Symbolic Differential Elimination for Symmetry
Analysis

E. Hillgarter, R. Hemmecke, G. Landsmann, F. Winkler
Research Institute for Symbolic Computation
Johannes Kepler University
A-4040 Linz, Austria

Abstract

Differential problems are ubiquitous in mathematical modeling of phys-
ical and scientific problems. Algebraic analysis of differential systems can
help in determining qualitative and quantitative properties of solutions
of such systems. We describe several algebraic methods for investigating
differential systems.

1 Introduction

The idea of an algebraic approach to differential equations (DEs) has a long
history. In the 19th century Lie initiated the investigation of transformations,
which leave a given differential equation invariant. Such transformations are
commonly known as Lie symmetries. They form a group, a so-called Lie group.
The basic idea here is to find a group of symmetries of a differential equations
and then use this group to reduce the order or the number of variables appearing
in the equation. Lie discovered that the knowledge of a one-parameter group of
symmetries of an ordinary differential equation of order n allows us to reduce the
problem of solving this equation to that of solving a new differential equation
of order n — 1 and integrating.

From the Riquier-Janet theory of PDEs at the beginning of the 20th century
an algorithm emerged, the Janet bases algorithm, which is strikingly similar to
the method of Grébner bases for generating canonical systems for algebraic
ideals as developed by Buchberger. By computing the Janet basis for the coeffi-
cients of the Lie symmetries of a differential equation, the determining system of
these coefficients can be triangularized and ultimately solved. In fact, for linear
systems of DEs we can directly apply Grobner bases.

In symbolic treatment of DEs the ultimate goal should be a symbolic solu-
tion. However, that this is rarely achieved. But it is also of great importance
to decide whether a system of DEs is solvable. If there are solutions, then we
can derive differential systems in triangular form such that the solutions of the
original system are the (non-singular) solutions of the output system. Deriving
symmetries helps in verifying numerical schemes for solution approximation.
In case the given system consists of differential algebraic equations (DAEs) we
may get a complete overview of the algebraic relations which the solutions must
satisfy.



The importance of computer algebra tools in this field is enormous. It can
be demonstrated by comparing the impact made by symmetry analysis and
differential Galois theory. The latter one is a hardly known theory studied by
a few pure mathematicians. The former remained in the same state for many
decades following Lie’s original work. The main reason for this historical factum
is definitely the tedious determination of the symmetry algebra.

As soon as computer algebra systems emerged, the first packages to set up at
least the determining equations were written. An effective symbolic treatment of
differential problems depends crucially on algorithms in differential elimination
theory. While the algebraic theory of elimination is well developed, for differ-
ential ideals, there are still many open problems. For instance, the membership
problem or the ideal inclusion problems for finitely generated differential ideals
are still not solved (compare [2]).

The aim of this paper is the treatment of some aspects of differential elim-
ination theory: differential Grobner bases, involutive bases, characteristic sets,
symmetry analysis.

2 Group Analysis of DEs

In this section, we present the method of group analysis of DEs by demonstrating
its use in simplifying and integrating ODEs and PDEs.

We first introduce basic notions for symmetries of ODEs. These concepts
extend to the case of partial differential equations, too.

2.1 Symmetries of ODEs

We introduce transformation groups and their differential invariants, which de-
termine the invariant equations corresponding to the group. The differential
invariants are solutions of a system of PDEs, called system of differential in-
variants.

2.1.1 Transformation Groups of Differential Equations

Introducing new variables into a given DE is a widely used method in order
to facilitate the solution process. Usually this is done in an ad hoc manner
without guaranteed success. In particular, there is no criterion to decide whether
a certain class of transformations will lead to an integrable equation or not. A
critical examination of these methods was the starting point for Lie’s symmetry
analysis. We will now have a look on the behavior of DEs under special kind of
transformations.

Let an ODE of order n be given as

w(x7y7yl7"'7y(n)) =0' (1)
The general solution of such an equation is a set of curves in the z-y-plane
depending on n parameters C,...,C,, given by

(-)(x?y’Cla"'an):O‘ (2)



Invertible analytic transformations between two planes with coordinates (z,y)
and (u,v), respectively, that are of the form

u:o(x,y), v Zp(-T,y), (3)

are called point transformations. We will encounter them in the form of one-
parameter groups of point transformations

u=o(x,y,e), v=px,vy,e). (4)

Here the real parameter € ranges over an open interval including 0, such that for
any fixed value of €, equation (4) represents a point transformation. In addition,
there exists a real group composition ® such that

a?":a(x,y,s), g:p(x,y,s), iza(i’vgaé)7 ?Zp(i’,g,é)

Group transformations of this kind may be reparametrized such that we have
®(e,8) = € + &, and such that e = 0 represents the identity element.

An equation (1) is said to be invariant under the change of variables (3)
where v = wv(u), if it retains its form under this transformation, i.e. if the
functional dependence of the transformed equation on w and v is the same as
in the original equation (1). Such a transformation is called a symmetry of the
DE. The same transformation acts on the curves (2). If it is a symmetry, the
functional dependence of the transformed curves of 4 and v must be the same as
in (2). This is not necessarily true for the parameters C1,...,C, because they
do not occur in the DE itself. This means, the entirety of curves described by
the two equations is the same, to any fixed values for the constants however may
correspond a different curve in either set. In other words the solution curves are
permuted among themselves by a symmetry transformation. It is fairly obvious
that all symmetry transformations of a given DE form a group, the symmetry
group of that equation.

2.1.2 Infinitesimal Generators and Prolongations

Let a curve in the (x-y)-plane described by y = f(z) be transformed under a
point transformation of the form (3) into v = g(u). Now the question arises
how the derivative 3y’ = % corresponds to v/ = % under this transformation.

A simple calculation leads to the first prolongation

/_dv_/’z'i'pyyl_ '
VS T et oy = x(z,9,9).

Note that the knowledge of (x,y,y’) and the equations of the point transfor-
mation (3) already determine v’ uniquely, the knowledge of the equation of the
curve is not required. This may be expressed by saying that the line element
(z,y,y") is transformed into the line element (u,v,v") under the action of a point
transformation. Similarly, the transformation law for derivatives of second order
is obtained as . , "

g Xet ey gy

du Oy +oyy’




For later applications it would be useful to express the second derivative v
explicitly in terms of o and p. We do not give this more lengthy formula here,
but instead provide the prolongation formulas for one-parameter groups of point
transformations of the form

u=o0(2,9,¢), v=pye) ()

Here the transformation properties of the derivatives may be expressed in terms
of the prolongation of the corresponding infinitesimal generator

X = &(x,y)0z +n(z,y)0y, (6)
where

d d
f(w,y) = EO—('Z’:U?E) ) 77(937?4) = %ﬂ(l’,y,&')

e=0 e=0

The n-th prolongation of (6) is now defined in terms of the operator of total
differentiation w.r.t. x, denoted by D = 0, + 2211 y(k)(?y(k_l) as

X(n) =X+ Z C(k) ay("’)7 where
k=1

¢ =D(n) - y'D(E),

¢® = pED)y —yBDE) for k=2,3,...
We give the two lowest (’s explicitly:

C(l) =Nz + (ny - gz)yl - gyylza

C(z) = Nzz + (277xy - 'gzz)yl + (nyy - 25903/)?/,2
- fyyyls + (ny - 2§w)y” - 3§yy1y”'

These two innocent looking expressions should not distract from the fact that
the number of terms in ¢(*) grows roughly as 2¥. But ¢(*) is at least linear and
homogeneous in £(z,y) and n(z,y) and its derivatives up to order k. For & > 1,
y®) occurs linearly and y’ occurs with power k + 1 in ¢(®),

2.1.3 Differential Invariants of Point Transformations

Any r-parameter Lie transformation group may be represented by r infinitesimal
generators
X'i :gza:v +niay7 i:l,...,T. (7)

Any ordinary DE of order m with this r-parameter Lie group as symmetry group
has to vanish under all m-th prolongations of the generators (7) and vice versa,
i.e. this DE & = &(z,y,y’,v",...) is a solution of the following system of linear
homogeneous first order partial differential equations:

x™e=0, i=1,...,r (8)



The system (8) is called system of differential invariants, its fundamental solu-
tions are called the differential invariants of the respective Lie group. Lie has
discussed these systems in detail, for a recent presentation see [20].

The group property guarantees that (8) is a complete system for & with
m+2—r solutions. It may be brought into Jacobian normal form, an analogon of
the triangular form for matrices, before attempting to solve it. The dependencies
of the fundamental solutions may then be chosen such that

q>1 = q)1($,y7yla .- '7y(r_1))7
By = Bo(2,9,9 ..,y ™),

Brrts = B pya(@, 9,9,y ™).
The invariants are linear in the highest derivative.

Example: We consider the following transformation group that acts on the
(z,y)-plane which is represented by

g ={0;,220; + y6y,x28£ + zy0y}.

Prolongation of its three generators up to the third order yields the following
system of differential invariants (8):

®, =0,
229, +y®, — yl(ﬁy/ - 3y”(§yu - 5y”l(1>ylll =0,
228, + 2y®, — (y'z —y)®, — 3y 2Py — (5y""x + 3y") @, = 0.

Using some strategy for solving systems of linear PDEs, for example, iterated
narrowing transformations or elimination, we may arrive at the following two
fundamental solutions:

4’1 = y//y37 (1)2 = y///y5 + 3y//y/y4.
The DEs of order not higher than three that have the respective Lie group
g as symmetry group have the general form w(®;,®,) for some differentiable
function w.

2.2 Symmetries of PDEs

Finding differential invariants is accomplished in analogy to the ordinary case:
the group generators have to be prolongated to the desired order; the prolon-
gations are then interpreted as a system of linear PDEs whose fundamental
solutions provide a basis of differential invariants.

We introduced the prolongation formulas that apply to the case of partial
differential equations with one dependent variable u and n independent variables
T =21,...,2, (compare [1]). Partial derivatives d;,, - -- 0y, u arerepresented by
formal variables u;, ..., , called differential indeterminates. They are symmetric
in their indices. The differential variables of order k are denoted by u(*). We
also use the convention to sum over the range of multiply occurring indices in

products, e.g. (Di&;)u; = 37, (Di&j)u;.



The one-parameter Lie group of transformations in the parameter ¢
zf = Xi(z,u;e) = 2; + e&i(w,u) + O(e?), 9)
u* =U(x,u;e) = u+ en(z,u) + 0(?), (10)
i=1,2,...,n, acting on (x,u)-space has as its infinitesimal generator
X = &(x,u)04; +n(z,u)0y.
The k-th extension of (9), (10), given by
zf = Xi(z,u;e) = ; + &z, u) + O(e?),
u* =U(z,u;¢) = u +en(z,u) + O(?),

*

— 1 k).
Wisin. dp = Ui1i2...ik (‘T7u7u( )7" '7“’( )75)

= UWUiyig...1 + En(k) (.’L',U, U(l), e 7u(k)) + 0(62)7

12 i,
wherei =1,2,...,nand ¢, =1,2,...,nforl =1,2,...,k with k = 1,2,..., has

as its k-th extended infinitesimal generator

X® = ¢ (z,u)ds, +n(z, ) + 0 (@, u,u®)dy, + ...

i

+ nz(fi)g...ik Ouiyig.. iy
k = 1,2,...; explicit formulas for the extended infinitesimals {n*)} are given
recursively by
Y = Din— (Di&)uy, i=1,2,...n, (11)
Mists..in = Diuliia iy = (Din&)uizia vy (12)

u=12,...,nforl=1,2,...,k with k > 2.

3 Examples

The two following examples demonstating the use of symmetries on ODEs are
taken from [9].

3.1 A First order ODE

We demonstrate how to reduce the order of a first-order ODE with the help
of a symmetry. This results in integration. We use the method of canonical
coordinates.

Example (Canonical Coordinates) We consider the Riccati equation

2
y’+y2—E=0. (13)



It is invariant under the group of transformations

T=wxe", y=ye© (¥ =y ™). (14)
Tts infinitesimals (%f, %y) —0 = (z, —y) determine the infinitesimal symmetry
X =20, —y0,.

Canonical coordinates t,u for (13) are obtained by solving X (¢) = 1, X (u) =0
and have the form
t=Inlz|, u=uzy.
In these coordinates, the inhomogeneous stretchings (14) are replaced by the
translation group
t=t+e, Uu=u, UW=u
and (13) takes the integrable form

v +ut—u—2=0. (15)

Geometrically, the frame of (15) is now a “straightened out” parabolic cylinder.
In general, the frame of a first order ODE y' = f(z,y) is the surface in the space
of three independent variables, z,y, and p, given by p = f(z,v).

frame of Riccati’s equation and its transform

Analytically, we note that (15) does not depend on ¢ explicitly. Integrating
(15) gives
u+1
u —

In

‘ — 3t = const.,

provided that v+ 1 # 0 and u — 2 # 0. Substituting the expressions for ¢ and u
in terms of z and y, one arrives at the solution

223 + C
=———,  (C = const.,
Y z(z3 - C)’
provided that xy — 2 # 0 and xzy + 1 # 0. In case these expressions are zero, one
arrives at y = 2 and y = —1, respectively.

3.2 A Second Order ODE

If a second order ODE y"” = f(z,y,y') admits one symmetry, its order may be
reduced by one. In case it admits two symmetries, integration can be achieved.
Reduction of order and successive integration are applicable to higher order
equations as well. The restriction to second order is essential, however, for the
method of integration using canonical forms of two-dimensional Lie algebras,
see [9]. These canonical forms and their invariant second-order equations are
presented in the following table. For X; = &0, + 1:;0y, we denote the wedge-
product of X1, X2 by X; VX5 := &imp — Eoamy.



Type L, structure Basis of Ly Invariant
[X17X2] | X1 VX2 X1 | X2 Equation
T 0 #0 9 9y y"' = fy)
II 0 0 Oy 20y y" = f(x)
II1 X, #0 Oy | 20, +y9, | y" =1/
1V X1 0 9y Yoy y' = fla)y'

Based on this classification, we sketch Lie’s integration algorithm for inte-
grating second-order ODEs that admit at a two-dimensional Lie algebra.

[ Step [ Action | Result |

1. Compute admitted Lie Algebra L,. basis X1, ..., X,.
2. | If r =2 go to step 3. If r > 2 distinguish any | basis X7, X for Ls.
2-dimensional subalgebra Ly of L,.

3. Determine type of Ly according to table; even- | canonical form.
tually choose a new basis X, XJ.

4. Go over to canonical variables z,y. Rewrite | change of variables.
equation in these variables and integrate it.

5. Rewrite solution in terms of original variables. | solution.

Example (Lie’s integration algorithm) We consider the second order ODE

!
1
Y= (16)
() ry
Step 1. The calculation of its admissible Lie algebra is demonstrated in Subsec-
tion 4, yielding two linearly independent operators.
X; = 228, + 299, Xz =20, + 50, (17)

According to the algorithm, we advance directly to the third step.
Step 3. To determine the type of the Lie algebra, we consider

X1, X,] = _ Ty
[X1,Xo] = —Xq, X1VX2——T7£0~

After merely changing the sign of X5, the basis has exactly the structure of type
II7 in the canonical form table.

Step 4. To determine an integrating change of variables, we first introduce canon-
ical variables for X as the solutions of X;(¢) = 1 and X;(u) = 0. They are given
by
1
t=2, w=—=,
x x

transforming the operators to
t
X1 = 0y, Xo = 5&5 + u0y.

This is basically still type I11, the factor % in X5 does not hinder integration.
Excluding the solution y = Kz, the equation written in the new variables is

1
ull + t_2ul2 — 0.



Integrating once, we get v’ = ¢/(C1t — 1). Hence

2
u=—%+Cf0r01=0,or
t 1
u:C_1+C_121n|Clt_1|+02 for C; #0.

Step 5. The solutions in the original variables are then

y=Kz, y==xv2z+ Czx?
0=C1y+02x+a:1n‘01% —1‘ + C2.

3.3 Two Second Order PDEs

In this subsection we present the calculation of symmetries and their use in
finding invariant solutions of second order PDEs. The following two examples
can be found in [1].

3.3.1 The Heat Equation

The heat equation
Zgp — 2y =0 (18)

is an example of a second order PDE by which we demonstrate the computation
of symmetry generators and their use in finding invariant solutions. In analogy
to Subsection 2.1.3, a necessary and sufficient condition for an infinitesimal
generator

X =& (z,y,2)0; +£2($7yvz)ay+n(xvyaz)az (19)

to be admitted by (18) is
X (2, — 2,) = 0mod 2,4 = 2y, (20)

where we replace any occurrence of z;, by z, after application of the operator
X @) The operator X is the second order prolongation of X and given by
X = 600: + &0y + 00 + 01 0s, + 150, + 005, + 0130, 0530

yy )
where ngl), nél), nﬁ), ng), ng) are defined as in subsection 2.1.3. The determining
equation for (18) is
nﬁ) — nél) =0 mod 2zz = 2. (21)

We treat (21) as ng) — n:(,l) = 0, where every occurrence of z, is replaced by
zy. This equation is polynomial in 2y, 2y, 2z¢, Zzy, Zyy, and since &, &2, n only
depend on z,y,z, we may equate the coefficients of 2y, 2y, 22z, 2gy, 2yy (and
their powers) in (20) to zero. The result is an overdetermined system of linear
homogeneous equations in &, £, and their partial derivatives up to order two,
called determining system.

The procedure outlined above holds in general. We demonstarte how to solve
such a system in the next example. The solution gives the Lie algebra spanned



by the following six generators, each of which corresponds to a one-parameter
group:

X, Zaxv Xo =6y7 X3=xaz+2yay7
X4 = 4xyo; + 4y28y — (2% +29)20., X5 =2y0, —1220,, Xg¢=20,.

Let us consider the infinitesimal generator X4, which corresponds to the
parameter c¢;. The one-parameter Lie group of transformations

i’(m7y7z76)7 g(x7y7z76)7 Z(x7y7z7e) (22)

corresponding to Xy = 4zyd, + 4y?8, — (2% + 2y)2z0, is obtained by solving the
initial value problem

(2,7,2)[e =0] = (x,y,2) (23)
for the following first order system of ODEs:

dz
— = 4Ty 24
= = 42, (24)
dy _o
2 =4 2
de vo (25)
dz N
= = (2% +29)z. 2
=@+ 23 (26)

The solution of (25) is § = 724, and by (23) we obtain

_ _ Y
§(z,y,2,€) = [~ iy (27)
By this and (24) we get T = ﬁ, and by (23) we obtain
x
T = . 2
a2, = g (28)

Similarly, by (28, 27, 26) and (23) we obtain

2

Z2(z,y,2,€) = 2¢/1 — deyexp (—1 ix4€y) . (29)

Every invariant solution z = ®(z,y) of (18) corresponding to X, satisfies

X4(z — ®(x,y)) = 0 when z — ®(x,y),

i.e.

0d 0P
doy— + 4y° — = —(2° + 2y)0. 30
Woy tW 5, (2% +2y) (30)
We solve (30) by solving the corresponding characteristic equation
dr  dy dz

doy 42 T -2 +2)2
which has the two invariants

z and z\/gjeIQ/‘ly.
Y

10



The solution of (18) is now defined by the invariant form
2 ZT
e = 05,

or, in explicit form,

2= B(z,y) = %e-wz/‘%(o, (31)

where ( = 7 is the similarity variable. Substitution of (31) into (18) leads to
¢"(¢) = 0. Hence, invariant solutions of (18) resulting from X4 are of the form

1 2
z=®(x,y) = ﬁe_w /4y{C’1 + C’gg}.

For any solution z = ®(z,y) of (18), that is not invariant under X4, we find a
one-parameter family of solutions z = ¢(x,y, €) generated by X,: Let

_ T
x*zl’(x7y7z76):1_46y7
y* =7(z,y,2,€) Y
B 1—4ey
By z(-,-,-,—€) we denote the third component of the inverse transformation

corresponding to X4. Then z = ¢(x,y,€) = Z(x*,y*, z*, —€) =
T Y 1 ex?
( )

d .
1—4ey’1 —4ey)\/1 —dey exp(l — 4ey

3.3.2 Wave Equation for an Inhomogeneous Medium

We consider the wave equation for a variable wave speed c¢(x):
Ryy = C(x)szz- (32)

It is a linear PDE and hence (see [16, Sec. 27]) can only admit infinitesimal
generators of the form

X = 61(-’5, y)ar + £2(l’, y)ay + f($7 y)zaz

In analogy to the previous example we obtain the invariance condition
2 = c(@)2n'? + 20(x)c ()€1 200 when (32).

The resulting determining system is

(£1)y — c(2)*(&2)z = 0, (33)
c(2)[(&2)y — (€1)a] + ' (@)61 =0, (34)
(&2)yy — c(@)*(€2)ez — 2f, = 0, (35)
(€1)yy + c(@)*[2fz = (€1)2e] = O, (36)
fyy — c(x)? frz = 0. (37)

11



Solving (33) for (&), and (34) for (£2), and setting (£2)zy = (&2)yr we find

(€1)ax = (&1)yy/c(2)® = (&1H(z))s = 0, (38)
where H(x) = ¢'(x)/c(z). Solving (38) and (36) leads to

Flo.) = SH@E(9) + S() (39)

where S(y) is an arbitrary function of y. Substituting (39) into (35) and then
solving (33) for (£1), and (34) for (&), and setting (£1)zy = (€1)ye, We find that
S(y) = const = s, so that f = $H& + s. Substituting f in (37) and using (36)
we get H"&; + 2H' (&), + H(H&), = 0 or, equivalently,
[(2H' + H?)(&)%]. = 0.
We now only consider the case 2H' + H2 = 0. Then
c(z) = (Az + B)?,

where A, B are arbitrary constants. Then H(r) = = + 5. For any solution
& (z,y) of equation (38), one finds that &(z,y), f(z,y) solving (33-37) are
given by:

2(z,) /[51 ~ HEdy,

_ A§1 (xa y)
Hew) =2
So {&1,&2, f} determine a non-trivial infinite-parameter Lie group for

If A # 0 this equation can be transformed to the wave equation
Zirg =0
by the point transformation

= (Az + B) ! + Ay,

The general solution of PDE (40) is then
z = (Az + B)[F(z) + G(7)],

where F, G are twice differentiable functions.

3.4 Literature and Implementations

The most complete work on group analysis of ordinary differential equations
is still [12]. A very broad introduction and comprehensive reference for group
analysis of differential equations in general is [8]. In handbook style, this series
presents newly developed theoretical and computational methods, meeting the
needs of the applied reader as well as those of the researcher. In Chapter 13,
14 in volume 3, the reader finds an account on symbolic software for calculating
symmetries by Hereman. The following table is taken from [6].

12



Scope of Lie symmetry programs

Name System Developer(s) Point | Gen. | Non- Solves

‘ ‘ class. | Det. Eqs.
CRACK REDUCE Wolf & Brand - - - Yes
DELiA Pascal Bocharov et al. Yes Yes No Yes
DIFFGROB2 Maple Mansfield - - - Reduction
DIMSYM REDUCE Sherring Yes Yes No Yes
LIE REDUCE Eliseev et al. Yes Yes No No
LIE muMATH Head Yes Yes Yes Yes
Lie Mathematica | Baumann Yes No Yes Yes
LieBaecklund Mathematica | Baumann No Yes No Interactive
LIEDF/INFSYM | REDUCE Gragert & Yes Yes No Interactive
LIEPDE REDUCE ‘Wolf & Brand Yes Yes No Yes
Liesymm Maple Carminati et al. Yes No No Interactive
MathSym Mathematica | Herod Yes No Yes Reduction
NUSY REDUCE Nucci Yes Yes Yes Interactive
PDELIE MACSYMA Vafeades Yes Yes No Yes
SPDE REDUCE Schwarz Yes No No Yes
SYMCAL Maple/ Reid & Wittkopf - - - Reduction

MACSYMA
SYM_DE MACSYMA Steinberg Yes No No Partially
symgroup.c Mathematica | Bérubé & Yes No No No
de Montigny

SYMMGRP.MAX | MACSYMA Champagne et al. | Yes No Yes | Interactive
SYMSIZE REDUCE Schwarz — — — Reduction

The last four columns in this table indicate the scope of the programs: point
symmetries, generalized symmetries, non-classical symmetries and whether the
determining system can be solved automatically. Recent MAPLE programs for
generating classical symmetries are DESOLV by Carminati and Vu [3], RIF by
Reid and Wittkopf and SYMMETRIE by Hickman.

Finally, some text books for the more applied reader are [22, 23]. At RISC,
the first author contributed to the symmetry classification problem for a special
class of PDEs [7]. This work was inspired by Fritz Schwarz, whose expertise in
the algorithmic aspects of the field is reflected in [20].

4 Differential Elimination

Several methods in polynomial elimination theory can be reformulated to also
apply to ideals of differential polynomials, or they have first been defined for
differential polynomials but have found successful application to algebraic poly-
nomials.

Differential Grébner bases appeared first in [4] with further developments
in [14] and [13]. Unfortunately, differential Grobner bases are generally infinite,
so they do not provide a general solution of the differential ideal membership
problem. It is even known that the general membership problem is undecidable
[5]. If, however, a finite differential Grobner basis is known, ideal membership
can be tested effectively. Carré-Ferro could show that differential ideals that are
generated by finitely many linear differential polynomials have a finite differen-
tial Grobner basis with respect to an orderly ranking.

For linear PDEs with polynomial coefficients it is also possible to use an
extension of the ordinary polynomial Grébner bases theory to Weyl algebras in
order to simplify overdetermined systems. Here the system is saturated by all
integrability conditions.

Take, for example, the equation (16). In order to determine the Lie symme-
try algebra, one starts with undetermined functions &(z,y) and n(z,y) for the

13



infinitesimal generator
X =80, +ndy

and first sets up the determining system, as described, for example, in [15].
Basically £ and ) have to satisfy an equation (identically for all x and y satisfying
(16)) that is obtained by applying the second prolongation X of X to the
original equation (16). Equating coefficients of higher order derivatives leads to
the following equations for £ and 7.

0%¢
"
& ¢ ¢
20 9 _ 9098 _
oy? 2y Oxdy 28y 0
& ¢ 0¢ 0§
3 om 30°¢ 0§ 298 _
e 0zdy a2 Vo +3y Ay +2an =0

Y
&% ¢ 01 n
2,2 2
Y sty - 5 —xy— —yE—an=20
y oz? yax ox yay ye—an
This is a system of linear PDEs. A computation of a Grébner basis (with re-
spect to an appropriate elimination ranking) in the algebra of linear differential
operators leads to the triangular system

971 an
2 21 _ — =
E+2 20y 2xay

which is much easier to solve than the original system of determining equations.
As a general solution we get

¢ = C12? + 2Cox, n=(Ciz + Ca)y

0

from which the independent operators in (17) are derived.
Usually, the system of determining equations contains a huge number of
equations. Take, for example, the Boussinesq equation

0%u u 0%u 2+ 0tu 0
ot? ox? ozt
For this fourth order equation we set up the equations in order to determine the
coefficients &;, &5, and 7 of the general symmetry generator

X =& (z,t,u)0p + &a(z,t,u)0: + n(z,t,u)0,.

In analogy to the previous example we have to compute the fourth prolongation
of X. It leads to a system of 47 equations which can be generated automatically,
for example, by the Maple package DESOLV_R5 by K. T. Vu and J. Carminati
(cf. [3]) in the following way.
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read ("Desolv_r5"):

infolevel[gendef] := 10:

bq := D[1,1,1,1]1(w) (x,t) + D[1]1(u) (x,t)"2 +
u(x,t)*D[1,1] (u) (x,t) + D[2,2] (u) (x,t);

deteqgs:=gendef ([bq], [ul, [x,t]):

nops (deteqs[1]);

The package immediately applies some simplifications to reduce the number of
equations to 12 of order 4. The question arises whether or not this system is
consistent, i.e., whether there are solutions at all. In the linear case, Grébner
bases are one tool to decide this problem. The computation of a Grobner basis
of the determining equations of the Boussinesq equation with respect to an
appropriate ranking leads to an easily solvable system of 10 equations of order
2. We find that the symmetry algebra is spanned by the three elements

v = Oy Vg = O v3 = 20 + 2t0; — 2u0,.

Grobner bases are not the only tool for decisions and computations in dif-
ferential elimination theory. The theory of involutive bases has its foundation
in the theory of PDEs given by Riquier [18] and Janet [10, 11] at the beginning
of the 20th century. From the observation that a closed form solution of any
system of partial differential equations may only be obtained for exceptional
cases they focused their study to restricted questions of whether a solution ex-
ists at all or how one could find its degree of arbitrariness. Their constructive
approach to algebraic analysis of PDEs was later followed by Thomas [24] and
more recently by Pommaret [17]. The main idea of the approach is rewriting the
initial differential system into another, so-called involutive form so that all its
integrability conditions are satisfied. In contrast to differential Grobner bases,
involutive bases are finite. Since an involutive basis has all integrability condi-
tions included it is possible to compute a Taylor series expansion of an analytic
solution in a straightforward way. From an involutive basis one can immediately
read off the degree of arbitrariness of the solution, cf. [21].

Characteristic sets are due to Ritt [19] and have further been adapted to
algebraic polynomials by Wu [25]. The main idea is to transform the equations
into triangular form in such a way that the solutions stay the same. However,
the ideal is not preserved in general, multiplicities of solutions can change.

5 Conclusion

As we have seen above, current computer algebra techniques provide a computa-
tional algebraic approach to the analysis of systems of differential equations and
sometimes also to their solution. But despite all the success of symbolic methods
in differential equations (Lie symmetries, differential Galois theory, Janet bases,
differential Grobner bases, etc.), these theories are not and probably never will
be able to solve the majority of differential problems in engineering. However,
with further research into this area we might be able to tackle simplified prob-
lems. Toy models that can be solved analytically are important for obtaining a
deeper understanding of the underlying structures. A deeper understanding of
such simplified problems may well lead to more efficient numerical algorithms
for large problems.
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