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Abstract

The aim of this paper is to develop a new notion of weak solutions
for the planar mean curvature flow based on a variational formulation.
This concept, generalizing the notion of viscosity solutions, is analyzed
in detail in the case of the mean curvature flow of planar graphs.

For such flows, existence, uniqueness, and stability of weak solu-
tions are shown under minimal assumptions on the initial value, which
is assumed to be square-integrable only. For initial values of bounded
variation, partial regularity of the solution is proved, as well as a result
on the long-time asymptotic behavior.
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1 Introduction

The mean curvature flow of curves and surfaces has been a topic of ma-
jor interest in differential geometry and applied mathematics over the last
decades. In the planar case, the mean curvature flow of an evolving curve
I'(¢) is defined by a normal velocity

Vo =—k=—divn, (1.1)

where n is the unit outward normal.

A lot of progress has been in made in the mathematical analysis of the
mean curvature flow after the introduction of the level set method by Osher
and Sethian [40], who used the implicit representation

L(t) ={ (z,y) € R | §(z,y,t) =0 } (1.2)
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of the evolving curve or surface in order to develop numerical schemes for
several geometric motions, including motion with prescribed normal speed
as well as the mean curvature flow. The level set formulation of the mean
curvature flow is then given by

¢ = Q(¢) div (%) Q) =/di+ ¢} (1.3)

in a space time domain Q7 := Q x (0,7). Level set methods do not only lead
to efficient computational schemes, but are also able to handle topological
changes such as merging and splitting of connected components in an auto-
matic way, which is impossible with classical methods based on curve param-
eterizations. Since the level set equation corresponding to such geometric
motions are of Hamilton-Jacobi type, the natural mathematical tool to de-
fine generalized solutions is the theory of viscosity solutions (cf. [4, 10, 34]
for a general overview and [9, 17, 18, 19, 20, 43] for the mean curvature
flow).

A main ingredient of the theory of viscosity solutions are comparison
principles, and therefore only bounded solutions are obtained with this con-
cept. In some applications, such as imaging or inverse problems, the mean
curvature flow or similar motions are applied for non-smooth initial values
(cf. e.g. [28, 36]). In these problems, the aim is to compute regularized
solutions of ill-posed operator equations of the form A(u) = f, with A be-
ing a continuous operator from L? into some Hilbert space H. If one uses
standard regularization methods such as Tikhonov regularization in L?(Q)
or H'(Q) (cf. [14, 46]), the discontinuites of the solution are smoothed out,
which is an undesirable effect. In order to overcome this difficulty, other
penalty terms added to the least-squares functional have been proposed in
the last decades, such as the total variation of u (cf. [41]) and the Hausdorff-
measure of the graph of u, called curve (respectively surface) reqularization
(cf. [37]). In order to minimize the arising functionals, alogorithms based
on time evolution have been proposed leading to the evolution equations

w= QM) (adiv () - 4w - 1),

Vu
Q(u)
with @ > 0 being a regularization parameter, Q(u) = |Vu| for total varia-
tion regularization (cf. [36]) and with Q(u) = /1 + |Vu|? for curve regu-
larization (cf. [28]). Since the main motivation for these evolutions is the
reconstruction of discontinuous solutions, this obviously raises the question

whether solutions exist in a suitable sense even for initial values in L?(9) or
BV (Q).
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Moreover, it seems reasonable that a variational approach to the mean-
curvature might be extendable to nonlocal terms such as A'(u)*(A(u)— f) in
the above evolution (e.g., if A is some integral operator), though we will not
treat this case explicitely in the present paper. The treatment of nonlocal
terms is also a motivation for a variational approach to the analysis many
moving boundary problems under non-equilibrium conditions such as den-
dritic growth (cf. e.g. [21, 24]) and level set methods for shape optimization
(cf. e.g. [6, 39, 42]). We shall present some preliminary investigations of
the non-parametric case in Section

Another motivation for such a concept of weak solutions arises from nu-
merical computation. Recently, semi-implicit finite element methods have
been constructed for the mean curvature flow (cf. [8, 11, 12, 30]). These
methods use some kind of variational formulation and therefore do not fit
very well to the standard concept of viscosity solutions (though it can be
shown that they converge to a viscosity solution provided the data are suf-
ficiently regular).

Finally, a concept of weak solutions for the mean curvature flow might
help to define a similar concept for motion by surface diffusion (cf. [7]), i.e.,
the motion

Vo = Ask, (1.4)

where Ag denotes the surface Laplacian. In the case of a planar graph,
motion by surface diffusion is equivalent to the equation (cf. [3])

“t:_(cz(lu) (c;(fﬁ)%)x’ =it (5

for the height u. Since this degenerate parabolic equation is fourth-order,
maximum and comparison principles are not available and hence, it is impos-
sible to define viscosity solutions in a similar way to first- and second-order
equations. So far, only few theoretical results are available for surface dif-
fusion (cf. [15, 35]), but a general theory is missing.

The aim of this paper is to realize a first step towards a resonable defi-
nition of weak solutions for the mean curvature flow based on a variational
formulation. We start with the most simple case, namely the planar mean
curvature flow of graphs, where the level set function can be written as
¢(z,y,t) = u(z,t) — y, resulting in the evolution equation

U u
w=1+u2 | —2— | =22 1.6
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in Q7 with a domain Q C R'. For the construction of weak solutions we
shall rewrite (1.6) in divergence form and then follow closely the approach of
Lichnewsky and Temam [31] for the total variation flow of graphs (cf. also
[22] for the general total variation flow). The result is a concept of weak
solutions coinciding with the viscosity solution if the latter is defined.

The partial differential equation (1.6) is supplemented by the initialcon-
dition

u(0) = wup. (1.7)

and suitable boundary conditions. For the sake of simplicity we restrict our
attention to homogeneous Neumann boundary conditions, i.e.

ug =0 on 99 x (0,T), (1.8)

but we want to mention that a similar analysis is possible for Dirichlet
boundary conditions, too.

The paper is organized as follows: in Section 2 we derive a variational
formulation and introduce our new concept of weak solutions. Section 3 is
devoted to the analysis of a viscous approximation, whose properties are
essential for the analysis of the limit case, i.e., the planar mean curvature
flow of graphs. Section 4 contains all main results of this paper, we prove
existence and uniqueness of weak solutions as well as stability, partial regu-
larity, and some long-time asymptotics. Finally, we discuss some extensions
in Section 5.

Throughout the whole paper we use standard notation for partial deriva-
tives (expressed by subscripts) and function spaces. In particular we use
standard Lebesgue and Sobolev spaces (cf. [1, 32] for detailed definitions),
the space of functions of bounded variation BV (2) (cf. [16, 25]), and vector-
valued function spaces (cf. [33]).

2 Weak Solutions

In the following we derive a concept of weak solutions for the mean curvature
flow of planar graphs (1.6) subject to the initial condition (1.7) and the
boundary condition (1.8).

First assume that u is sufficiently regular, so that we can rewrite (1.6)
as

u = 1 = (), (21)

Zz
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with F'(p) = arctan p. Consequently, for v sufficiently regular and s € [0, 7]
arbitrary, we obtain after integration by parts the identity

/OS /Q(“t(” —u) + F(ug)(ve — ue)) do ds = 0.

For the first term in the integral we obtain that

AS[)(Ut(U—U)) do dt = /OS/Q((U_U)t(U_u) + (v — ) da dt
= 5 [ (0 —00)? - () ~ o)) o+

Q
//vt(v—u) dz dt.
0 Jo

Due to the convexity of the function G defined by
G'(p) = F(p) = arctan p, G(0) =0, (2.2)
we obtain that
F(s)(t —s) < G(t) — G(s), Vs,teR

Hence, with the notation

J(v) := /QG(vx) dz, (2.3)

we obtain the variational inequality

5 | (6 =06 = (1 = (0)?) i <

/OS(J(U) = J(u)) dt+/05/nfut(v—u) dz dt, (2.4)

for all s € [0,7] and all sufficiently regular test functions v.
We are going to seek a weak solution in the space

U:=L'(0,T; BV(Q) NC(0,T; L*(Q)), (2.5)

equipped with the usual norm being the sum of the individual norms (cf.
[33]). The test functions v shall be chosen from the space

V:=LY(0,T; BV(Q)) n H'(0,T; L*(Q)), (2.6)

again equipped with the usual norm. Note that due to the continuous em-
bedding H'(0,T; L?(2)) < C(0,T; L*(2)) (cf. [33]), the space U is larger
than V and the initial value of v € V is well-defined. This setting now yields
the following notion of a weak solution:
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Definition 2.1. A function u € U is called a weak solution of the mean
curvature flow of planar graphs (1.6), if the inequality (2.4) holds for all
v E V.

Note that in the above definition of a weak solution it suffices to have
an initial value in L?(f2), we shall see below that we obtain existence and
uniqueness of a solution even under this almost minimal regularity assump-
tion. Moreover, we shall see below that the regularity of the solution in-
creases with the regularity of the initial value. E.g., if ug € BV (), we
obtain that u € L>(0,T; BV ().

Another important observation concerns the functions F' and G intro-
duced above. Since in the level set perspective we have ¢, = wu, and
¢y = —1, we obtain that the angle between the z-axis and the front (i.e.,
the zero level set of ¢) is given by

0 = arctan (%) = —arctanu; = —F(ug).
y

Hence, the value F(u,) has a clear geometric interpretation, in terms of the
angle 0 defined above, G is given by

G(s) = G(#) = 6 tan® + In(cos 6). (2.7)

Note that the use of the angle 6 corresponds very well to several presenta-
tions of evolving phase boundaries in materials science (cf. e.g. [26]), which
are given partly in terms of the angle 6.

Our final aim in this section is to provide an estimate between the semi-
norm in BV (Q) and the functional J:

Proposition 2.2. Let w € BV(Q), then the estimate
2 4
;J(’w) < Jw[py) < ;J(w) + 192]. (2.8)

holds for the functional J defined as the lower semicontinuous extension
(with respect to L-convergence) of (2.3).

Proof. Tt suffices to verify the identity for w € C*(€), then the estimate can
be extended to BV () by lower semicontinuity of the seminorm and the
convex functional J. For w € C'(f2), we have that

J(w) = / Glw,) dz < sup|C'(s)| / | d,
Q sER Q
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and since |G'(s)| = | arctan s| < § we obtain the first estimate in (2.8).
In order to obtain the estimate on the right-hand side we use the con-
vexity of G to deduce

Jw) = /Q (Glwg) — G(0)) de

/ G' (wg)(wy — 0) dx :/ | arctan wy||wy| dz
Q Q

/ |wg| dz
{4| arctan wz|>7}

= / |wy| dz — / |wy| dz
{4] arctan wy | <7}

™
> Z‘w|BV(Q) - Z/(tan ) dz,

Y

which implies the assertion. U

3 Viscous Approximation

In this section we investigate a viscous approximation to (1.6), i.e., we con-
sider the strongly parabolic equation

1

for positive real € subject to the homogeneous Neumann boundary condition
(1.8) (called Neumann-problem for (3.1) in the following). The correspond-
ing initial values u§ € C*(f) are chosen such that u§ — u in L?(Q2) as
e — 0. From the standard theory of parabolic equations (cf. [23, 29]) we
obtain the following existence and uniqueness result concerning a classical
solution:

Theorem 3.1. Let € > 0 and let u§ € C*°(Q2). Then the Neumann-problem
for (3.1) has a unique classical solution u¢ € C*°(Qr). under the initial
condition u(0) = uf.

In the way we derived the weak formulation for (1.6) above, we can
now derive a notion of weak solutions for (3.1), which also includes classical
solutions. A weak solution in this case is defined as a function v € U N
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L?(0,T; H'(Q)) satisfying

5 | ((e) =00 = (1 = 0(0))?) da <

/Os(Je(fu) — J¢(w)) dt—l—/os/nfut(u—u) dr dt, (3.2)

for all s € [0,7] and all test functions v € V N L2(0,T; H'(Q)), where

T (uy) = /Q (Gwa) + lual?) da

By choosing the special test function v = 0 and using the nonnegativity of
J¢(u) — J(u), we immediately obtain an a-priori estimate independent of e.
We summarize these results in the following lemma:

Lemma 3.2. Let € > 0 and let u§ € C®°(Q). Then the unique classical

solution u® of the Neumann-problem for (3.1) with initial value uf satisfies
(3.2) for all s € [0,T] and all v € V N L*(0,T; H(Q)). Moreover, the
estimate

”“G(S)H%Zmﬁ/o (270) + ellusZoey) dt < 20
< JuolZagq) + R(e) (3.3)

holds for all s € [0,T], where R(e) is a constant independent of s, which
tends to zero as e — 0.

Lemma 3.2 will be the main ingredient of our existence proof for weak
solutions of (1.6). From the a-priori estimate (3.3) we immediately ob-
tain the existence of a convergent subsequence in the weak-star topology
of L*®(0,T;L?()). Moreover, we obtain the uniform boundedness of the
regularization term /e[[uglz2( (@r)- From the uniform bound on J(u€) we
can deduce uniform boundedness in L!(0,T; BV (€) due to Proposition 2.2,
which will be used with the weak lower semicontinuity of the functional J
to pass to the limit in the variational inequality (3.2). One observes that
by testing (3.1) by an arbitrary function v € L2(0,T; H'(f2)) we obtain the
estimate

||U§||L2(0,T;H—1(n)) = / /u v dz dit
veL?( OTHl(Q)||v|| 1

- / / us) vy + eulvy) dz dt

§VT|Q + ellugllz2@r), (3.4)

AN
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which implies a uniform bound for [|u§||z2(o,7;7-1(q)) due to (3.3). Moreover,
by testing (1.6) with tu§ and simple manipulations we obtain that

d € Ei €\2 — € € €\2
t/Q( )7 do + (1T ))+2dt/t(u$) do = J(u) + /Q(uw) dz
and together with (3.3) and (3.4)

/s / (Vi uf)? da di + 5. (u(s)) + & / (Vs u(s)2ds<C  (3.5)
0 Q Q

for a constant C' independent of e.

Finally, we shall prove some further energy estimates useful for proving
further regularity of the weak solution. The first one is the natural energy
estimate (cf. [2, 12, 44]) associated with the mean curvature flow concerning

the energy functional
1 [t 5
= — V, do ds + 1 do.
2 Jo Jres) T(t)

Lemma 3.3. Let u¢ € C®(Qr) be the unique solution of the Neumann-
problem for (3.1). Then u satisfies

/ / \/T & dt*/ﬂ(WHH(ui(s))) dz <
/Q ( 1+((U(€))z)2+6H((u8)w)> dz, (3.6)

where H is the convex, nonnegative function defined by H'(s) = arcsins and
H(0) =0.

Proof. We divide (3.1) by /1 + (u€)?, multiply by u§ and integrate with
respect to x over {2 and with respect to ¢ from 0 to s. Using integration by
parts with respect to x we obtain that

ulus

¥ ‘”t +e arcsinh(u;)u;t> dz dt =0,

and hence, we obtain (3.6) by integration with respect to z. O

The second energy estimate concerns the evolution of the functional J
defined above:
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Lemma 3.4. Let u be the unique solution of the Neumann-problem of (3.1).
Then u® satisfies

/Os/ﬂ(ug)2 dr dt-l—/Q (G(u;(s))‘l‘%(u;(s))Q) dz <
[ (6@ + 5(w).?) d, 6)
Q

and
/OS/Q ((F(ufc)x)2 + e%) dz dt < J(u§) — J(u(s)) (3.)

for all s € [0,T7].
Proof. The estimate (3.7) can be obtained by multiplying (3.1) with u§ and

integrating with respect to x over 2 and with respect to ¢ from 0 to s.
The second estimate (3.8) is obtained by multiplying (3.1) with F(u$), =

€

ﬁ%ﬁ and integrating with respect to x over {2 and with respect to ¢ from
0 to s. O

4 Analysis of Weak Solutions

Now we turn our attention to the existence and uniqueness of weak solutions
for (1.6). Moreover, we shall provide a stability estimate for weak solutions
of (1.6) with different initial values. The following theorem is the central
result in a theory of weak solutions for the planar mean curvature flow. Note
that its proof follows closely the proof of Theorem 1.1 in [22].

Theorem 4.1. For each initial value ug in L*(Q) there exists a unique weak
solution uw € U of (1.6). If u and 4 denote the weak solutions for the initial
values ug and ugy respectively, then the estimate

/Q (u(s) — i(s))? dz < /Q (uo — 1ig)? dz (@.1)

holds.

Proof. In order to prove the existence of a weak solution, consider the viscous
approximation (3.1). Using Proposition 2.2 and the a-priori estimates (3.3)
- (3.5), we can apply analogous reasoning as in [22] to deduce the existence
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of a function v € L'(0,T; BV (Q)) N L*°(0,T; L?(Q)) such that there exists
a subsequence u¢* with

u* =y weakly-* in L°°(0,T; L?*(Q))
weakly in L?(Qr) (4.2)
strongly in L'(0,T; LP()),p € [1,0)

Vtutt(t) — Vtu(t) strongly in LP(Q),p € [1,00) for a.e. t € (0,T] (4.3)
ugk — uy weakly in L2(0,T; H~' () (4.4)
Vitusk — Vtuy weakly in L?(Qr). (4.5)

The remaining steps to show existence are exactly the same as in [22], where
we use the lower semicontinuity of the convex functional J in L*(0, T; LP(2))
to pass to the limit in the weak formulation.

Since the uniqueness of the weak solution obviously follows from (4.1),
it suffices to prove this stability estimate. In order to prove this estimate,
we use special test functions in the variational inequalities defining v and 4.
In particular we define w and w? by the relations

U+ u ug + Ug
w = 5 s =

w(0) = w’(0) = ——,

and
owd + w) =w in (0,7).

One can show that (cf. [22, p.11])
w’(s) — w(s) strictly in L?(Q), Vs € [0,T]

and
w® — w strictly in L*(0,T; BV (Q))

as § — 0.
By choosing v = w’ in (2.4) with initial value uy and g, respectively,
we obtain that

[ (06 - w6 - duo - a0)?) o <
/OS(J(wJ)—J(u)) dt-|—%/os/ﬂ(u_w5)(ﬂ_u) oot

3 [ (@6~ )7 - oo —a0?) do <
/OS(J(wJ) — J(@)) dt+%/os/ﬂ(ﬂ ) (u— 1) de dt.
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Adding these inequalities and using the convexity of J we deduce

1] () =) ~ (o~ 70)?) do <

1

+ z/OS(J(wJ) _ J(w)) di.

Due to the above convergence properties of w® and the lower semicontinuity
of J, the terms on the right-hand side tend to zero, and thus, we obtain
(2.4) in the limit. O

We want to mention that stability results like (4.1) have been obtained
in the Supremum-norm or in Hélder norms for viscosity solutions (cf. [27]),
to our knowledge this is the first result in the L?-norm.

In the above result we have used the convergence of solutions of the
viscous approximation (3.1) as € — 0 in order to prove existence. Since
the solutions of the viscous approximation always converge to the unique
viscosity solution, if the latter exists, we immediately obtain the following
coherence result for our notion of weak solutions:

Corollary 4.2. Let the initial value ug be such that a unique viscosity so-
lution of (1.6) exists. Then the weak solution and the viscosity solution are
equal.

4.1 Regularity

The weakest type of regularity we are interested in is of bounded variation
type. In the following we show that this type of regularity is maintained
during the main-curvature flow and obtain some Lyapunov-functionals. An
obvious one is J, another is the lower semicontinuous extension of

A(w) == /Q V1+w? dz (4.6)

to BV (), which we shall denote again by A.
Theorem 4.3. Let ug € L?(2) N BV (Q). Then,

e u(s) € BV(Q) for all s € [0,T] and the functional-s A(u(s)) is
monotonically nonincreasing.
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o J(u(s)) < oo for all s € [0,T] and the functional s — J(u(s)) is
monotonically non-increasing.

Moreover, u; € L2(Qr) and § = —F(u;) € L2(0,T; H'(2)).

Proof. We can find approximations u§ of the initial value u¢ such that

e/ H((uS),) dz —0  and e/((ug)w)Q dz = 0,
Q Q

as € — 0, respectively. These identities can be used to pass to the limit in
(3.6), (3.7), and (3.8), which imply the assertions. O

As a consequence of this regularity result we obtain by the continuous
embedding H'(2) — C(Q) that 8 € L?(0,T;C(Q)) if the total variation of
the initial value ug is bounded.

4.2 Long-Time Asymptotics

Finally, we derive some results on the long-time asymptotics of weak so-
lutions. The asymptotic behavior obtained for the mean curvature flow
(namely convergence to a flat curve) is very well known for viscosity solu-
tions, we generalize the result to weak solutions in the class L*°(0,T; BV (Q2)).

The natural tool for analyzing long-time asymptotics of weak solutions
are the decay properties of the functional ¢ : s — J(u(s)). From the above
analysis, we may conclude that ¢ € L!([0,T]) for any T' € R (uniformly
bounded with respect to T') and that 1 is monotonically non-increasing.
Hence, we obtain

s C
v <5 [wwa<s,

where C' is a constant dependent on ug only (in particular independent of
s). Thus, 1(s) decays to zero at least of order 1. This decay property leads
to the following result on the long-time asymptotics:

Theorem 4.4. Let ug € BV (Q) and let uw € U be the unique weak solution
defined by (2.4). Then

1
u(s) — 5/ uy dz strongly in LP(Q),p € [1,00)
Q

as s — oQ.
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Proof. If we use the test function v = 0 in the weak form (2.4), then we
obtain a uniform bound for the L?norm of u(s), which is independent of
s. Moreover, the decay of functional 9(s) = J(u(s)) together with (2.2)
implies the uniform boundedness of |u(s)|py () with respect to s. Thus,
u(s) is uniformly bounded in BV (€2) and due to compact embedding we may
conclude that each sequence sy — 0 has a subsequence (again denoted by sy)
such that u(s;) — u* for some u* € L?(€2). Due to the lower semicontinuity
of J, we may conclude that J(u*) = 0 and hence, u* is constant. Because
Jo ut(s) dz =0, we obtain that

N 1
U —ﬁfﬂuodx.

The uniqueness of the limit finally implies the convergence u(s) — u* by
standard arguments. O

5 Extensions and Open Problems

Finally we discuss some extensions of the mean curvature flow, in particular
we provide an analysis of weak solutions for anisotropic mean curvature flows
of planar graphs. In the case of the mean curvature flow with an additional
forcing term as well as for the planar mean curvature flow of level sets we
provide some preliminary ideas and raise open questions.

5.1 Anisotropic Mean Curvature Flow

The anisotropic mean curvature flow of a planar graph can be written as
(cf. [26])
Vo = —9(0)k = —g(0) div n, (5.1)

where 6 denotes again the angle between the z-axis and the normal. Thus,
in the graph case, anisotropic motion by mean curvature can be written as

Ugg

1+ u2

T

uy = g(arctan u,) = F,(arctan ug), (5.2)

where the function F, is defined by F,(0) = 0, F.(p) = g(p) . A weak
solution can be defined in this case by (2.4) with the functional J being the
lower semicontinuous extension of

J(w) = /QGa(wm) dz, Gau(p) == /Op F,(arctan q) dgq (5.3)
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to BV (). For nonnegative g, the functional J is still convex, one of the
main properties needed for an existence proof. The second key ingredient
for such a proof is again an estimate between the functional J and the BV-
seminorm, which can be obtained if g is bounded from below and above:

Proposition 5.1. Let g be defined in [T, 5] and let
0<vy<g(0) <T, for all 0 € —g,g], (5.4)

where v and T' are positive real constants. Then the estimate
2 4
—J(w) < |w|py @) < —J(w) + [ (5.5)
7wl Ty

holds for all w € BV ().

Proof. As in the proof of Proposition (2.2), we may restrict our attention to
functions w € C1(2). For such functions we may estimate

J(w) = / Ga(ws) dz < sup |G (s)] / (| d.
Q sER Q
and since
arctan s T
|G (s)| = |Fa(arctan )| = | / 9(0) do| < 71
0

we obtain the first estimate in (5.5).
In order to obtain the estimate on the right-hand side we use the con-
vexity of G to deduce

Jw) = /Q (Ga(ws) — G(0)) dz

> /|Fa(arctanw$)|\ww| dx
Q

™
4 {4] arctan wy|>n}

Ty Ty T
> I|w|BV(Q) - I/Q(tan Z) dz,

> |wg| dz

which implies the assertion. O

All steps of the proof of Theorem 4.1 can now be carried out just as
above and therefore we immediately obtain that the assertions of Theorem
4.1 and Corollary 4.2 hold for the anisotropic mean curvature flow of planar
graphs (5.2) if g satisfies (5.4).
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5.2 Mean Curvature Flow with Forcing

The mean curvature flow with forcing is a geometric motion of the form
Vi=—-k+f=—divn+f, (5.6)

with f a given function of location and time, and possibly of the normal n.
For a planar graph, an additional forcing term means that (1.6) has to be
modified to

55 () )

in Q7. In this case, f can be interpreted as a function of time, location, and
of the angle —6 = arctan u,.

If we apply similar reasoning as in the derivation of (2.4), then we obtain
the variational inequality

+ f/1+u2, (5.7

1+2

%/Q ((u(s) —v(s))? — (up — v(0))?) dz + /OS(J(u) —J(v)) dt <

/Os/gfut(v—u) da:dt+/05/gfm®_u) dz dt.

The last term on the right-hand side arising due to the forcing term creates
a fundamental difficulty, since even in the simplest case of f = 1 it can not
be well-defined for u € U and v € V. In order to obtain well-definedness of
an integral functional of the form

I:wr—>/f\/1+w%1/1dx (5.8)
Q

for w € BV (2) one needs at least that the test function satisfies ¢ € C(f2).
However, in the setup of (5.8) we need ¢ € BV (), which does not imply
continuity. A possible way to circumvent this problem is to find a convex
functional, whose directional derivative in direction v is given by (5.8) -
the same strategy we applied by introducing the functional J in the weak
formulation (2.4). From standard nonlinear functional analysis one knows
that Z is the derivative of a functional, if and only if the derivative

/ f—— Pl de (5.9)

1-|-'w2
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defines a symmetric bilinear form (with respect to ¢ and 1) for each w. In
the particular case of a linear function w(z) = z, this bilinear form is given
by

B(p, ) =/Qf S s

which is not symmetric for f different from zero.

The above argumentation shows that our approach to weak solutions
cannot be carried over in a straight-forward way to the case of an additional
forcing term. However, the fact that some of the energy estimates like (3.7)
can be obtained in a similar in the presence of a forcing term raises the hope
to obtain at least weak solutions at least for initial values ug € BV (2). The
definition and analysis of weak solutions for the mean curvature flow with
forcing remains open as a challenging problem for future research.

5.3 Non-Parametric Planar Mean Curvature Flow

In the following we turn our attention to the planar mean curvature flow
of level sets (1.3). The natural extension of the graph case is to define the
angle 6 by the polar decomposition of the gradient

V¢ = (¢, y) = Q()(sinb, cos9), (5.10)
which allows to rewrite (1.3) as
¢r = Q(¢)((cos 0) — (sinb)6y) = Oz — by b (5.11)

Multiplication of (5.11) with an arbitrary test function ¢ and integration
by parts yields the identity

T
/ / (Pbe + 0oty — byds)) da dt =0, (5.12)
0 Q

i.e., apart from the term including the time derivative, we obtain a weak
form depending only on V¢ and V. Unfortunately, the weak form

T
B(V, Vi) = /0 /Q 0wy — by ds) dar dit

does not correspond to the derivative of a functional depending on V¢,
which can be seen by inspecting the compatibility conditions given by

0 1o}
—(0¢y) = ———(0¢s).
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A simple calculation shows that this condition is equivalent to # = 0 and
hence, it is violated for almost all values of 8 and of V¢, respectively.

Nonetheless, the use of the weak form B for the derivation of a concept
of weak solutions for the planar mean curvature flow seems to be a promising
approach to be investigated in future research.
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