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Abstract — We present a DD (Domain Decomposition) preconditioner for hierarchi-
cal hp discretizations of 3-d, 2-nd order, elliptic equations. Its arithmetical complexity
behaves almost optimal in p. We adapt the wire basket substructuring technique to the
hierarchical hp discretization, obtain a fast preconditioner-solver for faces by interpo-
lation and show that for prolongations from faces a secondary iterative process may be
efficiently used. The fast solver for local Dirichlet problems on subdomains of decompo-
sition is based on our earlier derived finite-difference like preconditioner for the internal
stiffness matrices of p-finite elements and fast solution procedures for systems with this
preconditioner, which appeared recently. The relative condition number, provided by
the DD preconditioner under consideration is O((1 +logp)3-®) and its total arithmetic
cost is O((1 + log p)*" (PR + pR?)), where R is the number of finite elements. The
term pR? is due to the solver for the wire basket subsystem. We outline, how the cost
of this component may be reduced to O(pR). The presented DD algorithms are highly
parallelizable.
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1. Introduction

Suppose, Av = f isas.p.d. (symmetric positive definite) system of linear algebraic equations
with a n xn matrix A, where the dimension n of the system matrix is viewed as a parameter.

!Research is supported in part by grants from the Russian Fund of Basic Research, the program ” Uni-
versities of Russia” and the Austrian Science Fund (FWF).
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In this paper, an algorithm for solving this system is termed fast or (asymptotically) almost
optimal, if it requires O(n) or O((1 + logn)¥n) arithmetic operations with some fixed and
not too large k. If £ = 0, then it is termed optimal. Often the solving procedure is the PCG
(Preconditioned Conjugate Gradient) method with some preconditioner A. By the total
arithmetical cost or complexity of a preconditioner, we understand the arithmetical cost for
solving the system by the PCG method, except multiplications by the matrix A which are
unavoidable at each PCG iterative step. That means, in distinction to some other papers,
here the efficiency of a preconditioner is measured not only by the relative condition, but
also by the cost of solving the system with the preconditioner for the matrix. Accordingly,
the preconditioner is called fast, almost optimal or optimal, if it is such in total arithmetical
complexity. When n depends on several parameters, similar terms are used with respect to
any of these parameters.

This paper deals with systems of algebraic equations, resulting from hierarchical hp
discretizations of 2-nd order elliptic equations. Specifically, our target is discretizations gen-
erated by means of the square or cubic reference elements with the coordinate functions
defined by the tensor products of the integrated Legendre’s polynomials. In recent years, a
considerable progress has been achieved in developing efficient DD (Domain Decomposition)
solvers for such systems. For the discretizations of 2-d elliptic problems, all basic compo-
nents of DD solvers have been reasonably well studied and made indeed efficient. Due to
[16], [1], [22], [12], [23] and [20] a number of Schur complement preconditioners has been
designed, optimal or almost optimal in condition and requiring less, sometimes consider-
ably, than O(p?*R) arithmetic operations, see, e.g., [23]. Here R is the number of finite
elements of the discretization. In derivation of some of them, an essential role was played
by the fact that the reference element internal stiffness matrix, generated by the internal
coordinate functions, has an optimal in total computational complexity finite-difference-like
preconditioner, derived in [16], [22]. For the systems with this preconditioner, different types
of almost optimal solvers were justified in the last 3 years, requiring sometimes subsidiary
slightly modified preconditioners, better adapted to solvers of particular types. DD like
solvers of [19] and [18], the latter applicable also to 3-d problems, multilevel solvers for the
case of complete reference elements of [5], their extension to incomplete reference elements
by [17] and [24] may be pointed out for the first breakthroughs in this area.

By the conditions of the generalized angular quasiuniformity, the same DD and multi-
grid like preconditioners-solvers with the same total arithmetical cost are applicable to local
Dirichlet problems on subdomains of decomposition — otherwise the most time consuming
subproblems in DD algorithms. Therefore, in such algorithms we may have primal and sec-
ondary domain decompositions, with the latter applied to the local problems on subdomain
of the primal decomposition. For the obvious reasons of obtaining the most efficient algo-
rithms and more clarity, as in many other papers, in this paper the domains of p elements
are taken for the subdomains of the primal DD. It is also worth noting that the above men-
tioned local Dirichlet solvers for subdomains of the primal decomposition, i.e., DD as well as
multigrid algorithms are such for the above mentioned finite-difference like preconditioner,
specified on an artificial square domain. This domain is defined by the finite-difference (fi-
nite element with the first order finite elements) interpretation of the preconditioner. In the
space of real Ap-version unknowns and in the space of p-coordinate functions these solvers
are some space decomposition and multispace methods with very specific decompositions in
the subspaces, the numbers of which in the both cases are O(log(p + 1)). At that, all the
subspaces of coordinate functions are specified on the same subdomain of the primal DD or,
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equivalently, reference element, to which the solver is applied, see [19], [18], [5], [17] and [24].

Quite recently, [6] developed another type of fast solvers for the 2- and 3-d reference
element stiffness matrices. It was derived as a wavelet multiresolution preconditioner for the
matrix, obtained from the finite-difference like preconditioner of [22] by neglecting the minor
term at the cost of (1 + logp)?~! in the condition. This term is the diagonal matrix of the
diagonal predominance in the source preconditioner, deteriorating with the growth of p.

The above mentioned contributions made possible in [17] and [24] to design several DD
preconditioners for 2-d elliptic problems, which are almost optimal in the total arithmetical
complexity. In these works, similar in many aspects preconditioners were also justified for
discretizations based on spectral elements. It is necessary to note that, unlike A-version with
low order finite elements, the use of almost optimal (in the total computational cost) precon-
ditioners does not mean that the DD solver in a whole will be fast. This is related to the fact
that in the general case — variable coefficients in the elliptic equation, curvilinear elements
— calculation on the global stiffness matrix, or unassembled element stiffness matrices, and
multiplications of vectors by them at each DD iteration step may be rather costly. Stiffness
matrices of finite elements may be completely filled in, and, therefore, e.g., for 2-d prob-
lems one such multiplication may require O(Rp*) arithmetic operations. However, analysis
and improving efficiency of these operations, although being an interesting and promising
topic, see, e.g., [26], are out the scope of this paper. We only note, that there are many
important practical cases where the total arithmetical costs of the DD preconditioner and
the DD solver in a whole coincide without special sophisticated algorithms for the pointed
out multiplications. One of them occur when finite elements are rectangular and coefficients
of the elliptic equation are polynomials of a fixed, in practice not too large, order.

DD substructuring algorithms for hp discretizations of 3-d elliptic problems have been
discussed in the literature to a much lesser extent. Existing publications are exclusively con-
cerned with the wire basket preconditioning for the spectral element discretizations, see [27],
[9] and [28]. At the same time neither for spectral nor for hierarchical hp discretizations,
there is known a DD preconditioner, approaching in a whole optimality in the computa-
tional complexity. In this paper, we are suggesting such a DD preconditioner and show that
it provides the condition number O((1 +logp)®®) and requires O((1+ logp)* ™[p*R +pR?))
arithmetic operations. In order to derive DD preconditioner, first of all, we adapt the wire
basket algorithm to the hierarchical hp discretization under consideration. We show that
the wire-basket subsystem of equations may be solved efficiently. For prolongations from
the wire-basket on faces, we consider two options. One is based on the iterative procedure
with the efficient preconditioner for the face problem. Another is similar to that one used
for spectral finite elements, although additionally it requires solving systems with the tridi-
agonal matrices. Iterative inexact solvers are also proved to be efficient for the prolongations
inside elements from the interelement boundary. For solving local Dirichlet problems on
subdomains of the primal decomposition, efficient solvers suggested in [18] and [6] may be
used. In this paper, we describe shortly the latter, see Subsection 4.2. It is chosen for the
reason, that similar solver may be obtained by the same technique for the mass matrix of the
hierarchical reference element. In turn, this allows us to justify the efficient preconditioner-
solver for the face subproblem by means of the operator K-interpolation technique. In the
result, these components, when incorporated in the DD solver, define the DD preconditioner
of almost optimal arithmetical complexity, pointed out above. The term pR? in the given
above estimate of the computational work is due to the solver for the wire-basket subsystem.
This term is the same as for known algorithms in the same component of DD methods for
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spectral discretizations, see [27], [9] and [28]. We outline some alternative algorithms, which
seem to allow us in the future to reduce the cost of this component to O(pR).

The use of inexact solvers for prolongations is a long story. It is well known, that conver-
gence of outer DD iterations may be provided, even if local problems are solved by internal
iterations rather crudely. At the use of an iterative solver for local problems in the proce-
dures of restrictions-prolongations, the situation is different, and an instability of the outer
iterations was often observed even at large numbers of inner iterations for prolongations.
This is the reason for the growing attention to this problem (see [14] for the h-version).
An interesting algebraic approach is being developed in [11], [30] with direct outcome to
inexact solvers in DD algorithms, see [7]. In these works, some practical recommendations,
well supported by numerical experiments, may be found. However, their conclusions cannot
be used in our study, since they do not lead to estimates of the computational complexity
with respect to h and p. Our approach is different and gives a strictly approved quanti-
tative answers. Suppose, a spectrally equivalent preconditioner for local problems is used
in the internal iterative solver, producing the prolongation. We show that in order to pro-
vide the spectral equivalence of DD preconditioner, the number of inner iterations should be
O(1+logp). Another conclusion, following from the analysis, is that in some range quality of
the preconditioner for local problems, used in inner iterations, slightly influences the number
of inner iterations, needed for a sufficiently good prolongation. For DD solvers of 2-d elliptic
equations similar approach to prolongations and results were reported in [17], [18].

The paper is arranged as follows. In Section 2, we describe the 3-d model elliptic problem,
its hierarchical hp discretization and introduce some notations. Section 3 is devoted to
adaptation of the wire-basket algorithm to the hierarchical hp-version and improvement of
some of its basic procedures. Namely, solving of the system of the wire-basket equations
and prolongations from wire-basket to faces are discussed. Almost optimal preconditioners-
solvers for internal and face subproblems are presented in Section 4. In Section 5, the DD
algorithm in a whole and some of its modifications are described. It is also shown that
inexact iterative solvers may be effectively used for prolongations inside elements from the
interelement boundaries. Furthermore, questions of computational complexity are discussed.

2. Elliptic problem, discretization and some notations
For a model, we consider the Dirichlet problem: find u € H}(Q)
ao(u,v) = (f,v)a, forall v € Hy(9Q), (1)

where H;(€) is the subspace of the functions from H'()), vanishing on the boundary 99,
and

an(u,v)z/ﬂg(m) Vu-Vudz, (f,v)gz/guvd:c, (2)

0 = 1 > 0. It is assumed for simplicity that €2 coincides with the computational domain,
i.e., it is the domain

R
a=J7,
r=1

occupied by the assemblage of geometrically compatible and in general curvilinear finite
elements 7,. Finite elements 7, are specified by nondegenerate mappings z = X (y) : 7 —
7, with positive Jacobian’s, where 7y is the reference cube 7o = (—=1,1) x (—=1,1) x (=1,1). We
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assume that these mappings satisfy the conditions, called the generalized conditions of the
angular quasiuniformity. If the mappings are trilinear, i.e., all elements have straight edges,
these conditions are equivalent to shape regularity. In a more general case, they imply that
the inequalities in the first line of (4.3) in [22] are fulfilled with A specific for each element,
but with a/!) and 6 independent of an element and h.

In this paper, we consider hp discretizations with the hierarchical reference element,
which is equipped with the space Q, , of all polynomials of the order not greater p, p > 1,
in each variable. Let us introduce the set M, , = (£;(s), i =0,1,...,p) of polynomials of
one variable

Eo(s)j%(l‘”)a Li(s)=5(1—5),
Li(s) == 5i_f1 Py (t)dt = vi[Pi(s) — Pia(s)], 122,

where P; are Legendre’s polynomials and v; = 0.54/(2i — 3)(2i + 1)/(2i —1). Thus, for
1 > 2, L; are the integrated Legendre’s polynomials up to the multipliers ;. These multipliers
are chosen such that ||£;(s)|lo,—1,1) = 1 for ¢ > 2. For the hierarchical basis in Q,, it is
accepted to use the set

Mp = (La(.ﬁ) = £a1 (371)£a2 (.’L’Q),Cag (33'3) , & € (,d) s

where w = (a = (a1, a2, a3) : 0 < oy, a9, 3 < p). If we denote the coordinate functions of
the element 7, by pg ), then they are defined by the equalities p(({ ) (XM (y)) = Lo (y). We write
the system of finite element algebraic equations, resulting from the described discretization
in the form

Ku=f. (3)

At designing the DD solver, each p-element is treated as a subdomain of decomposition,
typically for many other papers as well. There are several reasons for that. The main
one is that, if we have an efficient solver for condensation of internal unknowns for each
element, such method will be amongst the most efficient and provide the highest degree
of parallelization. In order to clarify the presentation, the coefficient p is accepted to be
piecewise constant, so that o(z) = o, for x € 7,.

In the 3-d case, it is natural to distinguish internal, face, edge and wvertex degrees of
freedom and respectively decompose the vector space

V=VieVr®d Ve V.
DD solvers or their parts are also often based on the decompositions
V:‘/I@VF@VWa V:‘/I@VBa

where Vg = Vp® V@ Vi and Vi = VE@® V) are the subspaces of the (interelement) boundary
and wire basket degrees of freedom. According to these subspaces, the finite element stiffness
matrix may be represented in the block forms

KI KIF KIE‘ KIV

K K K
([ K; K\ oo WY [ Ker Ke Kep Ky
K = = | Ky Krp Kpy | = (4)
KBI KB KEI KEF KE KEV
KEI KEF KEW

Ky Kyr Kye Ky

For the corresponding spaces of the f.e. functions we use similar notations with V' replaced
by V.
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The restrictions of the introduced above spaces to the finite elements 7, are supplied
with additional upper index r, e.g., Vg) denotes the subspace of the boundary coordinate
functions of the finite element 7, with » = 0 reserved for the reference element. Similarly,
Kg) is the block of the stiffness matrix of an element 7,, generated by the face coordinate
functions. The spaces V and V for the reference element will be denoted U and U = Q,, ,,
respectively, with the same indexation for subspaces.

Throughout the paper, we use boldface letters for matrices and vectors, except for multi-
indices and vectors of the space variables. The notations A = K© and M are reserved for
the reference element stiffness matrix, generated by Dirichlet integral, i.e., with o = 1 in (2),
and the mass matrix, respectively. The norms and quasinorms in Sobolev’s spaces H*()
are denoted || - ||,o, whereas the notations gol| - |[1/2,0 and go| - |1/2,0, With © being a subset
of 012, stand for the norm and the quasinorm in the space Héf(@). For their definitions,
we refer to [13]. The signs <, >, < are used for the inequalities and equalities, fulfilled up
to absolute constants.

3. Wire basket preconditioner for hierarchical hp-version

Subdivision of a structure to be analyzed numerically in substructures, direct elimination
of the internal for substructures unknowns, and then solving the system with Schur com-
plement for the matrix are still widely implemented in applied algorithms, generally called
substructuring algorithms. This is an additional reason to discuss preconditioners for Schur
complement Sg, figuring in the factorization

_— I 0 KI 0 I K;lKIB _ 1
K= (KBIKI1 I) <0 SB) (0 I ) ’ Sp =Kp —Kp K Kip, (1)

and governing the interface problem independently. In what follows, these preconditioners
will be incorporated in the global DD solver. At first, we derive Schur complement precon-
ditioner for the reference element stiffness matrix. Then we will obtain Schur complement
preconditioner for each element by scaling the preconditioner for the reference element and
obtain the global Schur complement preconditioner by subassembling.

For the reference element one may write similar to (1) factorization

. I 0\ (A; 0\ [I A'Ap B »
A= (a3 ) 6 M07) 0 s snaran 0

Let us represent the Schur complement Sg in the block form

s._ (Sr Sew
b Swr Sw )’
The idea of the wire basket preconditioner for Sg, which will be denoted by &g, is usually

explained by three following steps, see [28] .
i) Change the basis in the subspace Vjy by means of the transformation matrix

I -C
C"(o I)’

which is described below, so that the Schur complement is transformed to the matrix

Sk nonzero
nonzero Sy '

S¢=C'SpC = (
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ii) Eliminate in S¢ coupling between faces and wire basket and also eliminate the coupling
between different faces. After this we have, for the tentative preconditioner of S¢, the 2 x 2

block diagonal matrix
gc = SF ~O )
0 Sw

in which the first block is 6 x 6 block diagonal matrix §F = diag[Sm,Sr, .., Sk, with each
block related to one of the six faces Fj. Obviously, at the appropriate ordering of the face
unknowns these blocks are identical.

iii) Replacethe blocks S r and SW by some scaled and simpler matrices S r and SW, of
which the former is block diagonal SF = diag[S0,1,S0,2, -, So6] -
Having completed these steps, we get the Schur complement preconditioner in a form

(95 269

A clear and helpful interpretation of these steps, repeated in many papers, follows from
the factorized form of the Schur complement

= ! 0\ (Sr 0\ (T Sg'Srw ] _ -1
Sp= (SWFS;} I) < 0 gW) <0 I ) Sw=Sw —SwrS; Srw. (4)

Therefore, in order to split faces and wire basket without considerable losses in condition,
it is necessary to construct sufficiently good approximation P, to the prolongation operator
P: Uw — Up, defined as

ne(9) ()

Similarly to P, the operator P, should reproduce exactly constant vectors. It is also nec-
essary that ker [Sy] = ker [Sy], and evidently ker [Sy/] contains constant vectors. If these
basic properties are violated, than ker [Sg] # ker [Sp|, and therefore Sp can’t be a good
preconditioner for S . In our first approach, these properties will be automatically satisfied
due to the following two reasons. One is the hierarchical basis of the reference element, in
which constants belong to the subspace, spanned by the vertex coordinate functions. The
definition of the prolongation operator by means of inexact solver for the face problems is
another. This approach is justified by the following two propositions.

Proposition 3.1 Suppose the prolongation operator P, satisfies the inequality
[Paviv sy < cellvwlls,, (6)

with an absolute constant c, and gp = Sg. Then the matrices Sc and §C are spectrally
equivalent uniformly in p, and the same is true for the matrices Sw and Sy.

Proof. We give this proof, that is more or less known for similar situations (see, e.g., [23]),
only for completeness. The inequalities Sy < Sy < cﬁSW are evident: the left one is the
consequence of the minimization proprties whereas the right one is another form of (6). The
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inequality S¢ < 2§c is Cauchy inequality. For any vector vg = vp + vy in the new basis,
by means of the estimate of the square of the sum by the sum of the squares, (6) and the
estimate (vg,Scvg) = (viv, Swvw ), we have

(ve,Scve) = (Ve Spvr) + (viv, Swvw) <
2(VB, SC’VB) + 3(Vw, Swvw) < 2(VB, SCVB) + 3C (Vw, Swvw) (2 + 36 )(VB, SC’VB) y

(7)
completing the proof. O

Proposition 3.2 Suppose 7131: <Sr < ’YggF with positive yg. Suppose also that for
any vy the prolongation u = P,vy s defined in such a way that uy = vy and the subvector
up = u'f;’ s found from the iteration process

~1
uit = uf — 04118, (Spuf — Srwvw), u), =0, (8)

with Chebyshev iteration parameters oy for some fized number k, of iterations. Then at

ko, > c(2logp+log(1+1logp))/(logot), where o = (1—0)/(1+8), 8 = \/71/72, the inequal-
ity (6) holds with the constant c, independent of p. Let us note that, if vy is a constant
vector, then Spwvy =0 and u% =0 for k > 1.

Proof. Let the vector ¢ be the solution of the system Sppp = Spyvw and @z = @p+vp.
We have the convergence estimate

luf — eplls, < "llepll sy, 9)
from which it follows
luf — esllss < & (lesllss + IVl sz) , ufy = uf + vy . (10)

Let vy € Uw correspond to vyy. Then by the definition of Sp as the stiffness matrix for
discrete harmonic functions, by the continuation theorem in the space Q, from d7 inside 7
and the multiplicative inequality, we have

(11)

Ivwll 2, = lowl? ., < clowlijgen <

with || - ||1,67, understood as

(i)

Taking into account definitions of the vertex and edge coordinate functions and Markov’s
type inequality, it may be shown that for any vy € Uy we have

< |lowl| 0,08, -

< lvwllem, <

Now, substituting these inequalities in (11) and applying a Bramble-Hilbert lemma type
argument, we get

Ivwll g, < p”infllow —cl| § - (12)
c b
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[27], see Lemma 5.3, proved the following trace inequality: let ¥ be the average of v € U
over the wire basket. Then,

v =3llgw < (1+1logp)lvli,- (13)
Therefore, according to (12) and (13)

Ivwll g, < esp®(1+ logp)lleslls, , (14)

and
Juflls, < (14 0° + cs0®p?(1 +logp))lvwlls,, - (15)

At the last step, we combined (10) and (14) and used the equality ||¢gls, = [[vwllg,, -
From (15), one concludes that, if k, > (2logp + log(1 + log p) + logc3)/(log o™), then

Paviwlls, = luflls, <3lvills, (16)

This inequality proves our proposition. O

A definition that is equivalent to that one presented in Proposition 3.2 is given by formula
(5) with C = S;',lltSFW and

ko

~ ~-1
Sph =M - []A—- xSy Sr)ISE (17)
k=1

Remark 3.1. The value of o does not have strong influence on the computational cost
of the prolongation operator. If, e.g., v2/v1 = p°, then according to Proposition 3.2 the
corresponding factor in the number k, of iterations will be slogp.

Remark 3.2. In (8), (17) and in (3), two different preconditioners 8p may be used.

Therefore, the prolongation operator may be chosen according to Proposition 3.2. How-
ever, the efficiency also depends on the preconditioner Sr. As one of the candidates, in
subsection 4.3 we consider a multilevel preconditioner, resulting from a multiscale wavelet
analysis.

Let Sqo be the matrix of the quadratic form oo |v|? Jo,F Vv € Up,, which is the square of the

quasinorm in the space Hé({Q (Fy). Evidently, at the appropriate enumeration of coordinate
functions of each face, this matrix is the same for all faces. Sufficiently good preconditioning
may be achieved by setting Sp = diag|[Soo, Soo, -, Soo], when Spo is a matrix close in
the spectrum to Sqo, see, e.g., [16], [27], [9] and [20]. By this reason, we assume, that for
sufficiently good vpy > 0

Y1800 < Soo < YF2800 - (18)

An alternative prolongation operator may be defined on the basis of the approach, similar
in essence to one used for h-version and spectral element methods, see [10] and [9], but
different algorithmically due to the difference in the bases. It provides a condition worse by
the factor (1 + logp) , but at a proper scaling the contributions to the total computational
costs of the wire basket and DD algorithms are comparable to those from the prolongation
operator, described above.
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Let us denote by Lio(s), k¥ = 0,1, the polynomials, obtained by the orthogonalization of
polynomial L(s) to the internal polynomials £;(s), i = 2,3, ..,p, in Ly(—1,1). Evidently,

Ek’o(s) = [,k(S) + Z ck’iﬁi(s) . (19)

Calculation of coefficients ¢; requires O(p) operations, since the corresponding mass matrix
is tridiagonal. First, we introduce some tentative prolongation operator. For definiteness,
let us consider the face in the plane x3 = —1. The restriction of ¢/ to this face is the space
Up, spanned over polynomials L; j(x) = L;(x1)L;(z2), 0 < 4,7 < p, whereas the restrictions
to edges belong to the spaces spanned by the polynomials £;(zx), 0 < ¢ < p. For the
components of the vectors vg and vy for the face under consideration, we use the notations
v; ;- If the trace ¢ on the boundary of the face and the corresponding vector vy, are given,

then the tentative prolongation u = Iy _,g¢ of ¢ is

U= Ym0 Lro(1)L10(T2) vkt + D pmg Yy Lio(x1) L (x2)ve+ (20)
S ko 2 Li(1) Lao ()i
If TW_,B is the matrix representation of TW_>B, then from the expression (20) it follows
that the prolongation TV = Vg requires O(p?) arithmetic operations. Similarly, the
prolongations to the other edges are defined and, therefore, we have defined the tentative
prolongation operator from the wire basket to the boundary of the reference element, for
which we retain the same notations. _
In order to come to the prolongation operator by means of the tentative operator Iy _,p,
for wire basket algorithms, we typically define the function F =1 — Iy, g 1, which vanishes
at the wire basket. Evidently, it can be represented as

6
F=> Fk,
k=1

where each F is nonzero only on one face Fj. The prolongation operator Iy 5 : Uy — Up
is defined accordingly to

6
uz[W—)BQs:IW—)B¢+ka$6Fk7 (21)
k=1

where 56Fk is the average value of ¢ on the boundary 0F) of the face F;. We use the
notations P, = Iy _, g for the matrix of this prolongation operator.

Now we describe the preconditioner Sy,. Let My be the wire basket mass matrix for
the reference element,

VZV;MWVW = ||U||%2(W) )

and z; be the vector of wire basket coefficients for the constant function equal to 1 and
0| Lyow) = inf, [|v — ¢|[L,(w)- Simple computation gives

(fw Uw d3)2
fW ds

(22)

-~y (Mw ~ (MWZI)(MWzl)T) )

2
|UW|L2(W) = / UW dS —_ T
W z1 My z,
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The preconditioner Sy for the reference element may be defined as the matrix generated by
the quadratic form

bw (vw, vw) = ew [vw |,y (23)
where ¢y = ¢(1 + logp) is a scaling factor, i.e.,
S (Myz1) (Myz1)"
Sw = My — . 24
w ‘w ( w Z’{szl ( )

In distinction with wire basket algorithms for A-version and spectral element methods, the
matrix My, is not any more diagonal or spectrally equivalent to a diagonal matrix. Therefore,
a modification of the solving procedure for the wire basket problem is required, which is
described at the end of this section.

The preconditioners Sy, Sy and the prolongation operator P,, introduced for the refer-
ence element, allow us to assemble the global preconditioners and the prolongation operator,
which we denote Sr, Sy and P, respectively. Therefore, the restriction of the global pro-
longation matrix P, to each finite element 7, (at the corresponding ordering of unknowns)
is the prolongation matrix P, for the reference element. Suppose, there are Ny faces inside
of the computational domain. The global matrix S is defined as a block diagonal matrix

Sp = diag[Sr,] 17 , St = (hry () 0y (k) + Pora (k) Ora(1)) S0 (25)

with each block related to one face Fy. Here r1(k) and ro(k) are the numbers of two elements
Tr(k) and T4y, sharing the face Fj. The global preconditioner Sy, is obtained by the

assembly of the preconditioners for finite elements 7, with each of them being & (r) _ h, grg' W
Having Sr, Sy and P,, we may define the global Schur complement preconditioner by the
similar to (3) formula. The inverse to it, evidently, is

S;' =8+ PSPl (26)

At defining the global preconditioner 8z, we may proceed in an alternative way. For
each element we define preconditioners sﬁ,f),s‘v() and the prolongation operator P((f) in a
way similar to the reference element, but taking into account the geometrical form of the
element. The corresponding global matrices result from the described above procedure of
assembling (which for the practical purposes are, indeed, not needed). This may result in
a better DD preconditioner with respect to relative condition number. However, in order
to make the presentation more clear, in what follows, we assume more simple definitions as
before. Apart from this, in our opinion the described above preconditioner Sg results in a
more efficient algorithm.

The system Syv = f has O(Rp) unknowns. Optimal solution procedures for it have not
been obtained yet. However, optimization of computational work with respect to p may be
achieved by necessary modification of the traditional wire basket algorithms. This system is
equivalent to the problem of minimizing the functional

I . o ) (o
5 min (2 ngn(v( ) — zlc,)TMgv) (v —z¢,) — va) ) (27)

with v(") being the restriction of v to the element 7, and M%) = h,0, My . Let My, be the
matrix obtained by the assembly of the matrices Mg,) . From (27) we come to the system

Z{Mg,) (v —z1¢,) =0, My v — Z Mg,)zlcr =f. (28)
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For the first step at solving it, we express v from the second subsystem and substitute in
the first subsystem. This gives the subsystem for ¢;’s

2Z’MDz))e, — 2T MM S Mz, ¢; = 2PMGI M 29
1 1% 1 w 1 W

Having it solved, we return to the second subsystem (28) in order to find v. For conve-
nience, we consider vectors Mg,) z; in (28) and (29) as expanded by zero entries to match
the dimension of v.

The global mass matrix My, may be viewed as assembled from element matrices Mg,

with an element E; being the edge ”j” together with its vertices. Evidently,

Mg, = cw (Z hn(j)Qm(j)) Mgy,

where the matrix Mg ¢ is induced by the quadratic form ||-||2, (—1,1y and 7;(j) are the numbers
of elements 7,, containing the edge E;. The block, obtained from M E,0 by deleting two rows
and two columns related to the vertices, is a tridiagonal matrix, see Subsection 4.1, and
only two of the internal degrees of freedom for the edge are coupled with the vertices of the
edge. Therefore, for solving subsystems with the matrix My, the following procedure may be
used. First, for each 1-d element Ej; in parallel, condense the internal (edge) unknowns and
assemble the subsystem with respect to the subvector vy of the vertex components of the
vector v = vyy. It is easy to see, that the matrix of this system is spectrally equivalent to its
diagonal. Thus, it may be solved by the PCG with the diagonal preconditioner. Therefore,
elimination of v for obtaining (29) requires O(R’p) operations and is the same as in the
case of spectral elements. For hierarchical elements, some other operations are simplified.
For instance, vectors Mg{,) z contain a fixed number of nonzero entries that is independent
of p. However, the total asymptotic cost of this algorithm seems to be the same as for the
spectral elements, because the complexity of solving the subsystem (29) is the same in the
both cases.

Let us turn to an alternative way of solving Sy v = f. If we define the ¢,’s from the first
subsystem (28) and substitute them in the second subsystem, we arrive at the system

My — Mc)v =1, Me = 2421\/{ )2,2"M() | (30)

with respect to v. Since the vector z; has only eight nonzero coefficients, related to vertices
and equal to 1, and the matrices Mg,) have in each row the number of nonzero entries
independent of p, the cost of the matrix Mg is O(R). Therefore, it is sufficient to derive a
sufficiently fast solver for (30), e.g., requiring not more than O(Rp?) arithmetic operations,
in order to provide the opportunity of coming to a fast DD global solver. This task seems
feasible, but in this paper we restrict ourselves only to several remarks. It is easy to note
that the only nonzero off-diagonal entries of the matrix M are those coupling the vertices
of each finite element and that the values of them do not depend on p. Due to this structure
of Mg, the arithmetical cost of elimination of v, from (30) and from the second subsystem
(28) is the same, i.e., O(Rp). Therefore, it is left to solve efficiently only the subsystem for
vy that results from (30). For instance, if the finite element mesh is topologically equivalent
to orthogonal and o = const, this subsystem will be regular with the 27-point stencil and
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some fast solver can most probably be derived. Let us also mention another property of
(30). At sufficiently small sizes of elements, the matrices (M — M) and My, became
spectrally equivalent. This is for the reason that with diminishing of the maximal size h of
finite elements the matrices (M, and M) deteriorate as h and h?, respectively. Therefore,
we can apply PCG to (30) with the preconditioner My, fast solver for which was described
above. However, such sizes of elements can be out of practical interest, in particular, due to
their dependence on p.

4. Fast solvers of the internal and the face problems on the refer-
ence element

4.1. Finite-difference like preconditioner for the reference element stiffness and
mass matrices

We will need preconditioners for 2-d and 3-d reference element stiffness and some other ma-
trices. As a starting point for their derivation, we will introduce tentative finite-difference
like preconditioners. Our final preconditioners are indeed based on the fast solvers for tenta-
tive preconditioners, derived with the use of the finite-difference or finite element (with the
first order elements) analogy.
Finite-difference like preconditioners for the square reference element.
By means of two (p — 1) x (p — 1) matrices

(2 0 -1 )
2 0 -1 0
. . — 1
’D:dlag[ﬂ, A=§
SYM 2 0 -1
2 0
L 2 )

we may introduce the (p — 1) x (p — 1)? matrices
Ar=D(A+D )+(A+D")®D, Er=(A+D ) (A+D).
Lemma 4.1. Let the conditions of the generalized angular quasiuniformity be fulfilled. Then
A <A <Ap, Er<M; <&, (1)
Proof. Inequalities (1) were proved in [16], see also Lemma 4.2 and Remark 5.1 in [22]. O

The preconditioner takes a simpler form, if we rearrange rows and columns in the order,
corresponding to separation of basis polynomials in four groups: 1-st containing L;; with
all 7 and j even, 2-nd — with 7 even and j odd, 3-rd — with ¢ odd and j even and 4-h — with
all 7 and 7 odd. This splits the matrices A1, A;, E; and M; in four independent blocks.
Without loss of generality we may assume p = 2N + 1. After applying these perturbations,
the preconditioners A; and E; take forms

AI = dlag [Ae,ea Ae,m A0,67 Ao,o] 3 EI = dlag [Ee,ea Ee,m Eo,e; Eo,o] 3 (2)
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each with four N? x N? independent blocks

Ap=D. @ (A+D; )+ (A+D;") @Dy,

2= (A+D;") ® (A+D;"), ab=e0, 3)
where
D, = diag[4i?] D, = diag[44® + 4i + 1] , i=1,2,...,N,
2 -1
-2 -t 0
0 -1 2 -1
-1 2

Moreover, blocks of the matrix A; are spectrally equivalent as well as the blocks of =/, e.g.,
for the matrices A = diag[Ace, Ace, Ace, Aee] and E = diag[E, ¢, Be e, Ee e, Eee] We have

A<A; <A, E<E<E. (4)

Therefore, if one has an iterative solver, say, for A.., similar solvers would be applicable
to the other blocks of A;. Alternatively, one may use the preconditioner A with the same

solver for all four blocks. In the both cases, it is sufficient to derive a fast solver for one
block Ac..

Remark 4.1. The reference element internal stiffness matrix Ay and the mass matriz My
have the same pattern of nonzero entries with the matrices A; and Ej, respectively. In
particular, at the pointed out special ordering of unknowns, Ay = diag[A. ., Ape, Ac o, Ao o]
and My = diag[M¢, My, M, ,, M, ,| with the blocks defined similarly to (3), but with
differently defined diagonal and tridiagonal matrices, participating in Kronecker’s products.
For the explicit expressions see [16] and [22].

Finite-difference like preconditioners for the cubic reference element. In
the 3-d case, we assume an ordering of the basis polynomials that is similar to that one de-
scribed for the square reference element. This results in the preconditioner

A =diag[Acee; Aceor Meoes -+ Mooes Mool (5)
with eight independent N3 x N? blocks of evident definitions
Ape =D QA QA +A, D, QA+ A, RA, @D, (6)
where A, = A +D;" and a,b,c = e, 0. Estimates (1) and (4) remain where
A =diag[Acee, Aeees Meerer s Mereres Aeere] (7)

Still further simplifications are possible. For instance, the terms like D, ® ’Db_1 and
D;l ® ’Db_1 in the 2-d stiffness and mass matrices and terms D, ® D, ® Dc_l in the 3-d
stiffness matrices may be omitted at some cost in the condition. Namely, if we replace (6)
by

Apc=D. QARA+ARD, A+ ARARD,, (8)

then
Ar<A;<(1+logp)*'As, A<A;<(1+logp)“'A. (9)
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These estimates follow from Lemma 4.1, (4) and the following inequality (10), see [5],
A <A, < (logp)A. (10)

The preconditioner A served also as a starting point for other slightly different spectrally
equivalent or almost spectrally equivalent preconditioners, more suitable for designing fast
solvers of several specific types. These modified preconditioners are obtained in three ways:
by replacing the coefficients in the finite-difference operator by piecewise constant coefficients,
by omitting the minor terms as in (9) at some cost in the condition and by replacing the
finite-difference matrix by the finite element one, induced by triangular, square or cubic
finite elements. For the discrete problems with the matrices A, A7, now we can use DD like
solvers of [19], [18], multigrid solvers of [5], see also [24] for the case of incomplete elements,
and multiresolution wavelet solvers [6]. Multigrid solvers have been justified only for the
2-d case. In what follows, we use the solver from the last preprint for the main reason that
on its basis we are able to design a fast solver for the face problem by the K-method of
interpolation.

4.2. Multiresolution wavelet solver for the internal Dirichlet problems by Beuchler-
Schneider-Schwab

In order to simplify our notations, in the following we use A, instead of A.. and A... and
similarly for the corresponding blocks of the stiffness and mass matrices of the reference
element.

The representation of the preconditioner A, by the Kronecker products of two matrices,
namely by the stiffness and mass matrices, induced by 1-d bilinear forms, suggests the
following approach to solve of the discrete Dirichlet problems on the reference element.
Suppose that we are able to find a transformation to the basis, in which both matrices
became simultaneously spectrally equivalent to their diagonals uniformly in p. Then, by
the properties of the Kronecker product, we get the transformation of A. to the matrix
spectrally equivalent to its diagonal. Additionally, the matrix, obtained by the backward
transformation of this diagonal, may be used as a preconditioner spectrally equivalent to A..
The computational cost of the preconditioner depends on the cost of the transformation.
The existence of such a multiscale wavelet basis with transformations which are optimal
with respect to the operation count was established in [6]. Here, we very briefly present one
of their results.

For simplicity, it is assumed p = 2N +1 and N +1 = 2%, For each | = 1,2, ..., 1,
we introduce on [0,1] the uniform mesh of the size i, = 27! and the space V;(0,1) of
the continuous piecewise linear functions, vanishing at the ends of the interval (0,1). The
dimension of V;(0,1) is N; = 2! — 1 with N;, = N. Let ¢! € V;(0,1) be the the nodal basis
function for the node z;, so that ¢4(x;) = é;; and V,;(0,1) = span (qﬁi)ﬁl We consider the
matrices

N

A= N (), Ma= N (e )ma) iy (e = [ Pulou(o) da.

We have A;, = A, and it is easy to establish that M = M, is spectrally equivalent to
D_ ! uniformly in N. Now, we may replace the preconditioner for A, by

4 MeAa+rAeM, d=2, a1
T IMRIARA+ARIMBOIA+ARARIM, d=3,
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and from (1), (4) and (10) it follows that
1A < Ap < op(1+logp) A, . (12)

For the reason that M is a finite element matrix, as is A, it is more convenient for the
multiresolution analysis.
The representation of each V; by the sum V; = V;_1 & W,_; results in the decomposition

V=W_.8Wy®..®& Wy, 1

with the notations V = V;, and W_; = V,. By (¥ )iv L’llf’l:_l is denoted the multiscale
wavelet basis, composed of single scale bases (w,lc)k:m,__, ~; - The multiscale wavelet basis is,
evidently, the Riesz basis in V and it induces the matrices

Avaeter = ({5, () )or) o2, ey Muaaer = (W5 030a) 55 010 )

Dl = dla%[((l/)f)'a (wi)/’ >]?2’1l,0l:—1 ’ DO = dl&g[( fa zl'a >]£V:l’ll,0l:fl .
By Q is denoted the transformation matrix from the wavelet basis to the basis (¢)N . If
v and Vyavelet are the vectors of the coefficients of a function from V;(0,1) in the nodal and
wavelet bases, respectively, then Q v = vVyavelet- The result of the multiresolution analysis of
[6], which they used for hp-version preconditioning, may be formulated as follows.

Theorem 4.1. There exist multiresolution wavelet bases such that the matrices A yayeler 0Nd
M avelet are sSimultaneously spectrally equivalent to their diagonals Dy and Dy, respectively,
uniformly in N, and that the transformations Qv and QT Vyayees require O(N) arithmetic
operations.

The next result follows immediately from Theorem 4.1 by the spectral equivalence of the
matrices M and 'D;l uniform in /N, which result, in particular, in the relationship

Anew < A, (14)

and the properties of the Kronecker product.

Theorem 4.2. Let

QTeQN)[Dy @D +D D | 1 (Q®Q), d=2,
Al,=1 (Q"eQ"®Q") Dy @D @D + D @Dy @ D+ (15)
DD @D ] ' (QeQRQ), d=3,

then cond [A, 1 A.] < (1+logp)¢t.

In support of their analysis, [6] reported results of numerical experiments with some
specific wavelet bases, used for preconditioning 2-d reference element stiffness matrix.

4.3. Multiresolution wavelet solver for the face problems

We use here the result of Theorem 4.1 for deriving a fast solver for the face problem. Namely,
similarly with (15) we define a multilevel wavelet preconditioner for the mass matrix of 2-
d reference element, then we use the K-method of interpolation for obtaining the matrix
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equivalent to the quadratic form |- |? /2,F> and then transform this matrix from the wavelet
basis to the initial one.

We consider the mass matrix My for the 2-d reference element. From Lemma 4.1, (4)
and (10), it follows that the matrix

M, = diag [M,, M, M, M,], M. =A®A,
is a sufficiently good preconditioner for My, which satisfies the inequalities
M, < M; < (1 +logp)*My, . (16)
Further, in the same way as Theorem 4.2, it is proved that
M, =< (Q"eQ")D oD (QRQ). (17)

Let us denote the entries of the diagonal matrices Iy and D, via dy; and d, ;, respectively.
The diagonal entries of the matrix DA,e = ]D)o X ]D)l + Dl X ]D)O are dg’lj) = dl,jdo,z’ + dl,idO,j-
Similarly, the diagonal matrix Dy, := ID; ® D; has the diagonal entries dgg-) = did;,;. Now,
we define the diagonal matrix ID;, with the entries

dos o,
dii  di

P = dy (18)

and the preconditioner
800 = dlag [Sm—wa Sm—wa Sm—wa Sn<—w] 3 S,,:}_w = (QT ® QT) ]D)l_/l? (Q 029 Q) . (19)

Theorem 4.3. The inequalities (18) hold with vp1 = 1, Yra < (1 + logp)*2, and therefore
cond [Spy Soo] < (1 + logp)>/2.

Proof. Let us consider any vp € Up, the corresponding vector vp € Up and vg, == (Q®
Q) vr. According to (12),(14),(15), (16) and (17) we have the estimates

(VF,wa]D)MVF,w) < ||UF |0,¢0 < (1 + logp)Z(VF,wa]DMVF,w)a (20)
(VF,UI7 ]D)AVF,w) < |UF‘1,7'0 < (1 + logp) (VF,wa ]D)AVF,w) )

where
Dy = diag [Dase, -, Dasel DA = diag [Dae, ..., Dae] .

For any face Fj, we have o||vr||1/2,7, < (VE,, SooVE, ), and besides oo|| - ||1/2,7, may be defined
by the interpolation beteen || - |lo,7 and || - |1, for the finctions from the space H'(F}),
vanishing on 0F}. Therefore, we obtain the result by the interpolation between inequalities
(20) and the transformation to the initial basis. O

5. Iterative Schur complement and DD algorithms and their com-
plexity
5.1. Schur complement algorithms

First we give a brief summary of the algorithm, based on the components described in the
preceding sections. We assume that the system

SBVB =f
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is solved by the method of PCG with the preconditioner Sz and, therefore, on each PCG it-
eration it is necessary to complete the multiplication S ;'vp =: wp, where the preconditioner
S p was described in Section 3. The sequence of the procedures realizing this multiplication
is the following.

1. Find up = uf from the iteration process
k+1 k -1 k 0
up =uf — 0p 1S5 (SFul — vr), up =0. (1)
2. Find uwy := viy —Swrur and solve the wire basket subsystem Sy wy = upy .

3. Find upy = u'f;’ from the iteration process (1) at vp = —Spywy .

4. For the wire basket and face subvectors of w, set wy, found in 2, and
Wr = up + Upw, respectively.

It is assumed that at solving the wire basket subsystem we produce some fixed number of
iterations, which allow to reduce the relative error in the norm [ - [| g, , e.g., in half.

Theorem 5.1. Let the preconditioner Soy be defined as in Th. 4.8 and let k, = (1+logp)> 7.
Then cond [S5'Sp] < c(1 + logp) with the constant depending only oY) and 6 from the
generalized angular quasiuniformity conditions.

Proof. We restrict the proof to the case of the refernce element Schur complement matrix. To
the general case of hp-discretization, it is expanded by means of assembling and generalized
conditions of angular quasiuniformity. Let Sgg:= diag[Soo, ..., Sog]- The left inequality of

Sk < Skoo < (1+1ogp)’Sk

is the consequence of the Cauchy inequality and Sp, < Sgo. The right one is a direct
consequence of Lemma 5.9 in [27]. Now, on the basis of Proposition 3.2, inequality (16) and
Th. 4.3, we conclude that for ky > 2.75 inequality (6) holds with cp =< 1.

Let us note, that the algorithm, described above, uses the preconditioner, which for the
reference element has the form

o=t I SF]t 0 I C _ Q-1
88 = (CT I) ( 0 S’W> (0 1) ’ C=Srubrw-. 2)

In order to conclude the proof, we turn to the Proposition 1, from which it follows that

1,588 < Sp < 12,585
with v1, 5 =min(y1,r, v1,w) and o p = max(ye,r, Yo,w), Where v r, vi,w are taken from the
inequalities
,rSrit < Sr < Y2,rSrit 4 nwSw < Sw < YowSw .

Standard arguments for the use of the iterative preconditioners from Proposition 3.2 leads

to _
SF,it = SF

Also, we have the inequality

(VW,§WVW) < ||v -7 g,W’ (3)
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the easiest proof of which may be obtained by means of the simple prolongation operator,
used in [9], see Lemma 9. Since the prolongation operator P, satisfies (6), it follows directly
from the cited Lemma and the definition of the matrix §W. If we take into account the
definition of the preconditioner Sy, inequalities (3) and (13) mean that vy w > 1/(1 + p)
and 72w < 1, which complets the proof. O

According to Theorems 4.1 and 5.1, the total arithmetical cost of the preconditioner? Sg
is O((1 + logp)>2°p?).

Another Schur complement solver may be based on the preconditioner, having for the
reference element the form

5._(1 0\(8 0)(1C
B=\c” 1)\o0o Sy/\0 1)
with P, = Ijy_, 5 defined by the expressions (5),(20) and (21).

Theorem 5.2. Let the preconditioner Sy be defined as in Th. 4.3, and the prolongation
operators for finite elements be P, = Iy_p. Then cond [85'Sp] < c(1 + logp)®® with
the constant depending only on oY) and 0 from the generalized angular quasiuniformity
conditions.

Proof. The proof follows the same lines as the one of Theorem 5.1. However, instead of (3)
we have now

(v, Swvw) < (1 +logp)|lv = 7|3 - (4)

For the proof of (4), one may use the results of [9]. It may be shown that our prolongation,
though different from the one used in this paper, is close to it and is bounded in the same
energy norm uniformly in p. Then, Lemma 9 of [9] may be applied to estimate Iy 5. O

5.2. DD algorithm with the inexact solvers for basic components

The drawback of the Schur complement iterative method presented above is that it assumes
the elimination of the internal unknowns and the multiplication by the Schur complement
Sp at each iteration. The both may be rather expensive. The matrix &g may be almost
completely filled in even in the case on the square finite element mesh and, therefore, mul-
tiplication of it by a vector may require O(R?p*) operations.

Multiplication by the global stiffness matrix may be the most costly operation of a DD
algorithm. In other to avoid additional costly multiplications by the internal element stiffness
matrices in operations of iterative restriction to and prolongation from the interface, we
construct DD preconditioner completely on the basis of the reference element.

Since we assume that the DD preconditioner is defined by assembly of the properly scaled
preconditioners and prolongation operators for the reference element, again it is sufficient to
describe the master preconditioner for the reference element. It is defined in the factorized

form
N6

2Let us remember that we do not include in the cost of preconditioning operations the multiplications by
matrices of the systems to be solved.
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with the simplest choice By = A, as in Th. 4.2 and Bg = g'B as in Th. 5.2. However,
since we define the prolongation operator Py, _,;y by the iterative process, it is necessary to
adjust the preconditioners B; and Bp appropriately.

Proposition 5.1 Let us assume that the spectral equivalence inequilities vy 1 Ar < Ar <
v1.2A; are valid with positive spectral equivalence constants. Further, we also suppose that,
for any vp € Ug, the prolongation u = Py,_,yvp is defined in such a way that up = vp
and the subvector u; = ulf 1s found from the iteration process

uft' =uf — oy A7 (Al — Arpvp), uj =0, (6)

with Chebyshev iteration parameters o, for some fized number [, of iterations. Then at
lo, > c(1+1logp))/(logo™"), where o= (1 —0)/(1 +0), 0 = \/v1.1/712, the inequality

|IPussuvella < cllvall sy (7)

holds with the constant c, independent of p.
Let us note that, the inequality (7) is equivalent to

|u Lo < CP|UB|1/276'TO (8)

where u <+ u and v <> vp. If vp is a constant vector, then A;gvp = 0 and u¥ = 0 for
k> 1.

Proof. The proof is simpler than the proof of Proposition 3.2, but deals with different norms.
Let the vector ¢; be the solution of the system A;¢p; = A;pvp and ¢ has for the subvectors
¢; and vg. We have the convergence estimate

luf — @il a, < llesll a, 9)
from which follows
[u* —lla < F(lella + Vel az) u* =uj+vg, (10)

Simple estimates, Markov’s inequality and trace continuation theorems in polynomial spaces,
equipped with Sobolev’s norms, see [3] and [4], allow us to obtain

IVl ap = [v8] 100 < VBl 1000 < P*[VBl1/207 < PlIVElls5 - (11)

and
lella = llvellss < [val1/2,0n (12)

Combining (10),(11) and (12), we get

[ulla < 1+ "1+ p7)llvellss,,
from where the proposition immediately follows. ]
Corollary 5.1. Let A; = A, ., then |y < (1 + logp)?.

Formally, the prolongation operator, defined in Proposition 5.1 and Corollary 5.1, is

lo
-G _ _ _ _
Pur=( 1 )0 G=AiAm, A =-[[0- oAl A)A7 . (3
k=1
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Assuming that the matrix G is defined according to (13), it is reasonable to set By = Ay ;.
Let the master preconditioner (5) be given. By K we denote the DD preconditioner for
the global stiffness matrix K and may define it in the similar to (5) factorized form or by
the equivalent formula
K'=Kf+Pu,vS;' P _u- (14)

For the matrix K;, we take the block diagonal matrix KC; = diag[KLT]Zil with each block
K1, = h,0,B;. The prolongation matrix Py,_,;y may be assumed such, that its restriction
to each element (at the local ordering of the degrees of freedom of an element corresponding
to the ordering of degrees of freedom of the reference element) is Py, _,y. We set Bgp = Sp,
assuming the way of assembling of the matrix &g which was described earlier.

Theorem 5.3. Let the DD preconditioner K is assembled from the master preconditioner
(5) with the prolongation operator (13), By = Arix and Bp = 8. Then cond [K'K] <
c(1 +logp)>®

Proof. Let us consider the inequalities
NMASALRA, 71 A< A <72A1, 78,18 < S < 782SE (15)

The proof of the fact that v; = min(y71,7s,1) and v = max(yr,2,7vp,2) with the use of
Proposition 5.1 and Corollary 5.1 is the same as of the Proposition 3.1. Similarly to Propo-
sition 5.1, it may be shown that 7 are constants, whereas g have been estimated in the
proof of Th. 5.2. Therefore, cond [A™'A] < ¢(1 +1logp)®®. The proof of the theorem follows
by assembling and use of the generalized conditions of the angular quasiuniformity. 0

The asymptotical cost of the presented DD preconditioner is (14log p)'"?[p*R+pR?]| with
the terms in the square brackets corresponding to solving the internal and edge problems,
respectively.

In closing, let us underline two features of the presented algorithms. The main bulk
of computations may be done in parallel, e.g., for all interiors of finite elements, faces,
edges and vertex problem. If for the Dirichlet problems on finite elements secondary DD-
type or wavelet based multilevel inexact solvers are implemented, a deeper parallelization
is easily arranged. In part due to this feature, our DD solvers are convenient for adaptive
computations. This is for the reason that they are fully applicable, when for the interior of
each finite element, each face and edge the orders the polynomial subspaces (on the respective
reference configuration) are different.
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