A new iterative regularization method using an
equation of Hamilton-Jacobi type

STEFAN KINDERMANN*

Institut fiir Industriemathematik, Johannes-Kepler-Universitat,
A-4040 Linz, Austria

Abstract. Starting from regularization for curve and surface representation we
derive an evolution equation of Hamilton-Jacobi type for the solution of ill-posed prob-
lems. The discrete version of this equation defines an iteration which incorporates both
the Landweber iteration and the level set method of Santosa as a special case. We apply
this method to linear integral equations of the first kind in one and two dimensions,
and to a nonlinear parameter identification problem. The numerical results indicate
that this method is well-suited for ill-posed problems with discontinuous solutions.

Key Words: Nonlinear regularization, ill-posed problems, discontinuous solutions,
level-set method, Hamilton-Jacobi equation, regularization for surface and curve repre-
sentations.

Acknoledgement AMS Subject Classifications: 65J20, 66N21, 70H20

1. Introduction

The level set method [2, 13, 15] has turned out to be an interesting and efficient way of
computing the evolution of curves and surfaces. In inverse problems this tool has been
utilized to identify the set of discontinuities (jumps) of piecewise constant unknown
functions, taking only two values. Adopting the Eulerian point of view on the evolution
of surfaces, the level set method can be efficiently implemented by an equation of
Hamilton-Jacobi type. The advantage of this method comes from the availability of
sophisticated and efficient numerical schemes to solve them [12, 15].

Our motivation for using Hamilton-Jacobi equation arises form a different direction.
In [6, 8, 11] the idea of regularization for curve and surface representation was developed
and applied to ill-posed problems with discontinuous solutions. In this method discon-
tinuous solutions of ill-posed problems are represented by curves and surfaces describing
their graphs. By this approach we may work with continuous graph parameterizations
instead of discontinuous functions. Contrary to the level set method we do not have
to restrict ourselves to an a-priori assumption on the solutions such as being piecewise
constant. In this work we will show that the formulation via a Hamilton-Jacobi equa-
tion arises quite naturally from a descent method for the error functional using curve
and surface parameterization of the graph.

*Supported by the Austrian Science Foundation Funds under grand SFB F013/F1317

2. Level set method

The level set approach has been used to solve inverse problems of the following kind:
Find a region D such that

F(u)=f (2.1)
with an unknown function u of the form
1 z€D
u =
0 z&¢D

Here and in the following F' denotes an abstract operator modeling the parameter-to-
solution map, i.e., F' maps the unknown solution u to the measured data f. The main
idea is to describe the boundary of D by the zero level-set of an auxiliary function ¢:

0D = {z € Q| ¢(z) = 0},
where ¢ should be such that
() >0 forze D ¢(z)<0 forz¢D.
The unknown u is completely determined by ¢ via
u=H(¢),

with H denoting the Heaviside function.

In the next step ¢ is considered depending on a time variable ¢ (or similarly on
an iteration index for the discretized version) and an evolution equation for ¢(z,t) is
defined, with the aim that lim; o, H(¢(z,t)) approaches the unknown exact solution.
The derivation of such an equation is mainly motivated by the objective to find an
decrease in the error functional || F(u) — f||.

Level set methods are starting with an evolution equation for ¢ of the form

o =V(z,t)V.

The velocity vector V' (z,t) is chosen in such a way that the error functional

T, t) = SIF@C0) = fIP (o 0) = H@(,1),

is decreasing, i.e., & J(u,t) < 0. For instance, Santosa [13] used as velocity
Vo
Vs(z,t) = —F'(u)"(F(u) — f)—=—
(o) =~ (P~) g

(F'(u)* denotes the adjoint of the Fréchet-derivative) yielding the evolution equation
b = —F'(w)*(F(u) - f) V9. 22)

Note that there are alternative choices for the velocity field, for instance, Burger [2]
used

Vi(x,1) = (VA [sign(e) (F'(w)"(F(u) = £))]) -

3. Curve and Surface Parameterization

Regularization by curve and surface parameterization was presented in [11] and ex-
tended in [6, 8]. The main idea is to represent discontinuous functions by their continu-
ous graphs. Instead of looking for a function as unknown in an equation we consider the
parameterizations of its graph as unknown. Since the graph of a (sufficiently regular)
discontinuous function in one-dimension can be made continuous by connecting points
of discontinuity by a vertical line, we may work with continuous parameterization of
curves and surfaces.

In the context of ill-posed equations we consider the parameterization functions
a(s),b(s) of the graph of u as unknowns, hence we are using regularization with re-
spect to a, b to solve the corresponding problem formulated in terms of a, b.

If the graph of an unknown - one dimensional - function u is described by some
parameterizations (a(s), b(s)), then u can be recovered by

u(z) = bla™'(x)). (3.1)

Even if the function u defined on an interval I has discontinuities, we may choose
continuous representation functions (a, b) if we define the generalized inverse

a '(z) :=inf{s € I |a(s) = z}.

By this definition the only requirement on the function a is that it is nondecreasing
and maps the interval I onto itself. Hence it is a generalized (orientation preserving)
diffeomorphism of I. The set of admissible functions a is given in the following definition
(using I = [0, 1]).

Py :={a € H'0,1]|a(0)=0, a(l)=1, a>0ae }

Interestingly, if a € P, and b € H*(I) these sets suffice to represent all BV -functions u
via (3.1) (see [5]).

As a main advantage in this approach the regularized solutions u = b(a™') can have
less regularity (v € BV) than the parameterizations a and b (€ H'). We can use
regularization in H' for the parameterization and nevertheless find solution which are
not in H! but in BV

Remark 3.1. Of course, parameterizations of a curve are in general not unique, but
given a function u € BV (I) it is possible to find a unique parameterization by choosing
that one, which minimizes the seminorm

@, 8) i iy = [as(s)? + by(s)?ds, (3.2)
yielding the arclength parameterization of the graph of u (see [11]).

Another important feature is that for sufficiently smoothing operators, we do not need
to evaluate a~! directly, but instead use the transformation rule. For integral operators
with continuous £ we have the following identity (cf. [11])

K (ba™))(z) = [k()b () dy = [kw, a()b(s)ils) ds.

3

If kK € C(I x I) then the operator mapping a,b to K (b(a™")) is differentiable (cf., e.g.,
[4]). Thus the equation

K(b(a™)) = f (3.3)

can be solved for a € P;, b € H', by an appropriate nonlinear regularization method.

4. Regularization by a Hamilton-Jacobi Equation

For the linear and one-dimensional problem (3.3) we can formally derive an equation
similar to (2.2) by the approach via curve representation: we start from Tikhonov
Regularization for curve representation, i.e., we search for (using (3.2))

(g, o) = argminaepl,beHlJ(a, b)

4.1
Tab) = 3 (1K)~ 7+ oo, bn). ()
The theory of nonlinear Tikhonov Regularization yields sufficient conditions for conver-
gence (as a — 0) of the regularized parameterizations (aq, b,) to parameterizations of
the graph of the exact solution, (af,b'), and also for convergence of u, := by(a;") — uf
(cf. [4]). An implementation of the regularization method (4.1) and numerical results
can be found in [6].
It is shown in [4] that minimizing J(a, b) is equivalent to minimizing

Ji(a,b) == 3 <||K(b(a—1)) — [P+ (/01 L(a, b)(s)ds)2> (4.2)

L(a, b)(s) == y/a2(s) + b%(s),

in the sense that for any (a,b) € P, x H! we can find a ¢ € Py such that J(a(¢),b(¢)) =
Ji(a,b) = Ji(a(¢),b(¢)), hence up to a change of the parameterization these func-
tionals are equivalent. And since J(a,b) > Ji(a,b) both functionals have the same
minima. Note that the functional Ji(a,b) is invariant under parameterization, i.e.,
Ji(a(9),b(¢)) = Ji(a,b) for a smooth diffeomorphism ¢.

Now let us describe a descent flow for the functional Ji(a,b). We consider a,b de-
pending on an additional variable ¢, i.e., (a = a(t, s),b = b(t,s)) with ¢ indicating an
artificial time variable. The evolution equation of steepest descent looks as follows:

(52) =—en (e) (43)

with

(@ﬂi’ 53) = (o) [K* (K (b(a™")) = f))(als)) -

o C1(t) % lm (v)] (4.4)

with Cy(t) = Jy L(a,b)(s)ds and K* the L?>— adjoint of K. If A(s,) is a chosen positive
function then (ay, b;) is a descent direction.

4

The right hand side of Equation (4.3) is not in H' x H', but it is well defined in
(H' x H')'. Hence the correct function space to look for a solution of (4.3) would be

(a,0) € W(0,T)xW(0,T), ~ W(0,T):={f € L*([0,T), H") | 5;f € L*([0,T],(H')'},

together with appropriate Dirichlet boundary conditions on a, b.

There is one detail in Equation (4.3): Note that Ji(a,b) is invariant under repa-
rameterization, i.e., it does not change when (a,b) is replaced by (a(¢),b(¢4)) with a
diffeomorphism ¢ of I. However, the corresponding parts on the right hand side of (4.3)
are not invariant in general. To obtain this, we may normalize the right hand of (4.3)
by taking .

A = T b0

hence we consider the evolution equation

(“) _ L(Zi;(t)[(>) K" (K (b(a™)) — f)](a(s)) -

o C1(t) % lm (v)] (4.5)

Solving these equations would yield a similar regularization method as in [6]. This
approach means to work in Lagrangian variables, i.e., the calculations are done with
respect to a reference domain, that is the domain where a,b live. Instead, one can
as well look for a description in Fulerian coordinates, which is a formulation in the
variables z of the unknown function u(z) = b(a™"(z)) itself.

We will formally derive an evolution equation for u(x) from (4.5), assuming that a, b
are sufficiently smooth and that as > 0 for all ¢. In fact, the chain rule yields

(2, 1) = b(a~ (2, £),1) + bs(a_l(x,t),t)%a_l(a:,).

Together with
z=a(a ' (2,1),t) = 0= a,(a” ' (z,1),t) 7.0 (2,1) + a(a' (2, 1), 1)

we find
by(a*(x,t),1)

as(a=(z,1), 1)
Using (4.3) and our assumptions we find that

ug(z,t) = b(a " (2,1),t) — ar(a(z,1),1)

up=—Aa ' (z,1),)| (K*(K(b(a) =) (z) (as(al(x,t), t) +

as(a=(z,t),t)
et (di[b)(s) as] N st lmb]) s=a~1(z.1)
Replacing b with b(s, t) = u(a(s, 1), t) we get
= =N o)) (G 0) - 1)) (150)
+aCy(b) <%a3(a_l(x,t),t)>]

5

By our choice of A and with

L(a,b)(a* D1 +u2 = '1+U2)

we finally obtain

w =~ (K'(Kw) -) (Y17 w20) +aCi(t) (M) (46)

1+u2

The terms involving only first order derivatives of u resemble to (2.2). The similarity is
even stronger if we choose a weighted seminorm of (a, b) and give the descent directions
for a and b weights. For instance, we might use

I(a,)1l = (1 = o)llas|li: + ollbsllz- o € (0,1]

BETICEAE wr

Here o close to 0 means that we emphasize the inner variations (i.e., minimization with
respect to the parameterization of the interval '), whereas ¢ = 1 would yield an ordinary
Tikhonov regularization with the H'-norm. With this weighted norm, (4.7) together

and

with the corresponding choice of A = (a2 + (1 — 0)b2) "2, the evolution equation for u
becomes (skipping the second order terms)

w = — (K* (K () — f)) (o+ (1- a)ug) . (4.8)

Thus, for the extremal case o = 0 this coincides almost with the equation for ¢ in (2.2).
Hence in our interpretation, the level set method is a descent method for the least
squares functional where the descent only uses inner variations (i.e., only use & .J;). In
our framework, the level set method corresponds to starting with a piecewise constant
function v and minimizing the error functional by finding a diffeomorphism ¢(x,t) such
that u(¢!(z,t)) yields a decrease of the least squares functional.

The difference between (4.8) and (2.2) comes from the fact that the corresponding
term of K*(K (u)— f) (u is the unknown) has the form K*(K(H (¢))— f) (¢ is unknown)
n (2.2). Since in the application for the latter always binary valued unknown functions
are occurring it is clear that this a-priori information should have to be incorporated
(via the Heaviside function H) into the evolution equation. However we are interested in
solving equation (2.1) for general, not necessarily two valued functions, thus we propose
to use (4.8) for this purpose.

There are several points to discuss. In the derivation of (4.8) we dropped the terms
involving the regularization parameter o and the second order derivative terms of u. In
the context of regularization theory this means that (4.8) is the continuous analogue of
a Landweber iteration (using the L?-adjoint). From the theory one might expect insta-
bilities of the procedure as t — oo if the data are contaminated with noise. Therefore
the Landweber iteration needs a correct choice of the stopping time dependent on the
noise level (cf. [3]).

On the other hand, for any positive «, minimization of (4.2) is stable with respect
to data noise. Although the correspondence of (4.8) with a Landweber type iteration

6

suggests, that instabilities occur, this might not happen for the discretized scheme.
Because by an appropriate approximation of the derivative u, (e.g. by upwinding) we
may implicitly add an artificial diffusion term and hence the iteration corresponding to
(4.8) is in fact a descent method for a regularized functional with a small regularization
parameter. Hence at least for a sufficiently coarse discretization no stopping time is
required, which is also confirmed by the numerical results.

Let us now consider the multidimensional and nonlinear case. Using the same ideas
as for curve regularization we might consider the following functional to minimize

T(e,8) = SIF(elo ™) ~ fIP (19)

where c is defined on a domain €2, and ¢ is an appropriate diffeomorphism of 2.

We would like to define an evolution equation for u(.,t) = ¢(¢~(.,t),t) where ¢, ¢;
are defined as steepest descent flow for (4.9). In the following we denote by D¢ the
Jacobian matrix of ¢ and by |D¢| the Jacobian determinant.

Taking the Gateaux-derivative with respect to ¢ in direction h we obtain (assuming
differentiability)

d o }
(et thi, B)eo = (F/(c(67 D (67), F(e(6™") = f)

LZ

= (b, [F'(c(¢7")" (F(e(¢7") = £)] (#)|Dg])
Thus the steepest descent is obtained by
h = —[F'(c(6)" (Fe(¢7™)) — £)] (4)Dg].

On the other hand if we keep ¢ fixed, and try to minimize the functional over ¢ we
obtain for ¢ sufficiently small:

dt t=0 t=0 2

With r := F'(c(¢7))* (F(c(¢™")) — f) we find

G ae,0+ th)] = Tim © (F/(e(6™) (e84 tha) ™) — el9™)) , Fle(6™) ~ f)

d d
%J(C, ¢+ the)i=o = <7'a VCT(QYI)%W + thQ)l)‘t:0>L2

Now since
0= % [(@+tha) (¢ +tha) D] | _ = hale™") + [(W)(W)]%(qﬂ +thy))|
= ha(6™) + D] 20+ th))|,
we obtain 4
(@4 thy) | = —D(¢ ha(g). (4.10)

Hence,

L Je, 6+ thy)|_ = = (r(8)ID8], V" D(6™) ()2

dt ’ t=0 ? L2

This suggests to choose as steepest descent

hy = r(9)|Dg| [D(67)(9)] Ve

The analogue of Equation (4.5) is now

(o) = A(s1, 52)r(6)| D9 (D) (@TVe) (4.11)

Ct

again with an appropriate scaling A\. Following the one-dimensional case we include a
normalization such that the right hand side of Equation (4.11) becomes invariant under
reparameterization. Similar as in the one-dimensional case we multiply the right hand

side with
Os, 0s,

As in the one-dimensional case we obtain an evolution equation for v by the chain rule:

-1

R3

w=cl6™)+ Y (§) S0
Analogue to (4.10) we get
up = ci(¢7") = Ve (67 D(6™)di(9) 7
With (4.11) we finally arrive at the following formula:
w = =A™ r|(DP) (¢ (1+ (V) (67D D) (Ve)(67)) -

Expressing ¢ via u using
Vu=(D(¢™))"(Ve) (o)
and by our choice of A = |D¢!|(4) we end up with

_ o 1V r——
Uy = —)\(QS ,t)T‘W =—-ry14 |Vu|2

Just as above we may give the flow direction with respect to ¢ and ¢ different weights.
The resulting evolution equation is similar to the one-dimensional case:

up = —F'(u)*(F(u) — f)\Jo + (1 —0)|Vul2, o e (0,1]. (4.12)

5. Numerical implementation and results

We consider the evolution equation (4.12) (resp. (4.8)) with weight ¢ € (0,1]. By an

explicit time discretization u; ~ **="* we obtain an iteration procedure of the form

Uni1 — U = —ACF (1) (F(un) — f)i/o + (1 — 0) |V, |2 (5.1)

Here C),, denotes a number which controls the length of the chosen time-step. For the
computations we also have to discretize the function u,. In the one-dimensional case

8

we use piecewise linear functions on a unlform grld For u,, being defined on the unit
interval we use the discretization points x; = N ,2=1...N+1 and the corresponding
values up; = un(z;) and find an approximation uy, by linear interpolation on each
interval [z;, z;11]. We use a discretization scheme by Sethian [14]: Define the forward

and backward differences
Un,i+1 — Un,g _ Uni — Ungi—1 .
A+un,i::7 A up;i=—"——"— 1=1..N+1 Az=z, —z;
Az Az

and set u, o = Uy ny+2 = 0. Then the iteration for solving an time-discretized Hamilton-
Jacobi equation of the form

U1 (%) — U () = Atvg(2)y/0 + (1 — 0)| Vug (2) 2

with an arbitrary function v, is defined as

Uny1(T5) = up(x;)+

AtC,, (mln vn (i,), \/0 + (1 — o) (max(A~up,, 0)2 + min(Atu,;, 0)%) +

max (v, (2;),0)1/0 + (1 — 0) (min(A=uy;, 0)2 + max(Atu,;, 0)?)) (5.2)

where C,, is chosen as

Ax
" At maXi:l...N+1(|Un(xi) |)

Cn = n € (0,1).

In the simplest case of our algorithm we use

Un = F'(un)"(F (un) — f). (5.3)

For the two dimensional case we follow a similar discretization scheme. Let u, be
defined on the unit square. Then we choose the discretization points z,; = (;, z;),
i,j =1...N +1, and the variables u,; ; = un(z;;). We define the differences analogue
to the one-dimensional case

Uit1,y — Uiy Uij — Ui,

Aftp = — 0 =1, N41,

+ =
Amu”’w e e
J;Z_"la.] xl:] xl:] ‘/L'Z—l,j

Uij+1 — Uiy Uij — Uij—1

A;un,i,j::; Z,]:1N+1

+ I
Ay Unij 1=
Tij+1 — Tij LTij — Tij—1

Again we extend u, by zero for the values x; ; which are not in [0, 1]2. The difference
scheme for (5.1) looks as follows:

Un11(Tig) = Un(Tig)
AtCn{ min(v,(; ;),0) [0 + (11— a)(maX(A;un,i,j, 0)? + min(Af uy,;4,0)* +

]%

+ max(v,(z;),0) [a +(1- a)(min(A;un,i,j, 0)? + max(A up; 5, 0) +

J

max(A, Un,j, 0)? + min((A tnij, 0

=

A k
min (A, Un ; j, 0)% + max(A Unij, 0]

with
Az
TAt max;,j—1..N+1(|vn(2i;)])

Cp =

ne€0,1) Ar =z — Tij = Tijr1 — Tij

5.1. Linear Problem

We applied the algorithm to a one-dimensional integral equation of the first kind, i.e.,
we want to solve

Fu) = [k(e y)uly)dy = 1.

As kernel function we choose the smoothing kernel

_ (=96)2
kl(x’y):{ (1806 if (7 —)2 < 0.1

0 else

We used three test examples of discontinuous piecewise polynomial solutions:

Example 1:
201l if x €]0.1,0.7
wi(z) = { 006 e[lse |
Example 2:
U2($) = X[0.3,0.5] (l")
Example 3:

u3(z) = 0.5x0.3,0.5](T) + X[0.65,0.75] (%)

In our computations, a spacial discretization with N = 100 was used. For the noise
free case we stopped the iteration when W < 107%. As a starting value we took
Uy = 0.

As a two-dimensional linear test example we consider again an integral equation with
the corresponding two-dimensional kernel

ka(,y, 5, 8) = ki (ll(z,9)" = (5,0)").
The exact solution was taken to be of the following kind:

Example 1 (Circle)
Up (CU, y) = XBo.55,0.45(0.3)

Example 2 (Ramp)

_ xz—0.25
us(z,y) = 035 X{(z,9)]0.25<£<0.6,0.2<y<0.8}

Example 3 (Moon)
us (a:, y) = XBg.55,0.5(0.3) (1 - XBo.45,0.5(0-2))

(Buo,y () denotes the circle with midpoint at (o, yo) and radius 7, x is the characteristic
function). For the spacial discretization we used N = 25 in each coordinate direction.

Figure 5.1 shows the result for the one-dimensional test examples, for different choices
of 0. The exact solution is shown dash-dotted in the pictures.

Figure 5.2 shows the computed solution for the case of the two-dimensional integral
equation using exact data and again for different choices of o.

Both from the one-dimensional (Example 1) and two-dimensional (Example 2) re-
sults we see that for small o the solution suffers from the so-called staircase effect: This
means, that the results have the tendency to become piecewise constant, even if the

10

Example 1, 0 = 0.01 Example 1, 0 = 0.5 Example 1, 0 = 0.99

Example 2, 0 = 0.01 Example 2, 0 = 0.5 Example 2, o = 0.99

Example 3, 0 = 0.01 Example 3, 0 = 0.5 Example 3, 0 = 0.99

Figure 5.1: Results for exact data

exact solution is linear. This effect is well-known to happen for many BV-like regular-
izations and filter. For 0 ~ 1 we observe the well-known Gibbs-phenomenon, that the
computed solution shows an ‘overshoot’ where the exact solution has jumps.

On the other hand, for the choice ¢ = 0.5 both effects can be mildered, especially for
the piecewise linear solution this yields best results. (Note that the staircase effect is
irrelevant in the context of the level set method, since there the exact solution is always
taken as piecewise constant.) If the solution is known to be piecewise constant a-priori,
then a choice of a small o seems to be best.

When o ~ 0 we noticed that the convergence is rather slow. This is clear since we
choose as initial guess ug = 0 and hence Vuy = 0. Thus, the right hand side in (5.1) is
multiplied in the first iterations by a factor of the order \/@ ~ 0.

We also observed that with this choice of ¢ the iteration is quite sensitive with respect
to the initial guess, which can be explained from our interpretation that for small o
we are only using inner variations for minimizing the least squares functional, i.e. the
initial guess is only deformed by diffeomorphisms.

11

i
L

Example 1, 0 = 0.01 Example 1, 0 = 0.5 Example 1, 0 = 0.99

/
A\

$ (X
o

Example 2, 0 = 0.01

Example 3, 0 = 0.01 Example 3, 0 = 0.5 Example 3, 0 = 0.99

Figure 5.2: Results Two-Dimensional Integral Equation

As a remedy we propose to choose o depending on the iteration index, in such a
way that for the first iterations o is close to 1 and it decreases with the iteration. For

instance we used
o, = max(0.995", 0,,) (5.4)

where o, is the final value of 0. Moreover we used as a starting value an initial guess
which is obtained by Tikhonov regularization:

uy = (K*K) + aoG) ' f

o should be not to small, since otherwise the residual is already close to 0 and the
iteration will almost saturate then. We choose oy = 1. By this procedure we could
significantly improve the speed of the algorithm with similar results as before.

We now turn to the case of noisy data fs. Here we perturbed the exact data by adding
uniformly distributed random noise. The iteration is stopped according to Morozov‘s
discrepancy principle, i.e. for the first iteration index, which satisfies

| F(un) — fs|| <716, 7>1,

12

where § = ||f — f5|| denotes the noise level. The parameter 7 was chosen to 7 = 1.5.
Figure 5.3 show the result of the iteration with the choice of o as in (5.4) and the

velocity (5.3), for the noise level 6 of 10 % and 50%. The final value of ¢ was in this
case o ~ (.3.

I | L
[it e 7N
. T AV
|1 v | | |
. N
| A ,f" \ ST
uii\\, :;,/J‘ . L ‘,\,;:,/,. T - 0 :/i\x;//,' o - L\,\:y/,
Example 1, 10% noise Example 2, 10% noise Example 3, 10% noise
//7\\:\ :/ \:\\
/ i\\ 0 ‘ \ yyﬁﬂ //\
i \\ ! \“ / ‘) /
7 b b / N
- S\ A - D e oo ies \o---
Example 1, 50% noise Example 2, 50% noise Example 3, 50% noise

Figure 5.3: Results for noisy data

From the figure it can be observed that the iteration is stable with respect to data
noise.

We also tried several modification for the iteration (5.1): We can improve the perfor-
mance of the algorithm by choosing different type of velocity v,. We already pointed
out that in the extremal case ¢ = 1 the method (5.1) becomes the Landweber iter-
ation, which is know to be rather slow. Hence we expect to find an improvement of
the method for a different choice of the velocity. Note that the iteratively regularized
Gauss-Newton method (IRGN) [1] is in general faster than the Landweber iteration.
This motivates us to use a modified velocity, corresponding to the IRGN method: For
the results in figure 5.4 we used

vy = (K*K) + aG) ' K*(Kup_1 — f), (5.5)

where G is the mass matrix G;; = [y ¢;(x)¢;(z)dz, and ¢; are the continuous piece-
wise linear H'-finite-element ansatz functions on a uniform rectangular grid (Courant
elements). In our examples we set o = 1075.

The results are quite satisfactory for Example 1 and Example 2. For Examples 3
oscillations in the computed solution indicate that an additional regularization term in
the iteration might be useful.

13

Example 1, 0 = 0.01 Example 1, 0 = 0.5 Example 1, 0 = 0.99

Example 2, 0 = 0.01 Example 2, 0 = 0.5 Example 2, o = 0.99

Example 3, 0 = 0.01 Example 3, 0 = 0.5 Example 3, 0 = 0.99

Figure 5.4: Results IRGN-iteration

5.2. Nonlinear Problem

We finally applied the iteration (5.1) to a nonlinear parameter identification problem.
As a benchmark we choose the problem of identification of the 7 in the elliptic PDE

V.(1+9)Vw) = p inQ=]0,1]?
w‘ = 0
o0
from measurements of w(z), z € 2, and with given right hand side p. The forward
operator mapping the parameter to the data is

F(y) =w(z) z €, w solution of (5.6), (5.7).

For a more detailed description of this problem and an approach via the moving grid
method we refer to [7, 9]. Due to the nonlinearity of the problem we observed that
the choice of v in (5.3) yields satisfying results, but shows rather slow convergence.
Hence we used the Gauss-Newton-type velocity (5.5), where the inversion is replaced

14

by a fixed number of Conjugate-Gradient iterations. This regularization procedure, i.e
IRGN with Conjugate-Gradient iteration, has also successfully been used in [9].

As right hand side f we took p(z,y) = sin(27x) cos(my). The discretization was done
on a 40 x40 grid. We applied the choice of o according to (5.4), with initial guess vy = 0,
and o, = 0.1. In order to avoid inverse crimes we computed the data on a much finer
grid (120 x 120) and used linear interpolation to obtain data on the computation grid.

Figure 5.5 shows the result for exact data for the same choice of test example as in
the linear case before (Circle, Ramp and Moon).

"0'0;!

i

i i i P
Wil \\\\ iy ,‘\\\\\\ffg%«""w“‘\\w\

Example 1 Example 2 Example 3

Example 1 Example 2 Example 3
Figure 5.5: Computed y

From the picture it can be seen that the discontinuities are found reasonable well.
Again we observed difficulties to detect the shape of the ramp, due to the staircasing.

Remark 5.1. We can compare the iteration (5.1) with the iterations in the limiting
case 0 = 0 and o = 1, i.e. the level set method and the Landweber iteration.

If we consider the convergence theory for the later, it might be expected that the
iteration becomes instable as n — oo in the presence of noise. In fact, in the noisy case
the Landweber iteration has to be stopped according to a stopping rule, for instance
the discrepancy principle. However this instability does not occur in our numerical
experiment. Even if the data are contaminated with noise, the iteration saturates.
This significant difference to Landweber iteration is due to the numerical discretiza-
tion scheme, which adds artificial diffusion to the process. This diffusion can be seen
as part of a regularization effect, where the regularization parameter depends on the
discretization size and the type of the discretization scheme.

Of course, by this reasoning the regularization by the diffusion of the numerical scheme
will depend on the discretization itself. The theory of Tikhonov regularization [3] re-
quires an regularization parameter which has to be correlated to the data noise. Hence
if the grid size will tend to zero the discretized solution may not be bounded. The

15

remedy to this would be to include the regularization term with an appropriate regu-
larization parameter « if the discretization becomes small. However, in our numerical
experiments we observed that this was not necessary.

If we look at the case 0 = 0 we immediately see that the iteration need not converge
to minimum norm solution of (2.1), for instance if u, is constant except at the points
where v vanishes, then the iteration saturates at w,,; which need not be a solution to
the original problem. This is related to the fact that minimization of the least squares
functional with respect to inner variation is nonlinear, even if the underlying operator
is linear, and thus the corresponding functional can have many local minima. Note that
this saturation effect does not happen when o > 0.

Comparing the approach in Eulerian variables via the iteration (5.1) with those in
Lagrangian variables [9, 10] it can be said that a fixed grid of the Eulerian variables
is obviously more simple to implement. Moreover, the iteration (5.1) can easily be
embedded into existing code for standard iterative regularization methods. On the
other hand the adaptive grid of the Lagrangian approach provides more flexibility in
the approximation of the unknown solution. Hence for the same gridsize an adaptive
method will in general yield better results.

Acknowledgment
The author would like to thank A. Neubauer for the very constructive and helpful
discussions.

References

[1] B. BLASCHKE, A. NEUBAUER, AND O. SCHERZER, On convergence rates for

the iteratively reqularized Gauss-Newton method, IMA Journal of Numer. Anal. 17
(1997), 421-436.

[2] M. BURGER, A level set method for inverse problems, Inverse Problems 17 (2001),
1327-1356.

[3] H. W. ENGL, M. HANKE, AND A. NEUBAUER, Regularization of Inverse Prob-
lems, Kluwer, Dortrecht, 1996.

[4] S. KINDERMANN, Regularization of Ill-posed Problems with discontinuous solutions
by Curve and Surface Representation, PhD-thesis, University of Linz, October
2001.

[6] S. KINDERMANN AND A. NEUBAUER, Fach BY-function is representable by an
H!-curve, Technical Report 1/1999, Industrial Mathematics Institute, University
of Linz, 1999.

[6] ——, Identification of discontinuous parameters by regularization for curve repre-
sentations, Inverse Problems 15 (1999), 1559-1572.

[7] ——, FEstimation of discontinuous parameters of elliptic partial differential equa-

tions by regularization for surface representations, Inverse Problems 17 (2001),
789-803.

16

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

—, Regularization for surface representations of discontinuous solutions of linear
ill-posed problems, Numer. Funct. Anal. Optim. 22,1&2 (2001), 79-105.

—, Parameter identification by surface representation via the mowving grid ap-
proach, Technical Report, SEFB-Report, University Linz, 2002, submitted.

A. NEUBAUER, Estimation of discontinuous solutions of ill-posed problems by reg-
ularization for surface representations: numerical realization via moving grids, in:
Y.C. Hon, M. Yamamoto, J. Cheng, and J.Y. Lee, eds., Recent Development in
Theories and Numerics, International Conference on Inverse Problems, World Sci-
entific Publisher, Singapore, 2003, 67-83.

A. NEUBAUER AND O. SCHERZER, Regularization for curve representations: Uni-

form convergence for discontinuous solutions of ill-posed problem, SIAM J. Appl.
Math 58 (1998), 1891-1900.

S. OSHER AND J. A. SETHIAN, Fronts propagating with curvature depending speed.:
algorithms based on Hamilton-Jacobi formulations, J. Comp. Physics 79 (1988),
12—49.

F. SANTOSA, A level-set approach for inverse problems involving obstacles,
ESAIM, Control Optim. Calc. Var. 1 (1996), 17-33.

J. A. SETHIAN, A fast marching level set method for monotonically advancing
fronts, Proc. Natl. Acad. Sci. USA 93 4 (1996), 1591-1595.

—, Level Set Methods and Fast Marching Methods, Cambridge Monographs
on Applied and Computational Mathematics, Cambridge University Press, Cam-
bridge, 1999.

17

