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Abstract.

We develop methods for the variational design of algebraic curves. Our
approach is based on truly geometric fairness criteria, such as the elastic
bending energy. In addition, we take certain feasibility criteria for the alge-
braic curve segment into account. We describe a computational technique for
the variational design of algebraic curves, using an SQP (sequential quadratic
programming) — type method for constrained optimization. As demonstrated
in this paper, the powerful techniques of variational design can be used not
only for parametric representations, but also for curves in implicit form.
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1 Introduction

For parametric curves and surfaces, the various techniques of wvariational design are
now widely being used in geometric modeling [2, 5, 6]. These techniques have been
highly successful in various applications, including scattered data fitting (e.g. for re-
verse engineering), where they help to generate high—quality curves and surfaces from
measurement data (point clouds).

Implicitly defined curves and surfaces have several potential advantages. For instance,
surface—surface intersections can easily be traced if one surface is given in implicit form,
and the other surface by a parametric representation. Also, the algorithms for curve
and surface fitting do not assume the existence of a parameterization of the data, which
is often difficult to generate, in particular for more complex data sets (see [8, 9] and the
references cited therein).

Variational design of curves and surfaces in implicit representation, however, has not
attracted much attention so far. Similar to the parametric case, such techniques are
needed in order to improve the quality of the results. For instance, low degree algebraic
spline curves can be generated with the help of techniques for bivariate Hermite inter-
polation, using Clough—Tocher or Powell-Sabin elements. According to our numerical
experiences, this process often introduces wiggles and oscillations, and fairing techniques
are therefore needed.



Note, that level set methods often use geometric criteria for controlling the evolution
of a curve (or surface) [12]. Typically, these techniques are based on the local behavior
of a curve (e.g. depending on curvature). In addition it is often difficult to maintain the
desired topology.

Based on globally defined, truly geometric fairness criteria, such as the elastic bending
energy (cf. [3]), we discuss a method for the variational design of algebraic curves. In
addition to the fairness measures, our objective function also takes certain feasibility
criteria for the algebraic curve segment into account. We develop a computational
technique for the variational design of algebraic curves, using an SQP-type method for
constrained optimization.

The paper is organized as follows. After introducing some basic notations in the next
section, we describe our computational approach to the minimization of our objective
function (also taking feasibility criteria into account) in section 3. An application to
algebraic curve design is then described in the section 4. Finally, we conclude this

paper.

2 Fairness Functionals for Planar Curves

We recall the Bernstein-Bézier representation of algebraic curves, and discuss the bend-
ing energy of implicitly defined curve segments.

2.1 Preliminaries

Following the notations introduced in [11], we use the Bernstein-Bézier representation
of the algebraic curve segment with respect to a fixed basis triangle Avyv;vy C R2. Let
u = (ug, u1, ug) with |u| = ug+u;+uy = 1 be the barycentric coordinates of an arbitrary
point p = (p1,p2) € R? with respect to this triangle, i.e., p = ugvo + u1vy + uovo and
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Geometrically, these coordinates can be interpreted as the oriented areas of certain
triangles, normalized by the oriented area of the domain triangle, see Figure 1. We use
the triangle

vo=(0,0)", vi = (1,0)7 and vy = (vo1,v2) ", (3)

with vo; € R and vey > 0 for the examples generated in the following sections. Note
that any triangle can be mapped to it by a similarity transformation. The solutions of
the problem discussed below is invariant with respect to similarities of the plane.
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Figure 1: Barycentric coordinates of a point p with respect to the triangle Avyv;vs.

The bivariate Bernstein-Bézier polynomials of degree n with respect to the basis tri-
angle are defined as

nt . . n n\ ;
By (uo, u1, ug) = Wugu{u’; or, equivalently, B{'(u) = ()u (4)
with the multi-indices i = (4,5, k) € Z3, |i| =i+ j + k = n.
Any bivariate polynomial G = G(p) of degree n has a unique Bernstein-Bézier repre-
sentation
G(p) = G(ugvo + u1vi + upva) = g(u) = > BP(u)b;, (5)

iEZi,\i|:n

with certain real coefficients b; = b; jx, where the barycentric parameters u; = u;(p)
depend on p, see (1).

Throughout this paper, we consider a segment of an algebraic curve of order n. This
segment is a part of the zero contour of a polynomial G of degree n,

C={p|G(p)=0andp € D} (6)

where the domain D is the strip bounded by two parallels through vy, vy, with the
direction of a suitable unit vector ¥ = (r1,73). The end points of the curve segment are
the vertices vy and vy, and the lines Vjvy, vivy of the domain triangle are assumed to
be the tangents at these two points. As a necessary condition for the domain D and
thus the vector ' is

Avovive C D. (7)

In order to obtain curves which are useful for geometric modelling, we assume that
there exists a curve segment which has the shape of a single arc C connecting v and vy,
without singularities along this arc, such that

C CcC. (8)

Suitable feasibility criteria, which are needed in order to achieve and to maintain this
shape during the optimization, will be discussed in Section 3.
As a necessary condition for the end point and the end tangent property, the coeffi-
cients b; satisfy
bn,0,0 = bn-1,0,1 = bon,0 = bou—11 =0, (9)
(see Figure 2, left). These conditions are also sufficient, provided that both segment end
points are non-singular.
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Figure 2: Left: boundary values of Bernstein-Bézier coefficients; right: parameteriza-
tion of the segment as a graph of a function.

2.2 Parameterization

In order to evaluate the various quantities needed during the optimization process (bend-
ing energy and its derivatives), we need a parameterization of the curve segment C. This
parametric representation has the form c(t) = (z1(t), z2(t)) for t € I, where I = [0, 1] is
the parameter interval, and

G(e(t) =0 for tel. (10)

Clearly, such a parameterization is generally not available in closed form; only a numer-
ical approximation can be given.

According to a well-known result from the theory of elastic curves, these curves can
turn at most by angle of 7 (see e.g. [3]). Motivated by this fact, we assume that the
curve segment C is a graph of a function, where the “y-axis” has an appropriately
chosen direction 7, such that it is contained in the wedge spanned by the vectors vy — v
and v, — vi.! Under this assumption, the parameterization of the algebraic curve can
be obtained by projecting it parallel to ¥ onto the edge vovy; of the basis triangle.
Consequently, the parametric representation has the form

o(t) = (ﬁ;gg) - (f)) +yF teo1], (11)

where y(t) is one of the n roots of the bivariate polynomial G(p) along the line (¢, 0)+Ar.
Clearly, one has to pick the “right” root among the possibly n different ones; this issue
will be addressed later. For the sake of further computation, we need the function y(t).
Since G is a polynomial and since we suppose that no singular points along the curve
segment C exist, the function y(¢) is C? in [0, 1].

'In our implementation, we choose this direction as ¥ = (0,1)7, see Figure 2, right. Of course,
the calculation becomes slightly more complicated in the case where the coordinate system is not
orthogonal.



The ordinate y of a point c(¢) depends both on the abscissa ¢ and on the Bernstein-
Bézier coefficients

2
b= iy < B where d = ("2 (12)
During the optimization we will need the derivatives of y = y(¢, b) with respect to both
quantities. The result of the optimization itself depends only on the control coefficients
vector b. In order to keep the notations simple, let

F(x1(t,b),72(t,b),b) = G(c(t)) =0, (13)
see (5), (10), (11) and (12). Similarly,
oF 0°F
F= Fii=-2""forije{1,2 14
= o and Fj; P20, ori,j €{1,2} (14)

Lemma 2.1 The derivatives of the abscissa y = y(t, b) with respect to the parameter t
and with respect to the coefficients in b = (bi)|i|:n,iezi can be computed by differentiating
(13). All these derivatives exist, provided that F is sufficiently often differentiable, and
7"1F1 + F2 75 0.

Proof: The proof follows from the implicit function theorem. The details can be seen
in the following example. O
Example: Let vo = (0,0)", v = (1,0)" and v, = (0,1)7, and c(t) = (¢, y(t)), hence
ug =1—1t—1y, u; =t and uy = y. Consider a quadratic polynomial G satisfying the
boundary conditions (9). Only two of the six Bernstein-Bézier coefficients are non—zero,
and we get

F = B} | o(ug, u1, u2)by 10 + Bf oo (to, ur, uz)bopo =2(1 —t —y) t byyo+ y” bopo  (15)

We are interested in the zero contour F' = 0. Using the implicit function theorem, we
compute the first derivatives of y with respect to the parameter ¢ and with respect to
one of the coefficients b;. Differentiating (13) leads to the equations
oF dy
+F—=0 16

ab; ol (16)
which can then easily be solved for § = (dy/dt) and (0y/0b;), provided that Fy # 0.

The derivatives of higher order can be computed inductively in a similar way. Note
that each differentiation with respect to one of the coefficients b; or the curve parameter
t increases the order of the required derivatives of the defining function F (resp. f) by
one. Fortunately, all the second order partial derivatives of F' with respect to b; vanish.

Fy+ Foy =0, and

2.3 Bending energy and objective function

We consider the bending energy

Frena(C) = /c K2 ds, (17)



of a planar curve segment, where x and s are the curvature and the arc length parameter.
Clearly, this is a geometrically invariant fairness measure, independent of the parame-
terization. In the parametric case, it is very popular to use the linearized version instead
[5, 6],

fbend(c) :/C|C|2dt7 (18)

since it leads to simplified calculations. However, this functional is not geometrically
invariant; it depends on the choice of the parameterization.

Since no generic parameterization is known in the algebraic case, and the use of the
parameterization (11) does not simplify the problem, it is more appropriate to use the
exact functional.

The curves minimizing (17) are called elastica. According to the rich literature on
these curves (whose origins can be traced back to Leonhard Euler), there exists no
unique minimizer to G' Hermite boundary data (two points with associated tangents),
as curves with larger and larger loops can achieve arbitrarily small (non-negative) values
of the functional. Instead, there exists a sequence of local minima with different lengths.
See e.g. [7] for additional information.

The objective function takes the form

£(5) = foeaa(C) = /c Kids = /0 1 [(Eé)é;dt (19)

where for 51 = (CI,H, CI,12)T, 52 = (CL21, CLQQ)T we denote

ail a2
a21 A22

[a1,ds] = and (a,) = (a;, ay) (20)

We will need the first and second derivatives of f during the optimization process. They
can be evaluated by applying the differentiation to the function under the integral in
(19). Using (11) and

8c_8yﬁ 8c_8yﬁ

TR UL T (21)
we get for the first derivative
of [t riit) . oyt) .. 0y(t),.
a6~ Jy Tt o) 2ra§i(t) (1 + §(t)*) — 5radi(t) (re ob; +9(t) o 7)) ) dz.
(22)

The second derivative of the objective function f can be computed similarly. For the
sake of brevity, we omit the details.

In the case of a Cartesian coordinate system, ¥ = (0,1)7, where c(t) = (¢,y(t)),
¢(t) = (1,y(¢)) and €(t) = (0,4(t)), the formula (22) simplifies to

of _ [+ i
b Jo (1+y(t
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The second derivative of f with respect to coefficients is then equal to

agjgbj -/ 1 m( (1) + (1) (1 + §(8))z(8)) (24)
where
a0 = (4907 - 7i0i0 %, ) (27520 + 007 - siei %, )
and )
al) = (Goda-+iy) +2 %0 %0 ) -
s (agg) o) aé’ét) i) agg) agét) 090 gzya(@ (26)

For the sake of optimization, we map any polynomial to the coefficient space. Any
polynomial (5) of degree n corresponds to a point b € R% (see also (12)). Conversely,
each point of b € R% — {0} represents some homogeneous polynomial of degree n.

Further properties of the objective function f can be deduced from the boundary
conditions for segment C and the fact that the function G(p) is polynomial. Since four
coefficients vanish (see Figure 2, left), it suffices to optimize just in the subspace of R
given by (9). Moreover, the objective function is a homogeneous function of order 0, i.e.

f(kb) = f(b) (27)

for all £k # 0. More precisely, the objective function is geometrically invariant, i.e. it is
not changed by multiplying the equation of the algebraic curve by non-zero k, since the
zero contour does not change.

Summing up, we get

Lemma 2.2 The objective function f(b) has the following properties:

1. It is a homogeneous function of order 0 on the linear subspace of R% characterized
by (9), therefore its domain is isomorphic to the real projective space RP% —5.

2. The Taylor expansion of the objective function f(b) with respect to the coefficients
bi can be computed by differentiating the right-hand side of (19) and using the
results of the Lemma 2.1.

Due to the homogeneity of the objective function, the coordinates of the point b
(representing the algebraic curve) can be normalized by choosing some of its non-zero
coordinates (see Figure 2, left).



3 Minimization of fairness functionals

Clearly, the minimum of a highly non-linear function cannot be calculated directly.
Hence, we approximate the original function with a sequence of simpler functions, for
which the minimum can be calculated. This leads to the sequential quadratic program-
ming (SQP)-type method which is based on a local quadratic approximation.

We introduce the notion of the feasibility for the algebraic curve.

Definition 3.1 An algebraic curve given by (6) is feasible, if the following three condi-
tions are met

(1) boundary conditions: It satisfies the prescribed G* boundary conditions at the
endpoints

(i1) functionality: The part of the curve between endpoints can be parameterized as
in (11) using the chosen direction ¥

(iii) regularity: The parameterized part of the curve contains no singular point (in
the sense of algebraic geometry).

We assume that the initial algebraic curve for the optimization meets the feasibility
requirements. Consequently, we have a segment c°(¢) (described by the Bernstein-Bézier
coefficient vector b® over the triangle), which is a graph of a function with respect to the
chosen direction ¥. We are looking for the minimum of f(b) with respect to the control
points, such that the feasibility conditions are still satisfied.

The algorithm calculates a sequence of curves represented by coefficients

b’ b, b%,...,b", .. forheZ,, (28)

such that the conditions of the Definition 3.1 are always fulfilled. Each curve segment
can be parameterized by c”(t), such that it is feasible in the above sense. Moreover,
the values of the function f evaluated on the curves converges monotonically to a local
minimum.

Algorithm 3.1 (Iteration step) The sequence (28) is generated by the following it-
eration:

1. Approximate the objective function f(b) by a quadratic function ¢"(b) in the
neighborhood of point b".

2. Find the extremum b* of the quadratic function ¢"(b).
3. Choose the step size 7"t € R and find the next point from
htL = (1 — 7hH)ph g ity (29)
such that the feasibility is maintained.

The details of the steps in the minimization algorithm are described in the remainder of
this section.



3.1 Approximation by quadratic functional and its minimization

We approximate the objective function f by the second order Taylor expansion with
respect to the free coefficients (see Lemma 2.2) in a point " in order to compute the
point b+,

0"(x) = F(81) + V(B Tx+ ox V2F (b (30)

The extremum point b* of the function ¢" can be found by the solving of the following
system of linear equations
V(") + V2 f(b")x =0 (31)

Clearly, the solution of the system (31) depends on the regularity of the symmetric matrix
V2 £(b"), and the type of the extremum depends on the signs of the (real) eigenvalues of
the matrix. If the extremum exists, we use it as an approximation " to the minimum

bt =x. (32)

The quadratic approximant ¢” is positive definite in a sufficiently small neighborhood of
a (local) minimum of the function f. Hence, the existence of a local minimum for the
quadratic approximant ¢ and its convergence toward the minimum of the function f is
guaranteed within this neighborhood. In order to find 8"*!, we need the first and the
second derivative of the objective function, which can be evaluated using Lemma 2.2
(see also (23) and (24) for special ¥). Note, that this involves derivative of order four of
y(t, b). However, at most derivatives of order two with respect to ¢ are needed!
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Figure 3: An optimization of a cubic curve. Bending energy: fpena = 9.18 (left),
fbend =4.96 (I'lght)

As a first example, this fairing has been applied to the cubic algebraic curve which
is shown in Figure 3. The value of the bending energy for the initial curve is equal to
9.18. After several iterations we arrived at the curve with the energy value 4.96. The
values of the bending energy for the curves generated during the fairing can be seen in
Figure 4.

We need to address several problems, which may occur during the optimization. First,
the point b" of the extremum calculated in (31) could be a local maximum or a saddle
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Figure 4: Convergence of the bending energy to minimum for example in Figure 3

point of the quadratic function ¢". Hence, the point b" is “closer” to a local maximum
(or a saddle point) of f than to a local minimum. We choose for the point b"*! on the
line

Ly =(1—-7)b" +7b", (33)
as follows:
Algorithm 3.2

1. If the f(b*) — f(b) < 0, we choose b"™ = b* (most common case).

2. If (Vf(b"),b* — b") < 0, find the point d"*' on the segment b"b* by bisection
towards b" (overshooting).

3. If the (Vf(b"),b* — b") > 0, find the point b"" on the segment b"b, by bisection,
where b, = 2b" — b* (change of the direction).

4. If (Vf(b"), " — b") = 0, we are either in minimum or in saddle point. Stop.

The situation of saddle point in case 4 is a pathological case and is usually difficult
to deal with numerically. A more precise distinction can be done via calculation of the
eigenvalues of the Hessian matrix V2f(b"). The convergence of the method may slow
down in a neighborhood of a saddle point.

3.2 Penalty function removing singularities

Unfortunately, the solution of (31) often produces infeasible curves. The curve may not
be a function in the direction ¥ (Figure 5, left) or it may have singularities (Figure 5,
right).

For the sake of completeness we recall the definition of a singular point. A singular
point on a planar algebraic curve G(z1, ) = 0 is a point of the curve whose coordinates
satisfy the following three equations

G(z1,22) =0, Gi(z1,22) =0, Ga(z1,22) =0 (34)

where G; = (0/0x;)G. In a neighborhood of such a point one cannot generally guarantee
that the curve can be written locally as a function? and we consider such curve segments

2There are examples of both cases, the curve is locally a function and the curve is not locally a function.

10
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Figure 5: Infeasible algebraic curves fulfilling the endpoint constraints (left: functional
assumption violated; right: singular point on the curve segment)
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C as infeasible. Hence, we need a method for determining, whether the curve segment
contains a singular points. There are available both symbolic and numerical approaches.

Since the exact symbolic methods (such as resultant methods, Grébner basis methods,
see for more details e.g. [4]) are expensive to compute, we use a penalty function. It
keeps the solutions (28) away from the points in RP% ~® which represent curves with
singularities along the considered arc C. Clearly, the additional term in the objective
function will cause an increase of the bending energy for the final curve.

To avoid points where both partial derivatives, G; and G5 vanish, we have chosen the
penalty function

o €) = [ s+ (Plels) = 1P, (35)
where
= DG (x1,x9) an ﬁ':—VG(xl’xQ)
P(.’L‘l,ﬁg) = DnG( 1, 2) d ||VG(.’L'1,./,U2)||’ (36)

and Dy is the directional derivative operator in the direction ni. That is, we would like to
keep the directional derivative of G(p) in each point of the segment C in the normalized
gradient direction far away from zero and close to 1.

A short calculation using (13) leads to

fownis (€)= [ e + (I (el = DPds (37)

where
VF(zy,29,b) = (Fi(x1,22,b), Fa(xy, o, b))T. (38)
The evaluation of the (37) and its derivatives with respect to the coefficients b; is

similar to the evaluation of (19).

Lemma 3.1 If the point by € RP% 5 represents an algebraic curve C which satisfies the
conditions (i) and (ii) of the Definition 3.1 with a singularity on C, then the function
Ipenaity (C) defined by (37) has a singularity in the point by and

1 foenaiy(8) = +00 (39)

11



Proof: Let {b;}%°, C RP%™ 5 be a sequence of points representing regular algebraic
curves as in (13), such that
lim b = by. (40)
11— 00
Let c;(s) be the natural parameterizations of the curves in the neighborhood of c;(0)
and c¢;(0) — p, where p is a singularity on C. Since the convergence of the curves c;
towards the singular limit curve C is uniform and VF' is continuous, for some ¢ > 0

€ 1
.lim/ ———————ds = +00 (41)
inoo Jo [[VF(ci(s))[”
and (39) follows easily. 0
Consequently, the modification of the objective function leads to
f(b) - fbend(b) + apenaltyfpenalty(b) (42)

with a non-negative weight openaity. Clearly, the influence of the penalty function can be
controlled by the weight. This is demonstrated by Figure 6. We started the optimization
of the curve segment in top row. The three curve segments in the bottom row have been
obtained after two steps of the iteration with weights apenaiy € {1.5,5.0,50.0}. Note
the different shape of the level curves (algebraic offsets).

Notes for the implementation. We use Gaussian quadrature to evaluate the integrals
during the minimization. We implemented quadrature rule which is exact for polynomi-
als of degree 37. The method with such high order is being used since we get considerably
good results via lower number of the evaluations of the functions under integral in (19),
(23) and (24) when compared to some other integration methods.

The Gaussian quadrature is originally designed for highly differentiable functions.
This is not the case if a singularity along the curve segment C occurs. Since the numerical
value of the integral is computed just from a finitely many evaluations of f, a contribution
of a singularity can be overlooked.

This problem can be addressed by the refining of the integration rule (usage of the
higher order Gaussian quadrature or splitting the interval to more segments on which
the rule is applied). Clearly, the change of the integration rule requires a higher number
of evaluations. A cheaper solution which often improves the result (according to our
numerical experience), is an increase of the weight apenaiy. Consequently, the bending
energy becomes less important.

Singularities at the ends of the segment C may also cause problems with numerical
integration, as the integration points (the roots of the Legendre polynomials) are in (a, b).
We have therefore modified the rule for the integration of the penalty function with two
additional terms evaluated at the endpoints, with very small weights. Their role is just
to prevent the occurrence of singularities there. Hence, they must not influence the
numerical value of the integral too much in a regular case. Typical additional weights
in such terms, used in the examples (see e.g. Figure 9) were approximately in ratio 1073
with the boundary weights of the Gaussian quadrature.

12
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Figure 6: Influence of the weight o = apenairy- Note that range and distance of the
level curves (algebraic offsets) are identical.

3.3 Functional shape of the curve

As an another difficulty, the calculated curve might not fulfill the condition (ii) in the
Definition 3.1 (see Figure 5, left). Hence, it is not a function with respect to the fixed
direction ¥. Clearly, the set of all feasible curves (feasible domain) is subset in the
RP% . Since the initial curve of every iteration step represented in (29) by the point b"
is supposed to be feasible, we “jumped” during the step 2 of Algorithm 3.1 out of the
feasible domain.

We choose the next feasible curve b on the segment between b" and the new esti-
mated solution b* (or b,) (see Section 3.1). Moreover, we require its objective function
value

FO"MT) < f(b"). (43)
Since the initial curve does not have a tangent in the direction of ¥, there is a whole

neighborhood of feasible curves around it. We look for a point representing such a curve,
which is both feasible and has a lower value of the objective function (see Figure 7).

13



Estimated point (infeasible)

Feasible point

Starting point

Figure 7: Seeking of improvements just in the feasible area (gray) of the objective
function during the optimization

If we do not start in a local minimum of f(b), there is a direction d and a point b" + €%
for some € > 0 in a sufficiently small neighborhood of " in the direction d, such that

FO"M 4 ed) < F(BY). (44)

and the point b"*! + ed is feasible.

We find a feasible point on the line by halving the stepsize until a a feasible point is
found. We need an efficient method for detecting the feasibility of a curve to finish the
task.

Our method, which traces the curve, can be summarized as follows:

Algorithm 3.3 (Functionality Testing) Let t = {0 = to,¢1,...,t-1,t, = 1} C I,
q € Z. be an increasing sequence of parameters. We would like to find the points of the
curve segment C so that p; = c(¢;) for i =0,...,q. Let

lr = (1=t )vo+t, vy + st (45)

be the line with the parameter s € R and 0 < r < ¢. The algorithm proceeds in several
steps:

1. Start in the vertex py = vy.

2. Suppose the vertices py, ..., pr are found for some r < g. Using Taylor expansion
of the curve C in the point p,, we determine the location of the point p,.1, which
is the point lying on the line /,,; and Taylor expansion of certain order for the
curve in point p,. We used the first and the second order approximation

2

e(h) = elt,) + hélt,) {+ (1)} (46)

(see Figure 8). Alternatively, one can also use more advanced Runge-Kutta-type
methods.

3. Calculate the point p,.; on the C lying on the line /,,;, using Newton’s method
with the initial value p,41.

14
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Figure 8: The tracing of the curve during the functionality detection. Left: the curve
is a function in given direction. Right: the curve is not a function in the given direction.

4. Accept the point p,,; in case it exists and is close to the estimation p,,; and
continue with the step 2. Stop if the point p,,; does not exist or was not accepted
orifr=¢q—1.

Since we use a penalty term in the objective function (42), we have no problems with
singular points along the considered segment C. Hence, we can use the Taylor expansion
of the curve c(t) in the Step 2.

Clearly, the correct result of the algorithm depends on the suitable choice of the
sequence t. We used those of the Gaussian quadrature integration for checking the
feasibility, since the roots of the Legendre polynomial are quite regularly distributed
along the interval I and their number was sufficient for our examples. If more points
are needed, the sequence can be refined.

The example in the Figure 9 illustrates the fairing of a quartic algebraic curve. Ini-
tially, it was not possible to handle the curve by the method described in Section 3.1
(compare with Figure 5). We start to fair the curve at the Figure 9, left with bending
energy frend = 67.92. One can see a result of fairing with weight openaiy = 0.5. The
bending energy decreased to fpena = 4.1004. The continuation with fairing after the
change t0 apenaity = 0.0 makes just a small difference in shape (see Figure 9, right) and
the value of bending energy fyena = 4.1000.

4 Algebraic Curve Shaping

Variational modeling comprises the shape optimization of objects subject to geometric
constraints. We use the numerical technique to solve the following problem: Find an
algebraic curve segment, such that

1. it interpolates given points and tangents at them,
2. the curve is as fair as possible (cf. Section 2.3), without singularities,

3. the curve is pulled toward chosen fixed point p.
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Figure 9: The fairing of the algebraic segment using penalty function (left: initial curve,
foenda = 67.92; middle: using penalty function with weight openaity = 0.5, foena = 4.1004;
right: further optimization of curve without penalty function with openaty = 0.0 gives
foena = 4.1000).

This leads to the optimization problem presented in Section 3, with an additional
term responsible for the condition 3.

Let p = [T1,72]". As a naive idea, the additional term of the objective function could
be chosen an expression G(Z1,Z2)?. This is called the algebraic distance of a point p
from the curve G = 0. Unfortunately, this approach does not work in those cases, where
another branch of the algebraic curve is present in a neighborhood of the point p (see
e.g. Figure 12, right). Clearly, in this case the algebraic distance might be measured with
respect to the wrong branch. Even though we start at the beginning with a point, which
is close to the curve segment C and far from the other branches, this can change during
the optimization. Summing up, the algebraic distance is not useful for our purpose.

As a more geometrically oriented approach we use, is the squared distance of p from
the segment C,

Foun(€) = Il (c(sp) — DI (47)
where the point c(sp) is the footpoint from the point p with the minimum distance
property

min
sel
c(s) is footpoint from p

[e(sp) —pll = [e(s) — pl|- (48)
We assume, that the footpoint exists, otherwise we take either the closest point on the
segment C or the point which forms a minimal angle of vectors p—c(s) and the VG(c(s)).

The footpoints from the point p to the implicit form of the curve C can be calculated

by solving the following equations
G(z1(s),22(s)) =0
Gi(z1(s), 22(s)) Ga(z1(s), 22(5))

Il(S) — I .’L'Q(S) — T

(49)
=0, (50)

for s € I. Clearly, it says the vectors c(s) — p and VG(c(s)) are linearly dependent (see
Figure 10). The point c(s) in such shortest vector c(s) — p is taken as the point c(sp).
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The uniqueness of such a parameter value sp, is guaranteed only for the points p lying
in a sufficiently small neighborhood of the segment C.

AP

Vo
Figure 10: The footpoints of the point p on the curve segment C

We can now proceed further in the spirit of the Section 3 and extend the objective
function by a new term f,u(C) weighted with a non-negative weight apy. Its final form
is

f(b) - fbend (b) + apenaltyfpenalty (b) + a’pullfpull(b) (51)

with non-negative weights aenalty, Qpun-

The calculation of the Taylor expansion for the term f,u(b) with respect to the
coefficients (bi)\i|:n,iezi differs a little from those in Section 3, because the parameter s
must be calculated in each iteration separately. Hence, the approximation of the f,uu(b)

for the SQP method consists of the following steps for each new curve in the sequence
(28):

1. Calculate the closest footpoint of C from p.

2. Compute the Taylor expansion of the objective function fyu(b) with respect to
the coefficients.

The calculation of c(sp) starts with the approximation of C granted by the Algo-
rithm 3.3 for parameters set t. As an initial point for the computation we take the point
c(ty,) for m € {0,...,q}, such that minimizes

VG(c(t)) p — c(t,) >
IVG (eI Ip — ()]

where the non-negative real constants B4;s; and Bangle must be chosen appropriately. The
geometric meaning of the first term in (52) is the weighted distance of p from the vertices
of the approximating polygon. The second term represents the weighted cosine of the
angle between vectors p — ¢(t,) and VG(c(t,)) (see Figure 11). Combining both terms
makes the choice of the starting point more stable.

ﬁdiSt“p - C(t,«)” + ﬁangle < (52)
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Figure 11: The discrete approximation of the footpoint (left: the smallest distance is
the best rule in this case; right: the smallest angle between the normal direction of the
curve point and the difference direction p — c(¢,) determines better the initial value for
footpoint location)

For the brevity, we use the following notation during the computation

i:v =x i:v =z 672:13 =z and >
ot T an T T R Ot T T 0b; 0b;

To = xQ‘ij (53)

for all b; € (bi)|i|:n,ieZE’"_ . The coefficients in the second order Taylor expansion for the
fpun(b) part of the objective function can be computed using

Al = I — .’Z’l (54)
AQ = XI9 — X9 (55)
as follows
0 2
(Vo) = %IIC(é‘p) = PlI* = 2(z1A1 + 72 A2) (sp) (56)
(Vo)s = =2 lesp) — pIP
Py ob;0b; " P
= 2(x1‘ijA1 + T1iTy); + D252 + xg‘ixgu) (57)

where all values are evaluated at the point c(sp) = (z1(sp),z2(sp)). The first and
the second derivatives of c(sp) can be computed from the equations (49) and (50) us-
ing the differential operator (0/0b;) and solving obtained equations similarly as in the
Lemma 2.1. Summarizing, we obtain the following formulas in matrix form

T1ji _ F F ! —F (58)
Toli (VF, ALY —F, (VFE, AL+ F —FiiAq + FppAy )7

where At = (Ay,—A;)". Similarly, the second order derivatives in (57) can be com-
puted.

Lemma 4.1 The second order Taylor expansion of the term (47) at the footpoint c(sp)
can be calculated by differentiating (49) and (50). The closest footpoint either does not
exist or is uniquely determined for p in a sufficiently small neighborhood of C.
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The examples of such optimization for various points p can be seen in the Figure 12.
The initial curve segment (see Figure 9,left) was pulled toward three different points
[0,0.8] (left),[3, 0.8] (middle) and [0.6,0.8] (right). The final bending energy resp. squared
distance of the point p to the curve segment rich the values fyeng = 10.04, foun = 0.06
(left), foun = 0.001, foena = 12.44 (middle) and fpena = 8.44, fpun = 0.18 (right). The
corresponding weights in the objective function (48) are (apenaity, @pun) = (0.00001, 350)
(left), (penalty, @pun) = (0.0001,300) (middle) and (cpenaity; Gpun) = (0.03,80) (right).
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Figure 12: The pulling of the algebraic curve segment towards a point

Clearly, the results of the fairing process can be further controlled by the ratio of the
parameters 1 : Qpenaity : Opun to balance the curvature and the closeness of the curve to
the chosen point p. We can try to pull the curve as close to the point p as possible with
raising the weight apu. The bending energy usually raises considerably as the curve
gets closer to the point p.

Experiments with different weights in the objective function are shown in Figure 13.
The same initial segment as in Figure 12 was used in all three cases. For the left figure,
(Otpenatty s 0pun) = (0.05,100), the square of the final distance increased to fpu = 0.06 and
the bending energy decreased to fpena = 9.73. For the middle figure, (apenaity; Qpun) =
(0.0001,750), the final bending energy is foena = 12.44 and f,u = 0.001. For the
right figure, (Qpenaity; pun) = (0.0001,1000), the final distance is fpu = 0.0006 and
fvena = 11.97. As one may observe, the bending energy is lower than in the middle
case, but the curvature changes the sign more often. According to our experience, the
curvature might oscillate more due to the big weight of the pulling term.

5 Conclusions and Future Work

We have presented a method for variational design at algebraic curves. By applying
our method to an algebraic curve, it is possible to get a fair algebraic curve segment
without singular points and minimal bending energy. Moreover, the algorithm can be
extended by additional tools, such as pulling, for designing algebraic segments. All tools
are configurable by parameters with intuitive meaning. We showed, that feasibility can
be guaranteed by a suitable objective function. The alternative approach would be to
use discriminating families (see [1, 13, 14]).
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Figure 13: Adjusting the pulling weight in objective function

There are several possible extensions. Firstly, the method could be applied to alge-
braic splines (i.e. piecewise algebraic curves). In addition to applying fairing process to
the polynomial pieces, one needs to find an appropriate way of minimizing curvature
discontinuities, which occur — in the G' case — at the boundaries of the polynomial
segments. This seems to be a non-trivial task.

Another challenging problem is the extension to the case of algebraic surfaces, where
the minimization itself is less well understood. The existence of the minimum for
Willmore-type energies for certain classes of surfaces is known (see e.g. [10]). In the
surface case one has to deal with more complicated domains, which causes many tech-
nical difficulties.
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