qg = 2
4 64 61 19 27 13 16
5 | 128 125 24 29 13 18
6 | 256 | 253 33 31 14 20
7| 512 | 509 44 30 14 21
8 | 1024 | 1021 60 31 15 22
ap = 100
4 64 61 21 34 20 20
5 | 128 125 27 39 21 22
6 | 256 | 253 35 41 22 23
7| 512 | 509 50 44 22 25
8 | 1024 | 1021 69 46 24 26
ap = 10000
4 64 61 13 15 24 13
5 | 128 125 17 17 29 15
6 | 256 | 253 22 19 30 16
7| 512 | 509 30 19 31 17
8 | 1024 | 1021 39 19 31 19

Table 3: Numerical results for p = 4 subdomains (d = 2) and again ¢ = 1078.

that the scaled sparse hypersingular BETI preconditioner (2.45) can be used as
optimal preconditioner in the FETI methods as well.

There is another, very useful opportunity to make a marriage between BETI
and FETI methods. Since the FEM and the BEM have certain complementary
properties, it is sometimes very useful to couple these discretization techniques
and to benefit from both worlds (see e.g. [15]). This concerns not only the treat-
ment of unbounded domains (BEM), but also the right handling of singularities
(BEM), moving parts (BEM), volume forces (FEM), non-linearities (FEM) etc.
Thus, combining our BETT techniques with the FETI methods gives new, quite
attractive tearing and interconnecting parallel solvers for large scale coupled
FE-BE-DD equations.
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