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Abstract

This paper is devoted to optimal sizing as well as to shape optimization. As a
model example we consider the problem of minimizing the mass of the frame of
an injection moulding machine. The deformation of the frame is described by a
generalized plane stress state wherein the varying thickness is incorporated in case
of the optimal sizing. This constrained nonlinear optimization problem is solved by
sequential quadratic programming (SQP) which requires gradients of the objective
and the constraints with respect to the design parameters. As long as the number
of design parameters is small, finite differences may be used. In order to handle
also several hundreds of varying thickness parameters, we use the reverse mode of
algorithmic (also called automatic) differentiation of the function evaluation. This
approach works fine but requires huge memory and disk capacities. Furthermore,
the use of iterative solvers for the governing state equations is limited. Therefore,
we combine it with the adjoint method to get a fast and flexible gradient evaluation
procedure. The last approach is especially useful in case of a shape optimization.
The presented numerical results show the potential of this approach and imply that
this method can also be used for finding an initial guess for a shape optimization.

1 Introduction

The design of a mechanical structure has to fulfill various constraints in many industrial
applications. In most cases, an optimal design subject to several constraints is desired.
Due to lack of time, engineers designing a machine component have to stop their design
process after a few iterations and take the best design obtained so far because no more
time is left for drafts that would possibly meet the requirements to a larger extent.

Therefore, tools supporting such a design process have to fulfill mainly two goals.
On the one hand they have to be flexible enough to handle the various requirements.
Especially, it is desirable to spend only little work when the requirements change. On
the other hand, these tools have to be fast.

An extensive review of various methods for structural optimization using finite el-
ements is given in the monograph of HASLINGER, NEITTAANMÄKI [HN88] and in
the book of HASLINGER, MÄKINEN [HM03] . A monograph specializing more on
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topology optimization is BENDSØE [Ben95] and BENDSØE, SIGMUND [BS03]. MAH-
MOUD [Mah94] focuses on an optimal sizing approach similar to the one in this paper,
but he uses approximate representations of the objective and the constraints to reduce
the overall costs of the method. STANGL [Sta99] presents a generalization of that ap-
proach to a class of nonlinearly elastic materials. For approaches using a topology
optimization for getting an initial guess of the topology used in a shape optimization
afterwards see e.g. MAUTE, RAMM [MR95] or RAMM, BLETZINGER, REITINGER,
MAUTE [RBRM94].

FORTH, EVANS [FE01] and KIM, HOVLAN [KH01] apply AD to similar prob-
lems in fluid dynamics and in the field of inverse problems. TADJOUDDINE, FORTH,
PRYCE [TFP01] describe an efficient combination of AD and hand-coded parts of the
derivative whose concept is similar to the approach in this paper.

A good introduction into shape optimizaion problems can be found in DELFOUR,
ZOLÉSIO [DZ01] and HENROT, SOKOLOWSKI [HS98]. First results of the authors can
be found in [HL99, HLLM01].

This paper deals with minimizing the mass of the frame of an injection moulding
machine as an example for a typical optimization problem. Since we want to use
standard optimization procedures (such as SQP) we devote its main part to the efficient
and flexible calculation of the gradients of the given objective and the constraints. We
present a very flexible approach using automatic differentiation as well as analytic
derivatives inside the code. In order to get also an efficient and fast method, automatic
differentiation has to be coupled with a well-known approach from shape optimization
– the so-called adjoint method. Numerical results show the strength of this approach.

We will start with the mathematical description of the optimal sizing problem and
we will later emphasize the specifications with respect to the calculation of the gradient
in case of a shape optimization.

2 Modeling of the problem

The frame of an injection moulding machine is briefly sketched by its 2D-cut Ω given
in Figure 1.

Figure 1: Cross section of the original shape

For a frame of homogeneous thickness typical dimensions are:
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thickness of one plate 180 mm
mass of one plate 3.8 tons
clumping force (surface force) 300 tons ≈̂ 16 N/mm2

length 2.8 m
height 1.7 m
supporting areas 2

The primary goal of the design phase is to minimize the mass of the frame. Several
other requirements have to be fulfilled in addition.

Let V0 =
{
v ∈ H1(Ω) | v = 0 on ΓD,meas ΓD > 0

}
denote the set of admissible

displacements where ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅. For a fixed thickness ρ(x), the
displacement field u ∈ V0 fulfills the variational equation

a(ρ;u, v) = F (v) for all v ∈ V0 , (1)

with

a(ρ;u, v) =

∫

Ω

ρ
∂ui

∂xj
Eijkl

∂vk

∂xl
dx, F (v) =

∫

Ω

〈f, v〉 dx +

∫

ΓN

g v ds

where Eijkl denotes the elasticity tensor, f the volume force density and g the surface
force density on the part ΓN of the boundary ∂Ω. The design problem can be stated as
follows:

∫

Ω

ρ dx→ min
u,ρ

subject to a(ρ;u, v) = F (v) for all v ∈ V0

0 < ρ ≤ ρ ≤ ρ, a.e. in Ω

σvM(u) ≤ σvM
max, σten(u) ≤ σten

max a.e. in Ω

α(u) ≤ αmax

(2)

σvM(u) denotes the v. Mises stress, σten(u) the tensile stress in the frame. The change
in the shrinking angle of the clumping unit (vertical edges on top, called wings) is
denoted by α(u).

For discretizing the problem, we use triangular finite elements with piece-wise con-
stant shape functions for approximating ρ and piece-wise quadratic ones for approxi-
mating u. We denote the discrete approximation of ρ and u again by ρ and u. In our
application, the upper limits on the angle and the stresses are treated either as con-
straints or as soft limits, which can be violated to some extent, if the mass would be
severely smaller then. Furthermore, the pointwise constraints on σvM and σten are re-
placed by using a higher order `p norm. Treating the upper limits as soft constraints
leads to the following reformulation:

mass(ρ) + ω1

(
max (‖σvM‖p − σvM

max, 0)
)2

+ ω2

(
max (‖σten‖p − σten

max, 0)
)2

+ ω3

(
max (α− αmax, 0)

)2
→ min

u,ρ

subject to K(ρ)u = F and ρ ≤ ρ ≤ ρ .

(3)

3 A short sketch on the optimization strategy

From the optimization’s point of view the problem (3) is a special case of

J(u, ρ) → min
u,ρ

subject to K(ρ)u = f(ρ) and ρ ≤ ρ ≤ ρ ,
(4)
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where ρ denotes the vector of design parameters and u the solution of the governing
finite element (FE) state equation. The splitting of the parameter vector into design
parameters ρ and the solution of the FE state equation u is typical for design problems.
From the optimization’s point of view the discretized state equation can be interpreted
as equality constraints. In our case it is linear with respect to u and K(ρ) is symmetric
and positive definite for all admissible parameters ρ. Therefore, u can be formally
eliminated which leads to

J̃(ρ) = J(K−1(ρ) f(ρ), ρ) → min
ρ

subject to ρ ≤ ρ ≤ ρ .
(5)

As we want to use a standard SQP method for optimizing, the formulation in (5) is
advantageous compared to (4) as it has much fewer parameters. Details on these kinds
of optimization procedures can be found e.g. in GILL, MURRAY, WRIGHT [GMW81]
or NOCEDAL, WRIGHT [NW99].

The optimizer used in our code is based on a Quasi-Newton approximation of the
Hessian using a modified BFGS update formula following POWELL [Pow78] in order
to avoid the need for Hessian information of the objective.

4 Calculating gradients for the optimal sizing problem

Using a Quasi-Newton strategy and update formulas the remaining main problem is
the calculation of gradients for the objective and the constraints. In most cases the
implementation of analytic derivatives is by far too complicated and time consuming.
Furthermore, it would not be well suited for the use in a design process, as we would
loose the flexibility of the code completely. That is the reason why we have to think of
alternative methods for calculating the gradients. On the one hand we have black box
methods like finite differences or automatic differentiation (c.f. GRIEWANK [Gri00]),
on the other hand, methods exploiting the special structure of the state equation are
available, e.g. the direct method or the adjoint method (c.f. HASLINGER, NEIT-
TAANMÄKI [HN88]). As none of these methods is really well suited for our problem,
a hybrid method combining automatic differentiation and the adjoint method has been
developed.

As our finite element code is completely written in C++ and uses heavily virtual
inheritance, we use ADOL-C for differentiating our code, c.f. GRIEWANK, JUEDES,
UTKE [GJU96]. We applied the reverse mode within our calculations, as we have at
most a few nonlinear constraints (c.f. (2), (3)) whereas the dimension of the design
space is usually large.

4.1 Direct and adjoint Method

Both methods are well-known in the shape optimization community and take into ac-
count the special structure of the FE state equation. Differentiating the discretized state
equation with respect to a design parameter ρi leads to

K
∂u

∂ρi
=

∂f

∂ρi
−
∂K

∂ρi
u. (6)

For the direct method, (6) is solved numerically by some direct or iterative solver. Then
the gradient of the objective can be calculated by (c.f. (5))

dJ̃

dρi
=
∂J

∂ρi
+ 〈

∂J

∂u
,
∂u

∂ρi
〉. (7)
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The adjoint method solves (6) formally and inserts the result in (7) which leads to

dJ̃

dρi
=
∂J

∂ρi
+ 〈K−T ∂J

∂u
,
∂f

∂ρi
−
∂K

∂ρi
u〉. (8)

4.2 Comparison

ADOL-C needs a file containing the evaluation graph of the function in a symbolic
form which is generated at runtime. For structural optimization problems, huge mem-
ory and disk capabilities are required for that purpose. To give an example, the files
storing the evaluation graph for a problem with about 450 design parameters and about
7500 degrees of freedom (DOFs) in the FE state equation take about 1 GB of disk
space. The flexibility of ADOL-C with respect to changes in the objective is similar to
finite differences. For the reverse mode, the calculation time of the gradient is indepen-
dent of the number of design parameters and takes the time of about 15 - 20 native C++
function evaluations as long as the evaluation graph can be stored in the main mem-
ory of the computer. Compared to the use of finite differences, this is a tremendous
speedup, even for problems with only 10 - 20 design parameters. The coupling of AD
with iterative solvers is a problem of current research (see e.g. GRIEWANK [Gri00] and
references therein). As the use of iterative methods (e.g. multilevel methods) is impor-
tant for solving fine discretizations of the state equation efficiently. For the moment,
the applicability is limited to problems, where direct solvers can be used.

The direct method needs the solution of one state equation per design parameter,
whereas the adjoint method needs the solution of one adjoint problem for the objective
and in principle for each constraint. Depending on the number of design parameters
and constraints, the better suited method can be chosen. As analytic partial derivatives
of J with respect to ρ and u are needed, both methods can only be applied to simple
objectives, where this can be done easily. Furthermore, the flexibility of the method
suffers from the need of hand-coded gradient routines. Compared to finite differences
or the use of AD for the whole function, this approach is much faster. Finite differences
need many more solutions of the FE state problem, compared to AD the huge evalua-
tion graph which originates mainly from the solution of the state equation is avoided.
For both methods any solver can be used for solving the state problem, especially the
use of iterative solvers like conjugate gradient methods with multilevel preconditioning
is recommanded.

4.3 Hybrid Method

Comparing the properties of the direct and the adjoint method and of AD it can be seen
that the strengths of these methods lie in completely different areas. AD provides very
high flexibility with respect to the used objective, but has drawbacks with respect to the
needed computer requirements, the use of iterative solvers for the state equation and
with respect to longer runtime. On the other hand the direct and the adjoint method
can easily be combined with iterative solvers and provide a fast way for calculating the
needed gradients, but they lack from the needed flexibility. However, both approaches
can be combined to a new hybrid method combining their strengths in the following
way: The main drawback of the direct or the adjoint method is the need of analytic
partial derivatives of the objective and the constraints with respect to ρ and u. But
these derivatives can easily be provided by using AD tools. Then only ∂K

∂pi
and ∂f

∂pi

remain, for which hand-coded routines have to be implemented or AD can be used. For
optimal sizing problems, these routines can be hand-coded easily. Furthermore, they
do not depend on the specific problem which justifies the additional effort of coding
even for more complex problems.
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Finite Diff. Pure AD Hybrid M.
Problem Nr. of design par. 24 24 24
dim. Nr. of elements 3981 3981 3981

DOFs of state equ. 16690 16690 16690
Optimizer Iterations 83 100 100
statistics gradient eval. 12.40 h 6.00 h 0.18 h

function eval. 0.23 h 2.36 h 0.20 h
Runtime Total CPU time 12.4 h 4.88 h 0.39 h

Total elapsed time 12.6 h 8.42 h 0.40 h

Table 1: Comparison of the runtime for various differentiation strategies

Pure AD Hybrid M. Hybrid M.
Problem Nr. of design par. 449 449 449
dim. Nr. of elements 1796 1796 7184

DOFs of state equ. 7518 7518 29402
Evaluation Operations 45521797 1399910 5578270
graph Total file size 953 MB 32.4 MB 129.2 MB
Optimizer Iterations 800 800 800
statistics gradient eval. 18.0 h 0.54 h 3.35 h

function eval. 16.5 h 1.29 h 8.13 h
Runtime Total CPU time 32.3 h 3.73 h 14.01 h

Total elapsed time 38.5 h 3.76 h 14.12 h

Table 2: Comparison of the runtime for many design parameters

5 Numerical results for the optimal sizing problem

In the following, some numerical results for the problem stated in Section 2 are pre-
sented. They were calculated on an SGI Origin 2000 with 300 MHz.

At the beginning, we tried to use only few design parameters. Therefore, we di-
vided our domain into a number of sub-domains and approximated the thickness with a
constant function per sub-domain. For evaluating the gradient, either finite differences,
an AD approach for (5) or the hybrid method were used. For a better comparison,
the calculation was terminated after a fixed number of steps (The run using finite dif-
ferences terminated earlier because the search direction was no descent direction any-
more). Detailed results can be found in Table 1. All 3 methods lead to a similar design
with about 5 % reduction of the mass compared to the starting configuration (which is
the current design of the frame). Compared to finite differences and the pure AD ap-
proach, the hybrid method is severely faster, as it combines a fast function evaluation
and a fast gradient evaluation. The gradient evaluation is the main drawback for finite
differences. For the pure AD approach we had to implement additional safeguards. In
order to detect when a regeneration of the evaluation graph was necessary, we com-
pared the value of the objective using the evaluation graph and the value using a native
C++ implementation which explains the longer runtime of the function evaluation.

In the following we used the coarsest grid of our FE triangulation for discretizing
the thickness. For solving the state problem, each coarse grid element was subdivided
into 16 elements using 2 levels of uniform refinement. On this refined triangulation the
state equation was discretized. Table 2 contains results for the pure AD approach and
the hybrid method. Also results for an even finer discretization of the state equation are
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presented.
Analyzing the runtime behaviour we see that the pure AD approach is no more

competitive due to the large file containing the evaluation graph. Furthermore, it can
be seen that for the hybrid approach the optimizer needs already a considerable amount
of the total runtime. Its relative amount of the runtime even grows when using more de-
sign parameters as the complexity of one optimization step is proportional to (dim ρ)3

(due to the use of dense matrix linear algebra), whereas the complexity of solving one
state equation is proportional to dimu (if solvers with optimal complexity e.g. conju-
gate gradients with multigrid or multilevel preconditioning are used).

6 Calculating the gradient for shape optimization

We have seen in the optimal sizing problem that a direct implementation of the gradient
can accelerate the code dramatically although it requires more work on the implemen-
tation side. We were curious what performance gain can be achieved when the gradient
calculation in a 2D shape optimization problem is fully implemented, i.e., no automatic
differentiation or finite differences are used therein. The shape under investigation is
similar to the one in Fig. 1. This shape can be easily described by corner points (x- and
y-coordinates), circular parts of the boundary (x- and y-coordinates of the center plus
the radius) connected with straight lines, see Fig. 2. Our set of design parameters P

(px, py)

(mx, my)

r

Figure 2: Possible usage of design parameters in Shape Optimization

contains all these parameters px, py,mx,my, r which are restricted via box constraints.
More details on topics discussed in the following sections can be found in the master
thesis by C. Rathberger [Rat02].

6.1 A second look at the gradient

If we pick an arbitrary design parameter p ∈ P and if we assume that our objective
J depends only on the mass, the displacement in certain points and the resulting van
Mises stress σvM (the handling of tensile stresses will be similar) we can write:

J = J(p, u(p), σvM (p, u(p))) (9)

where the explicit dependency on p is due to the fact that for homogeneous objects the
mass depends only on the boundary shape. If we want to calculate the total differential
with respect to design parameter p this leads to

dJ

dp
=

∂J

∂p
+
∂J

∂u
·
du

dp
+

∂J

∂σvM
·

(
∂σvM

∂p
+
∂σvM

∂u
·
du

dp

)

=
∂J

∂p
+

∂J

∂σvM
·
∂σvM

∂p
+

(
∂J

∂u
+

∂J

∂σvM
·
∂σvM

∂u

)
·
du

dp
(10)
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Again, we want to eliminate the term du
dp

by differentiating the state equation Ku = f

with respect to the design variable p and we get similarly to (6)

du

dp
= K−1

(
df

dp
−
dK

dp
· u

)
(11)

Inserting equation (11) into equation (10) results in

dJ

dp
=

∂J

∂p
+

∂J

∂σvM
·
∂σvM

∂p
+

+

(
∂J

∂u
+

∂J

∂σvM
·
∂σvM

∂u

)
·K−1

(
df

dp
−
dK

dp
· u

)

=
∂J

∂p︸︷︷︸
(i)

+
∂J

∂σvM
·
∂σvM

∂p︸ ︷︷ ︸
(ii)

+

+

〈
K−1 ·

(
∂J

∂u
+

∂J

∂σvM
·
∂σvM

∂u

)
,
df

dp
−
dK

dp
· u

〉

︸ ︷︷ ︸
(iii)

(12)

where we have used the fact that K is symmetric in the last transformation. We will
investigate the three principal parts of the derivative in (12) separately:

(i) As the objective only depends explicitly on the design parameters through the
mass, this partial derivative can be evaluated as

∂J

∂p
= % ·

∂V

∂p
= % · d ·

∂A

∂p
= % · d ·

m∑

e=1

∂Ae

∂p
(13)

where V is the volume, A the area, Ae the area of element e, % the density
of the material and d the thickness of the frame. Writing this differential as
sum over all elements has the advantage that the evaluation is independent from
the geometrical properties of the boundary shape and it is not even inefficient
regarding the computational effort. The differential of the element areas by the
design parameters will be required in equation (18) in Section 6.2 anyway.

(ii) Differentiating the objective by the van Mises stress gives us only some constant
of proportionality. Partially differentiating the van Mises stress by the design
parameters is a little more complicated, but can be basically reduced to repetitive
applications of product and chain rule differentiation. We will give the explicit
expressions in Section 6.4.

(iii) Finally, the handling of the derivatives in the scalar product < ., . > is the main
effort and requires some more considerations.

Examining the left hand side of the scalar product in equation (12) in more detail, the
first thing we can do is to rewrite it as the adjoint problem

vleft := K−1 ·

(
∂J

∂u
+

∂J

∂σvM
·
∂σvM

∂u

)

K · vleft =
∂J

∂u
+

∂J

∂σvM
·
∂σvM

∂u
, (14)
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where K is the stiffness matrix already known from the state problem. We obviously
can evaluate the left hand side vleft simply by solving the state problem with the only
difference that we use a different right hand side instead of f , namely

∂J

∂u
+

∂J

∂σvM
·
∂σvM

∂u
(15)

Here the partial differential of the objective by the displacement field u will be an n-
dimensional null vector except for those entries corresponding to nodes on the bound-
ary affected by angular constraints. The differentials involving the van Mises stress
again will considered in Section 6.4.

6.2 Differentiating the state equation

First we have a closer look at the right hand side df
dp

− dK
dp

· u of the scalar product (iii)
in (12). The gravity of mass can be neglected in comparison to the large forces acting on
the C-frame. Additionally, the shape is also strictly fixed in those regions where these
surface tractions act. Therefore, we can use ∂f

∂p
= 0 in our considerations (see [Rat02,

§10.1]). The displacement field u is already available from solving the state equations
Ku = f , The differential of the stiffness matrixK can be expressed by the differentials
of the element stiffness matrices Ke through the connectivity matrices Ce.

dK

dp
=

m∑

e=1

Ce
dKe

dp
CTe (16)

We took advantage of the fact that the connectivity matrices contain only ”topological”
data and they are therefore independent from the design parameters. Additionally,
we restrict ourselves to triangular finite elements with quadratic shape functions. The
derivative of the element stiffness matrix will be shown for one of the 4 × 36 entries
of Ke (the others work completely by analogy). Selecting K12

xy from Ke, i.e., the

discretization of ∂ψ
(1)

∂x
· ∂ψ

(2)

∂y
withψ(1) andψ(2) denoting two quadratic shape functions

of the triangular finite element, we get

K12
xy =

1

4Ae
[ν(x1−x3)(y2−y3) +

(1 − ν)

2
(y3−y1)(x3−x2)] (17)

and consequently

dK12
xy

dp
= −

1

4A2
e

dAe

dp
[ν(x1−x3)(y2−y3) +

(1 − ν)

2
(y3−y1)(x3−x2)]

+
1

4Ae
[ν{(

dx1

dp
−
dx3

dp
)(y2−y3) + (x1−x3)(

dy2

dp
−
dy3

dp
)}

+
(1−ν)

2
{(
dy3

dp
−
dy1

dp
)(x3−x2) + (y3−y1)(

dx3

dp
−
dx2

dp
)}] (18)

which looks very complicated, but again consists only of differentials of Ae and the
vertices of the element by the design parameter p.

The element area Ae can be easily calculated for triangular elements (with corner
points (x1, y1),(x2, y2) and (x3, y3)) and the appropriate derivative is

dAe

dp
=

1

2
· [(
dx2

dp
−
dx1

dp
)(y3 − y1) + (x2 − x1)(

dy3

dp
−
dy1

dp
)

−(
dx3

dp
−
dx1

dp
)(y2 − y1) − (x3 − x1)(

dy2

dp
−
dy1

dp
)] (19)
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So the differential of the element area can be expressed by the differential of the corner
points by the design parameters as well. Obviously the central task when trying to
differentiate the objective is differentiating the coordinates of the nodes by the design
parameters.

Therefore, the difficulties in the gradient calculation are shifted to the dependencies
of the finite element mesh from the changes in the geometry. That dependency consists
again of two parts:

Design parameters P
i.

−→ Boundary Nodes Γh
ii.
−→ Interior Nodes Ωh

i. The boundary mapping from P to Γh is described in detail in [Rat02, §9.1].
Differentiating this expression will be extremely long-winded though mathemat-
ically not very difficult [Rat02, §10.3] and we skip this part in the paper.

ii. The mesh mapping from the boundary Γh to the interior nodes Ωh requires a
transformation of the f.e. mesh. For calculating this differential we will have to
differentiate the mesh smoother, which is either an algorithm based on the Jacobi
method or one involving the solution of the linear elasticity problem.

If we take into consideration the way the mesh coordinates are stored in our data struc-
ture (coordinates of the initial geometry plus a certain deformation field) we can write
the mesh deformation with respect to the design parameters more precisely:

xi = xinitiali + (um)i(Γ(P )) ∀i ∈ ωh (20)

where um is the result of the mesh smoothing problem. Consequently this leads to

dxi

dp
=
∑

j∈γh

dxi

dxj
·
dxj

dp
∀i ∈ ωh (21)

6.3 Differentiating the mesh mapping

Talking about the mesh mapping we have to distinguish between the two possible im-
plementations. Let us first discuss the very easy case of the Jacobi iteration.

6.3.1 Differentiating the Jacobi iteration

If we want to calculate the derivative of the Jacobi method we have to differentiate the
iteration scheme

xt+1
j =

1

|Nj |

∑

i∈Nj

xti ∀j ∈ ωh (22)

which it is based on. Where we first had to transform the boundary nodes (not affected
by the smoothing algorithm) and then iterate according to equation (22) to extend the
transformation to the interior, we now first have to differentiate the boundary nodes by
the desired design parameter and then extend the derivative into the interior by using
the differentiated iteration scheme

dxt+1
j

dp
=

1

|Nj |

∑

i∈Nj

dxti
dp

∀j ∈ ωh (23)

The idea behind the derivative is precisely the same as for the mesh mapping itself.
As brilliantly simple as this may seem it is also a grave disadvantage, because this

means that we have to repeat the (already very high) computational effort required for
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mesh mapping again for each design parameter in order to get the gradient. Of course
the number of iterations has to be the same for the mapping as for the derivative in
order to get correct results! So if the Jacobi iteration was for a certain problem 5 times
slower than the elasticity mapping and we have 9 design parameters, this widens the
gap to a factor (1 + 9) · 5 = 50 at least! That would be for example more than a day
compared to 30 minutes!

Although we could reduce the computational effort a little by calculating the differ-
ential of the mesh smoother in the same loop as the mesh smoother itself, this does not
change the general disadvantages of this approach. Obviously we should really find a
different smoother!

6.3.2 Differentiating the elastic mesh mapping

Looking a little bit closer at how the deformation field for the mesh um is influenced
by the deformation of the boundary Γ we recall that it is calculated as solution of

Kh · uw = 0 (24)

with Dirichlet boundary conditions dependent on Γ ,

where Kh itself is independent from the design parameters, because the deformed ge-
ometry is always calculated from the optimal, undeformed initial geometry and there-
fore theKh for mesh transformation is always (the same) stiffness matrix for the initial
setting of the design parameters. So we have to differentiate the solution of the given
system of linear equations by the Dirichlet boundary conditions. How can this be done?

For answering this question we have to remind ourselves how Dirichlet data is
actually incorporated into the linear system. One way to do this is by discrete homog-
enization, which leads to (if we look at only one equation, respectively row, of the
system)

(
Kinner · u

inner
m

)
i
=


−

∑

k∈γh

Kh
ik · xk



i

∀i ∈ ωh (25)

Solving for um and differentiating by the coordinate of a boundary node (this is what
we actually have to do accordingly to equation (21)) leads to

dum
dxj

= −K−1
inner · K̂•j (26)

where K̂•j is the j-th column of the initial Matrix Kh with the lines corresponding to
the boundary nodes removed. Equation (26) results from

dxk

dxj
= δjk (27)

and it requires to solve one linear system per boundary node! This would be, of course,
terribly ineffective and is therefore absolutely unthinkable! Furthermore storing the
results of equation (26) would require an array of the dimensions |ωh| × |γ|, which is
far too large to be practicable as well. But both problems can be solved with one idea.

If we now calculate dum

dp
instead of dum

dxj
, then equation (20) yields the equivalence

dum
dp

=
dx

dp
, (28)
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because xinitial is constant in this context. Using equation (23) this leads to

dx

dp
=


∑

j∈γh

dxi

dxj
·
dxj

dp



i∈ωh

=

({ ∑
j∈γh

dxi

dxj
· dxj

dp
i ∈ ωh

dxi

dp
i ∈ γh

)

i∈ωh

=

({
−
∑
j∈γh

(
K−1
inner · K̂•j

)
i
· dxj

dp
i ∈ ωh

dxi

dp
i ∈ γh

)

i∈ωh

which can be rewritten as

dx

dp
= M−1 ·

∑

j∈γh

N•j ·
dxj

dp
(29)

where

M = (−K with boundary-rows and -columns set to δij)

N = (K with boundary-rows set to δij)

N•j = j-th column of N.

Furthermore setting

b =
∑

j∈γh

N•j ·
dxj

dp
(30)

leads to

M ·
dx

dp
= b (31)

so that we now can evaluate equation (21) with the effort of solving only one linear sys-
tem (solved with PEBBLES1, see also [Rei01]) per design parameter. We furthermore
notice from (30) that only b depends on the boundary and therefore on the design pa-
rameters in equation (31). The matrix M has to be assembled only once, which speeds
things up even further.

6.4 Differentiating the van Mises stress

What now remains in term (iii) and (ii) of equation (12) are the two derivatives

∂σvM

∂u
and

∂σvM

∂p
, (32)

where the second can be written as

∂σvM

∂p
=
∂σvM

∂x
·
∂x

∂p
. (33)

To evaluate this we remind that the van Mises stress is calculated by interpolating the
displacement field u on an element e. We split up the mapping into three parts, where
ax, bx, ay, by denote the derivatives of the f.e. shape function (expressed as a·x+b·y+c)
and gain

(~x, ~u) −→ (ax, bx, ay, by)

(ax, bx, ay, by) −→ (σ11, σ22, σ33, σ12)

(σ11, σ22, σ33, σ12) −→ σvM (34)

1http://www.numa.uni-linz.ac.at/Research/Projects/pebbles.html
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How complicated this gets can be seen by calculating

∂σvM

∂u
=
∂σvM

∂σ11

(
∂σ11

∂ax

∂ax

∂u
+
∂σ11

∂ay

∂ay

∂u
+
∂σ11

∂bx

∂bx

∂u
+
∂σ11

∂by

∂by

∂u

)
+
∂σvM

∂σ22
...

As the principle behind all this is always the same and fairly easy, we will not go into
further detail here.

6.5 Implementation

Summing up the results of the previous sections we now can list the sequence of pro-
gram steps required for evaluating the gradient at a given point in the parameter space.
We will also keep track of the number of linear systems (LIN) that have to be solved.
Evaluation of equation (12) takes place in the following way:

1. Solve the state problem and store the displacement field u. (1 LIN)

2. Calculate and store dxj

dp
, j ∈ γh for all boundary nodes and design parameters.

This is the derivative of the boundary mapping.

3. Calculate (using the results from the previous step) and store dxi

dp
, i ∈ ωh for

all nodes and all design parameters. This is the derivative of the mesh mapping.
(|P | LIN)

4. Calculate dAe

dp
for all elements and all design parameters.

5. Calculate the left hand side (LHS) of
〈
K−1 ·

(
∂J

∂u
+
∂J

∂V
·
∂V

∂u

)

︸ ︷︷ ︸
LHS

,
df

dp
−
dK

dp
· u

︸ ︷︷ ︸
RHS

〉
(35)

using the stiffness matrix from the state problem in step 1. and store it. (1 LIN)

6. Calculate df
dp

and initialize the RHS of the scalar product with the result.

7. Calculate dK
dp

by means of element matrices and update the RHS element-wise

with −dKe

dp
ue.

8. Evaluate the scalar product< LHS,RHS >

9. Evaluate the terms of equation (12) outside the scalar product.

10. Sum up the results and store them into the respective row of the gradient

The steps 6. to 10. will have to be repeated for each design parameter. As a whole the
number of linear systems to be solved is obviously the number of design parameters
plus two with the additional aspect that several of the field problems share the same
stiffness matrix and differ only in the load vector. If used correctly, this increases the
speed of the algorithm even more.

A further (and completely different) possibility for calculating the gradient is the
automatic differentiation approach presented in Griewank [Gri00].
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7 Numerical results for the shape optimization

The formulation for the design problem was already introduced in Section 2 with the
only difference that now the geometry Ω changes but the thickness ρ remains constant.
We do not take into account the hole in the middle of the C-frame because we want to
simplify the geometry. We use a mesh with 828 triangular finite elements. If we now
start the shape optimization with all the constraints from Section 2, we see that the crit-
ical constraints will be the angles of the wings. Although σ11 can reach critical values
on some single elements, on most elements the constraints on the stresses are automat-
ically fulfilled if the constraints on the angles are fulfilled. In the optimal design both
wings almost reach their maximal allowed deformation, which can be seen in figure
3. The final design fulfills all constraints and the mass has been reduced to 81.83% of

Figure 3: Comparison of the original and of the final deformed geometry

the original value. For the original mass of 5.4223t that means a weight reduction of
985.1kg. The optimization process required 79 iterations and 43.2 seconds for a set
of 29 design parameters. That is dramatic reduction in computing time compared with
approximately 6 hours when finite differences were used in the gradient calculation.

8 Remarks and conclusions

In this paper differentiation strategies needed for solving a real life design problem
were presented. During the comparison we focussed our attention on the flexibility of
the gradient routine and on the possibility to combine the gradient module with iter-
ative solvers for the state equation. A hybrid method combining the strengths of AD
and the adjoint method was presented. This method preserves the flexibility of the pure
AD approach more or less at the costs of a completely hand-coded gradient routine.
Furthermore, the huge memory and disk requirements of the pure AD approach are
reduces severely. The fully implemented gradient in the shape optimization approach
shows clearly the very high acceleration that can be achieved. Nevertheless that imple-
mentation depends strongly on the geometrical description of the boundary and on the
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specifications of the finite elements chosen for discretization. Therefore this approach
is very fast but not as flexible.

Coming back to the optimization routine itself it must be noted that our current
implementation of the optimizer is based on dense matrix linear algebra and therefore,
it is only well suited for small to medium size optimization problems. But in order
to close the gap to topology optimization, which is of high practical importance, new
optimization methods for large scale problems have to be developed. An approach
using multigrid methods also for solving the optimization problem was proposed by
MAAR, SCHULZ [MS00].
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Optimal sizing using automatic differentiation. In K.-H. Hoffmann,
R.H.W. Hoppe, and V. Schulz, editors, Proceedings of ”Fast Solution of
Discretized Optimization Problems”, Berlin, ISNM 138, 120–138, 2001.
Birkhäuser.
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