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Abstract. ΠΣ-fields are a very general class of difference fields that enable to discover
and prove multisum identities arising in combinatorics and special functions. In this article
we focus on the problem how such multisums can be represented in terms of ΠΣ-fields. In
particular we consider product representations and their simplifications in ΠΣ-fields.

1. Introduction

In [Kar81, Kar85] Karr developed an indefinite summation algorithm that enables to simplify
a very general class of nested multisum expressions. More precisely, he designed so called ΠΣ-
fields in which those multisum expressions can be formulated. Since in this difference field
setting one can solve the telescoping problem, and more generally one can solve parameterized
first order linear difference equations (see Problem LDE), this enables to eliminate summation
quantifiers in a given multisum expression. Based on these results, the summation package
Sigma [Sch00, Sch01] has been developed; in particular the user is completely freed from
working in difference fields, but can describe all the summation problems in terms of sum and
product expressions. We want to point out that the summation package Sigma is a streamlined
version [Sch02c, Sch02b, Sch02a] of [Kar81] which is based on results from [Bro00]. Moreover
the algorithms cannot only solve Problem LDE, but even enable to search for solutions of
linear difference equations with arbitrary order. Moreover we want to emphasize that Problem
LDE not only contains the telescoping problem for indefinite summation, but also Zeilberger’s
creative telescoping [Zei90] for a very general class of definite multisums [Sch00]. In other
words, these extensions enable to deal with definite summation problems, as it is illustrated
for instance in [PS03, DPSW03].
In [Kar81, Kar85] the main emphasize is put on the aspect to decide algorithmically, if a
sum or product can be adjoined to a ΠΣ-field. But so far one has not considered in details
that there are various alternatives to construct a ΠΣ-field in which a given multisum can be
represented. An important question is how one should construct such a ΠΣ-field iteratively
in order to obtain simplifications from the point of view of symbolic summation. Whereas in
[Sch03b] we focus on the problem to eliminate the nested depth of a given sum expression, in
this article we will give various strategies how one handle products in the ΠΣ-field setting.
In Section 2 we will introduce the basic notions of ΠΣ-fields and elaborate on two important
aspects. First we will motivate that solving Problem LDE and the so called orbit problem
(see Problem GOH) in a given ΠΣ-field plays an important role to construct ΠΣ-fields in
an algorithmic fashion. Second we will emphasize that, in contrast to sums, there might
occur problems to formulate certain products in an already constructed ΠΣ-field. These two
problems are the starting point for further considerations.
As already shown in [Kar81], the central Problems LDE and GOH are algorithmically solvable
in a ΠΣ-field, if certain problems in the ground field, i.e., constant field, can be computed (see
Definition 3.1). In Section 3 we will show that for a very general class of constant fields (see
Property 3.1) such algorithms exist, and hence the theory of ΠΣ-fields with those constant
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fields becomes completely constructive. It is important to mention that the algorithmic
considerations in Section 3 are only needed, if products occur in a ΠΣ-field.
In the second part of this work we will focus on how products can be formulated in ΠΣ-fields.
In Section 5 we analyze which kind of (q-)hypergeometric terms f(k) in k can be represented
in ΠΣ-fields. For instance for the hypergeometric case, this will be always possible, except
for expressions like γk r(k) where r(k) is a rational function in k and γ 6= 1 is a root of
unity. More generally, in Section 6 we ask the question how several hypergeometric terms
can be formulated in ΠΣ-fields. In general, this will be always possible in a ΠΣ-field plus
one additional (ring) extension of an object like γk from above. Moreover in Section 4 we
will generalize ideas from [AP02] that enable to simplify algorithmically products in a given
ΠΣ-field. Hence products can be represented in a compact form which in particular plays an
important role in solving Problems LDE and GOH from the point of view of efficiency.

2. Construction of ΠΣ-fields

In this section we introduce ΠΣ-fields, a very general class of difference fields. In general,
a difference field (resp. ring) (F, σ) is a field (resp. ring) F together with a field (resp. ring)
automorphism σ : F → F. The constant field (resp. ring) of (F, σ) is defined as constσF =
{g ∈ F |σ(g) = g}. It follows easily that this set is indeed a subfield (resp. subring) of F.
Throughout this article we will suppose that K has characteristic 0.
An important aspect is that one can formulate a huge class of multisum expressions in ΠΣ-
fields; see Section 2.2. Moreover, in a ΠΣ-field (F, σ) with constant field K there exist algo-
rithms [Kar81, Bro00, Sch01] that enable to deal with the

Problem LDE: Solving parameterized first order linear difference equations

• Given a0, a1 ∈ F∗ and f1, . . . , fn ∈ F;
• find all g ∈ F and all c1, . . . , cn ∈ K such that a1 σ(g) + a0 g = c1 f1 + · · · + cn fn.

This enables to carry out two fundamental paradigms of symbolic summation [PWZ96],
namely telescoping and Zeilberger’s creative telescoping, for a very general class of multi-
sums; see [Sch01, Sch02c]. We want to emphasize that this (summation) algorithm that
solves Problem LDE in ΠΣ-fields requires certain computational properties on the constant
field K that will be explored further in Section 3.

2.1. ΠΣ and first order linear extensions. In order to introduce ΠΣ-fields in an appro-
priate way, we need the concept of difference field extensions. More generally, (E, σ ′) is a
difference field (resp. ring) extension of (F, σ) if F is a subfield (resp. subring) of E and
σ′(g) = σ(g) for all g ∈ F. Note that in the sequel we do not distinguish anymore the
automorphisms σ and σ′ within such a difference field (resp. ring) extension (E, σ′) of (F, σ).

In the following we motivate important results from [Kar81]. One should keep in mind that
we are basically interested in the following type of difference field extensions.

Definition 2.1. A difference field extension (F(t), σ) of (F, σ) is called first order linear, if t
is transcendental over F, we have σ(t) = α t + β for some α ∈ F∗, β ∈ F, and constσF(t) =
constσF. In particular, (F(t), σ) is called a Π- (resp. Σ∗-) extension of (F, σ), if it is first order
linear and σ(t) = f t (resp. σ(t) = t + f) for some f ∈ F∗.

As it will be explained further in Subsection 2.2, Π- and Σ∗-extensions are exactly those
first order linear extensions that are needed to describe nested sums and products. But first
we will describe how Π- and Σ∗-extensions can be described in an alternative way; we want
to emphasize that these results will enable to build up a completely constructive theory for
ΠΣ-fields. According to [Kar81] we introduce
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Definition 2.2. For a difference field (F, σ) we define H(F,σ) := {σ(g)/g | g ∈ F∗}.

Note that H(F,σ) forms a multiplicative group which in the sequel will be called homogeneous
group. With this notion one obtains equivalent descriptions of Π-and Σ∗-extensions; see
[Kar85, Theorem 2.2] or [Sch01, Theorem 2.2.2] for the case (1), and [Kar85, Theorem 2.3]
combined with the remarks below for the case (2).

Theorem 2.1. Let (F(t), σ) be a difference field extension of (F, σ). (1) Then this is a Π-
extension iff σ(t) = α t, t 6= 0, α ∈ F∗ and there is no n > 0 with αn ∈ H(F,σ). (2) Then this
is a Σ∗-extension iff σ(t) = t + β, t /∈ F, β ∈ F∗, and there is no g ∈ F with σ(g) − g = β.

Next we want to introduce Σ-extensions which is a generalization of Σ∗-extensions.

Definition 2.3. (F(t), σ) is a Σ-extension of (F, σ) if (1) σ(t) = α t+β with α, β ∈ F∗, t /∈ F,
(2) @g ∈ F with σ(g) − αg = β, and (3) if αn ∈ H(F,σ) for some n ∈ Z∗ then α ∈ H(F,σ).

In general, all Σ-extensions are first order linear; this follows by [Sch01, Theorem 2.2.3] which
is a corrected version of [Kar81, Theorem 3] or [Kar85, Theorem 2.3]. In particular for the
case α = 1 the class of Σ-extensions coincide with the class of Σ∗-extensions.
Next we want to motivate that the combination of Π- and Σ-extensions enables to cover
almost all kind of first order linear extensions (F(t), σ) of (F, σ). First we want to point
out that only conditions (2) or (3) of Σ-extensions might restrict the class of first order
linear extensions. Now suppose that our extension is first order linear, but condition (2)
does not hold. Hence we find a g ∈ F such that σ(g) − α g = β. Then it follows that
σ(t − g) = α (t − g). Since t is transcendental over F, also t − g is transcendental over F.
Moreover constσF(t − g) = constσF. Hence (F(t − g), σ) is a Π-extension of (F, σ). In other
words, condition (2) guarantees that there does not exist an overlapping between the class of
Π-extensions and Σ-extensions among the class of first order linear extensions. Hence only
condition (3) might exclude a first order linear extension. More precisely, we cannot express
first order linear extensions with ΠΣ-extensions if there exists an n > 0 such that αn ∈ H(F,σ),
but α /∈ H(F,σ). Since the same problem can occur while trying to construct Π-extension, we
refer for more details to Section 2.2.
In the end we define ΠΣ-extensions and ΠΣ-fields.

Definition 2.4. A (nested) Π-extension (resp. ΠΣ-extension) (F(t1, . . . , te), σ) of (F, σ) is a
difference field extension where (F(t1, . . . , ti), σ) is a Π-extension (resp. Π- or Σ-extension) of
(F(t1, . . . , ti−1), σ) for all 1 ≤ i ≤ e. (For i = 0 we define F(t1, . . . , ti−1) = F.) A ΠΣ-field
(F, σ) over K is a ΠΣ-extension of (K, σ) with constant field K.

Note that in this definition the order of the extensions in F(t1, . . . , te) is essential. So we have
to distinguish for instance between the fields F(t1, . . . , te) and F(te, . . . , t1). If there might be
confusion, we will emphasize this fact by the more precise notation F(t1)(t2) . . . (te).

2.2. Automatic constructions of ΠΣ-fields for symbolic summation. In [Kar81] algo-
rithms are developed that enable to solve Problems LDE and GOH in a given ΠΣ-field (F, σ),
if the constant field K has certain properties; see Section 3.

Problem GOH: The generalized orbit problem for the homogeneous group of dimension r

• Given a difference field (F, σ) and f1, . . . , fr ∈ F∗;
• find a basis of the submodule

{

(n1, . . . , nr) ∈ Zr | fn1

1 . . . fnr
r ∈ H(F,σ)

}

of Zr over Z.
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Then applying Theorem 2.1 in combination with those algorithms gives a completely construc-
tive theory to build up a ΠΣ-field for a given nested multisum expression. More precisely, for
a given sum S(n) :=

∑n
k=0 f(k) or product P (n) :=

∏n
k=0 f(k) one has to construct first a

concrete ΠΣ-field (F, σ) for f(k) (which again can consist of nested sums and products). This
means, one has to define a map which links the given summation objects, i.e., sequences f(k),
with elements f ′, say, in the constructed ΠΣ-field; in other words, f ′ ∈ F represents f(k).
(a) First we turn to the sum case S(n). Then given this translation machinery one tries to
compute a g′ ∈ F with σ(g′) − g′ = σ(f ′) =: β. If one finds such a g′, one can reinterpret
this result as a sequence g(k + 1) for which the telescoping problem g(k + 1) − g(k) = f(k)
holds, i.e. we have that S(n) = g(n + 1) − g(0). Moreover the sum itself can be represented
in F with g′. Otherwise, if one fails to compute such a g′, Theorem 2.1 tells us that this
sum S(n) can be adjoined to the ΠΣ-field in form of a Σ∗-extension (F(t), σ) of (F, σ) with
σ(t) = t+β. (b) Similarly, for the product case P (n) one first tries to compute a g ′ ∈ F with
σ(g′)

g′ = σ(f ′) =: α; this enables to express the product P (n) by g′ in the already given differ-

ence field F. Otherwise, if this fails, one tries to adjoin it in form of a Π-extension (F(t), σ)
of (F, σ) with σ(t) = α t. This works by Theorem 2.1, if there does not exist an n > 0 and

a g ∈ F∗ with αn = σ(g)
g ; recall that this can be checked, if one knows how to solve Problem

GOH (see Section 3). Otherwise, if α /∈ H(F,σ) and there exists an n > 1 with αn ∈ H(F,σ),
we fail to adjoin P (n) in form of a Π-extension. In general, this problem can always occur
for an arbitrary α ∈ F. In Section 6 we will analyze this problematic case in more details for
certain classes of ΠΣ∗-fields (F, σ). This will result in an algorithmic strategy that allows to
construct ΠΣ-fields in which this problem can be at least partially avoided.

2.3. The σ-equivalence relation and σ-factorization. Finally we need some important
computational results of ΠΣ-fields that are essentially all covered in [Kar81]. First note that
if (F(t), σ) is a ΠΣ-extension of (F, σ), F(t) is the quotient field of the polynomial ring F[t].
Moreover, for all f ∈ F[t] and all k ∈ Z it follows that σk(f) ∈ F[t]. This shows that (F(t), σ)
is a difference ring extension of (F[t], σ). Moreover if f ∈ F[t] is irreducible, also σk(f) is
irreducible for any k ∈ Z. Next we introduce

Definition 2.5. Let (F(t), σ) be a ΠΣ-extension of (F, σ). f, g ∈ F(t)∗ are called σ-equivalent,
if there exists a k ∈ Z such that σk(f)/g ∈ F.

Obviously this is an equivalence relation. Moreover one can easily see that such a k always
exists and is not uniquely determined, if f, g ∈ F∗, or if f = c tm, g = d tn for some c, d ∈ F∗,

m, n ∈ Z and σ(t)
t ∈ F. In all other cases, if such a k exists, it is uniquely determined. This is

a consequence of the following remarkable theorem; for proofs we refer to [Kar81, Theorem 4]
or [Bro00, Corollary 1,2] together with [Sch01, Theorem 2.2.4].

Theorem 2.2. Let (F(t), σ) be a ΠΣ-extension of (F, σ) and g ∈ F(t)∗ with σk(g)
g ∈ F for

some k 6= 0. If σ(t)
t ∈ F, g = w tr where w ∈ F∗ and r ∈ Z. Otherwise, if σ(t)

t /∈ F, g ∈ F.

Corollary 2.1. Let (F(t), σ) be a ΠΣ-extension of (F, σ) and f, g ∈ F(t) \ F be σ-equivalent.

If σ(t)
t /∈ F or g 6= c fm where c ∈ F∗, m ∈ Z∗, then there is a unique k ∈ Z with σk(f)

g ∈ F.

Proof: The existence of k follows by assumption. Suppose there are k1 < k2 with σki (f)
g ∈ F.

Then σk2 (f)

σk1 (f)
∈ F, and hence σk2−k1 (f ′)

f ′ ∈ F for f ′ := σk1(f), a contradiction to Theorem 2.2.

�

Now suppose that we have given a ΠΣ-field (F, σ) over a constant field K which is semi-
computable, i.e., fulfills the following properties:
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Definition 2.6. A field K is called semi-computable, if (1) for any k ∈ K one is able to
decide, if k ∈ Z, (2) polynomials in the polynomial ring K[t1, . . . , te] can be factored over K,
and (3) one knows how to solve Problem O for the multiplicative group K∗:

Problem O: The orbit problem

• Given a field K and f, g ∈ K∗;
• decide if there exists a k ∈ Z such that fk = g; in case of existence, compute such a k.

Then for any ΠΣ-extension (F(t), σ) of (F, σ) one can decide, if there exists a k ∈ Z with
σk(f)/g ∈ F, and can compute such a k, in case of existence. This important result given in
[Kar81, Section 2.3] is summarized in Theorem 2.3.

Remark 2.1. In [AB00] combined with [KL86] the Problem O has been solved for an im-
portant class of fields K specified in Property 3.1; hence for any ΠΣ-field over such fields K
one can check, if two elements are σ-equivalent. Note that in Section 3 we require additional
properties on the constant field K, see Definition 3.1, that also hold for this class of con-
stant fields; we refer to Section 3 for further details. Moreover we want to point out that for
the ΠΣ-field (K(x), σ) over K with σ(x) = x + 1 there are more efficient algorithms, like in
[MW94], that can check if two elements are σ-equivalent.

Finally we will introduce the σ-factorization in [Kar81], or equivalently the orbit decomposi-
tion in [Bro00] which play a major role throughout this article. Given a ΠΣ-extension (F(t), σ)
of (F, σ) and g ∈ F(t) write g = fm1

1 . . . fml

l with irreducible and pairwise prime polynomials
fi ∈ F[t] with multiplicities mi ∈ Z∗; all factors with positive (resp. negative) multiplicity
give the numerator (resp. denominator). The basic idea is that with the field automorphism
σ, g can be represented in a more compact form g = u g1 · · · gk, k ≥ 0, where u ∈ F and the gi

contain all the irreducible polynomials fi (with its multiplicity) in g that belong to the same
σ-equivalence class. More precisely, one can write the gi as

gi =

ri
∏

j=0

σj(hi)
mij (1)

where mij ∈ Z and the hi ∈ F[t] are irreducible polynomials, pairwise prime and pairwise not
σ-equivalent. In other words, the hi generate all elements in the same σ-equivalence class with
positive powers of σ. In this context the hi are representants of the different σ-equivalence
classes (it might happen that gi = 1, if mij = 0 for all j). Note that for simplicity our
definition of the σ-factorization differs slightly from the original one in [Kar81]: in Karr’s
version the gi can be generated also by negative shifts. Moreover note that if we insisted that
mi1 6= 0, this representation would be even uniquely determined.
In this article we denote a σ-factorization of g ∈ F(t) as g = u g1 . . . gk with the above
properties, i.e., its refined version given by (1). Recall that if (F(t), σ) is a Π-extension of
(F, σ), all σ-equivalent irreducible elements to t are just c ti for some c ∈ F∗ and i ∈ Z; see

Theorem 2.2. Hence, if t is a factor in g and σ(t)
t ∈ F, we can write gi = tz for some z ∈ Z∗

and t - gj for all i 6= j. Moreover by Corollary 2.1 any irreducible factor p ∈ F[t] (p 6= t, if
σ(t)

t ∈ F) that occurs in g has a uniquely determined l ∈ Z with σl(hi)
p ∈ F for some 1 ≤ i ≤ k.

Now suppose that the constant field is semi-computable. Then, as already pointed out above,
such an l (uniquely determined) can be computed. Therefore given all the irreducible factors
in g with its multiplicities (by factoring the numerator and denominator of g), one can collect
them according to their different σ-equivalence classes in the expression gi; for further details
see [Kar81, Bro00, Sch02b]. All these remarks are collected in
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Theorem 2.3. Let (F(t), σ) be a ΠΣ-field over a semi-computable constant field K. Then

one can decide for f, g ∈ F(t) if there exists a k ∈ Z with σk(f)
g ∈ F; in case of existence one

can compute such a k. Moreover the σ-factorization can be computed in F(t).

3. The Constant Field and the Generalized Orbit Problem

As already motivated above, Problem GOH plays a major role in building up a constructive
theory of ΠΣ-fields, i.e., in checking if a product can be adjoined in form of a Π-extension
to a already given ΠΣ-field (F, σ) over K. The central question is, if there exists an n > 0
such that αn ∈ H(F,σ). In the sequel we formulate this problem in a slightly more general

way. Consider V :=
{

(n) ∈ Z1 |αn ∈ H(F,σ)

}

as a submodule of Z1 over Z. Then there is an
element b ∈ Z such that V = {(b) z | z ∈ Z}. In other words b = 0 if and only if there does not
exist an n > 0 with αn ∈ H(F,σ). Hence if we can compute a basis of V, i.e., solve Problem
GOH of dimension 1, we can also answer the above question.
In [Kar81] the problem to solve Problem GOH has been reduced to solving the problem
GOH in a sub-difference field of (F, σ). More precisely, if F = K(t1, . . . , te) for some e ≥ 1,
the problem to solve Problem GOH with dimension r can be reduced to a problem GOH in
K(t1, . . . , te−1) with dimension r′ where r ≤ r′ ≤ r +1. Again this problem can be reduced to
a GOH in the subfield K(t1, . . . , te−2) with dimension r′′ where r′ ≤ r′′ ≤ r′+1, and so on. We
want to emphasize that in [Kar81] this reduction strategy can be turned to an algorithm, if
certain conditions (namely condition (1) and (2) in Definition 2.6) hold for the constant field
K. In the end, after at most e reductions steps one reaches the GOH Problem in the constant
field K where the dimension ranges between r and r + e. In this case, with H(K,σ) = {1},
Problem GOH reads with G := K∗ as follows.

Problem GO: The generalized orbit problem

• Given a multiplicative group G and c = (c1, . . . , cr) ∈ Gr;
• find a basis of the submodule V := {(n1, . . . , nr) ∈ Zr | cn1

1 . . . cnr
r = 1} of Zr over Z.

Summarizing, Problem GOH can be solved algorithmically, if the constant field is computable.

Definition 3.1. A field K is called computable, if it is semi-computable (Definition 2.6) and
there exists an algorithm to solve Problem GO for the multiplicative group K∗.

Theorem 3.1. Let (F, σ) be a ΠΣ-field over a computable field K. Then there exist algorithms
that solve Problem GOH and LDE.

All these results have been developed in [Kar81]. Note that not only the algorithm for Problem
GOH but also for Problem LDE given in [Kar81] or [Sch01, Sch02c] requires all three properties
of a computable constant field K. More precisely, certain degree and denominator bounds
[Kar81, Sch02b, Sch02a] have to be computed for a Π-extension, which so far can be only
derived by solving Problem GOH, and therefore Problem GO.

Remark 3.1. Any Problem GOH with dimension r can be reduced to a Problem GO also with
dimension r, if all extensions in the ΠΣ-field (K(t1, . . . , te), σ) over K are Σ-extensions. This
comes from the fact that in each of these reductions from K(t1, . . . , tl) to K(t1, . . . , tl−1) the
dimension is only increased by one, if tl is a Π-extension, otherwise the dimension remains the
same. In this case the computation of a basis of V (dimension 1) reduces to a GO Problem of
dimension 1 which is equivalent to Problem O. Hence we only need that K is semi-computable.

In this section we will show that a huge class of fields K are actually computable, and hence
Problems LDE and GOH can by solved algorithmically. Note that the following class of
constant fields coincides with the semi-computable fields given in [AB00].
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Property 3.1. A is a finitely generated algebraic field extension of the rational numbers Q,
and K := A(x1, . . . , xs) is a field of rational functions over A. Moreover we suppose that the
field K is represented in such a way that we are able to deal with Problem (1) in Definition 2.6.

Given such a representation of the field K there are algorithms that solve Problem (2) in
Definition 2.6. More precisely, given a multivariate polynomial f ∈ A[x1, . . . , xs][t1, . . . , te]
over an algebraic number field A, there exist algorithms to factorize f over A. But then clearly
we obtain also a factorization of f over A(x1, . . . , xs). For an exhaustive list of references for
such factorization algorithms see for instance [Win96]. Note that in all major computer
algebra system, like Mathematica or Maple, such algorithms are implemented.
Hence what remains to consider is that in any such field K the Problem GO for K∗ can be
solved. In the last years several algorithms and strategies have been introduced in order to
solve the problem GO for the group A∗. So for instance in [CLZ00] they use results from
[Mas88] which enables to bound a basis {b1, . . . , bl} ⊂ Zr for the submodule V of the Problem
GO in the following way: the entries in bi = (bi1, . . . , bir) ∈ Zr are all bounded by a common
maximum value m. Hence an extensive search enables to find a set S ⊂ Zr of solutions that
spans V. With linear algebra methods one can finally find a subset of S which forms a basis
of V. We want to emphasize that a more sophisticated and efficient algorithm for Problem
GO is developed in [Ge93a, Ge93b].
Summarizing, Problem GO can be solved for the algebraic number field A. Finally the
following proposition shows how Problem GO can be solved for a field K∗ with Property 3.1.

Proposition 3.1. Suppose that for a unique factorization domain U one can compute its
prime factorization and that for the group of units of U Problem GO can be solved. Then
Problem GO can be solved for the group Q(U)∗ where Q(U) is the quotient field of U.

Proof: Let fi ∈ Q(U)∗ for 1 ≤ i ≤ r. Then we can represent fi as fi = ui
∏s

j=1 h
mij

j for
primes hij ∈ U, all pairwise prime, units ui, and mij ∈ Z. This can be done completely con-
structively: first we compute the prime factorization of fi; this can be done by assumption.
Afterwards collect all its primes, all relatively prime, namely {h1, . . . , hs}. Together with the
multiplicities mij of hj in fi and ui := fi/

∏s
j=1 h

mij

j 6= 0 we obtain this representation.

Next compute a basis of the Problem GO for (u1, . . . , ur) ∈ (U∗)r, i.e., a basis U of a submod-
ule U of Zr over Z; this can be done by assumption. Afterwards we search for all solutions
y = (y1, . . . , yr) ∈ Zr of the linear diophantine system







m11 . . . m1r
...

...
...

ms1 . . . msr













y1
...
yr






= 0.

The solution set Y builds up a submodule of Zr over Z which is finitely dimensional and free.
A basis Y for this solution space can be computed by linear algebra; see for instance [Sim84].
Given these two bases U and Y one can compute by linear algebra a basis P of the finitely
dimensional submodule U ∩ Y of Zr over K. We show that this set U ∩ Y gives exactly the
solution of Problem GO of (f1, . . . , fr). Let v := (v1, . . . , vr) ∈ U ∩ Y ⊆ Zr. Since v ∈ Y and
v ∈ U, it follows that

∏r
i=1 uvi

i = 1 and
∏r

i=1 h
mij vi

j = 1 for all 1 ≤ j ≤ s. Therefore with

(

r
∏

i=1

uvi

i

)

s
∏

j=1

r
∏

i=1

h
mij vi

j =
r
∏

i=1



ui

s
∏

j=1

h
mij

j





vi

=
r
∏

i=1

fvi

i , (2)

we have
∏r

i=1 fvi

i = 1. Now suppose that there exists a v = (v1, . . . , vr) ∈ Zr \ U ∩ Y with
∏r

i=1 fvi

i = 1. We will show that this leads to a contradiction. Set wj :=
∏r

i=1 h
mijvi

j for

1 ≤ j ≤ s and c :=
∏r

i=1 uvi

i . We may assume that wa 6= 1 for some 1 ≤ a ≤ s or c 6= 1, since
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otherwise v ∈ U ∩ Y. If c 6= 1, then there must be an a with wa 6= 1. Hence we may suppose
that there there exists an a with wa 6= 0 in any case. Let 1 ≤ j ≤ s be arbitrary but fixed. If
wj 6= 1, we have that wj = hz

j for some z 6= 0, and therefore, with hj a prime, wj cannot be
a unit. Hence for any 1 ≤ j ≤ s it follows that wj is 1 or not a unit. Moreover, since all hj

with 1 ≤ j ≤ s are pairwise prime, also all wj 6= 1 are pairwise prime. Hence, since wa 6= 1
for some a, w :=

∏s
j=1 wj is not a unit. But since c is a unit by construction, it follows that

w c is not a unit. By (2) we conclude that 1 6= w c =
∏r

i=1 fvi

i , a contradiction. �

Theorem 3.2. A field K with Property 3.1 is computable.

Proof: By the above remarks one can solve Problems (1) and (2) in Definition 3.1 for K.
Moreover one can solve Problem GO for A∗, with A an algebraic number field. Recall that
A[x1, . . . , xe] is a unique factorization domain in which one can compute its prime factoriza-
tion, i.e., solve Problem (2) in Definition 3.1. Hence by Proposition 3.1 one can also solve the
Problem GO for Q(A[x1, . . . , xe])

∗ = A(x1, . . . , xe)
∗. Consequently also Problem GO can be

solved algorithmically which proves that K is computable. �

Remark 3.2. We want to emphasize that Proposition 3.1 itself gives an algorithm to solve
Problem GO for G = A∗, if A is the quotient field of a unique factorization domain U in which
one can compute its prime factorization and if the problem GO for the units in U is solvable.
An example for this situation are the integers Z or the Gaussian integers Z[i]: they are unique
factorization domains, in which one can compute its prime factorization; see for instance
[PZ89]. Moreover for the units 1,−1 in Z and 1,−1, i,−i in Z[i] Problem GO can be easily
solved. Hence, by applying Proposition 3.1 twice, we can solve Problem GO for a field K with
Property 3.1 where the algebraic number field is restricted to A = Q or A = Q(i). I want
to point out that this is exactly that class of computable fields that can be treated in Sigma
[Sch00, Sch01] so far; certainly, implementations of the algorithms proposed in [Ge93a, Ge93b]
would be an important contribution.

4. Simplification of Π-extensions

In this section we deal with the problem to simplify Π-extensions (F(t)(p), σ) of (F(t), σ)
where (F(t), σ) is a ΠΣ-field. For instance with the proposed algorithms we are able to obtain
the following simpler product representations:

n
∏

k=1

(−k − 1)(k + 7)

(k + 4)2
=

4

35

(n + 5)(n + 6)(n + 7)

(n + 2)(n + 3)(n + 4)
(−1)

n
, (3)

n
∏

k=1

(k + 3)(Hk(k + 1) + 1)2(Hk(k + 2)(k + 1) + 2k + 3)

(k + 1)2Hk(Hk(k + 3)(k + 2)(k + 1) + 3(k + 4)k + 11)
=

11

6

(n + 3)(n + 2)(Hn(n + 1) + 1)2

(n + 1)(Hn(n + 3)(n + 2)(n + 1) + 3(n + 4)n + 11)

n
∏

k=1

Hk,

(4)

n
∏

k=1

k!(Hk(k + 2)(k + 1) + 2k + 3)(Hk(k + 1) + 1)

Hk(k + 3)(k + 2)(k + 1) + 3(k + 4)k + 11
=

11(Hn(n + 1) + 1)

Hn(n + 3)(n + 2)(n + 1) + 3(n + 4)n + 11

n
∏

k=1

k!Hk, (5)

n
∏

k=1

(qk+2 + (k + 1)!)(qk+1 + k!)(k + 2)(k + 1)

(qk+3 + (k + 2)!)(k + 3)
=

3(q3 + 2)

q + 1

(qn+1(n + 1) + (n + 1)!)

(qn+3 + (n + 2)!)(n + 3)

n
∏

k=1

(kq
k

+ k!). (6)

Example 4.1. Consider the ΠΣ-field (Q(x)(t), σ) over K with σ(x) = x+1 and σ(t) = t+ 1
x+1 .

The left side in (4) can be rephrased with the Π-extension (Q(x)(t)(p), σ) of (Q(x)(t), σ) with

σ(p) = f p where f := σ( (x+3)(t(x+1)+1)2(t(x+2)(x+1)+2x+3)
(x+1)2t(t(x+3)(x+2)(x+1)+3(x+4)x+11)

). The product at the right side

can be represented by the Π-extension (Q(x)(t)(q), σ) with σ(q) = f ′ q where f ′ = σ(t).

As it will turn out, these two ΠΣ-fields (Q(x)(t)(p), σ) and (Q(x)(t)(q), σ) are isomorph. In
general we try to find among all the equivalent Π-extensions a specific one where the degrees

of numerator and denominator in σ(p)
p ∈ F(t) are minimal.
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Definition 4.1. Two difference field extensions (F(p), σ), (F(q), σ) are F-isomorphic, if there
exists a field isomorphism τ : F(p) → F(q) with τ σ = σ̃ τ and τ(f) = f for all f ∈ F. We also
say that (F(p), σ) and (F(q), σ) are F-isomorphic and τ is an F-isomorphism.

Suppose we have given two Π-extensions (F(p), σ), (F(q), σ) of (F, σ) with an F-isomorphism
τ : F(p) → F(q) and ai ∈ F(p), f ∈ F(p). Then for any g ∈ F(p) it follows that am σm(g)+· · ·+
a1 σ(g) + a0 g = f if and only if τ(am) σm(τ(g)) + · · ·+ τ(a1) σ(τ(g)) + τ(a0) g = τ(f). Hence
p and q describe in the difference field setting the “same” object. Nevertheless, all these
isomorphic extensions can be represented in different complicated ways as it is illustrated
in(4)–(6). This motivates to consider

Problem SΠ: Simplification of Π-extensions

• Given a ΠΣ-extension (F(t), σ) of (F, σ) and a Π-extension (F(t)(p), σ) of (F(t), σ) with f := σ(p)
p

;

• find among all the F(t)-isomorphic Π-extensions (F(t)(q), σ) of (F(t), σ) with f ′ := σ(q)
q

that one where the

degrees of the numerator and denominator of f ∈ F(t) are minimal; construct also the F(t)-isomorphism.

As it will turn out there are such extensions in which the numerator and denominator of
σ(p)

p ∈ F(t) have minimal degree. Moreover this problem can be solved algorithmically if

(F, σ) is a ΠΣ-field over a computable constant field.

First we try to specify the above problem in more concrete terms. The following lemma states
how an F-isomorphic Π-extension looks like.

Proposition 4.1. Let (F(p), σ), (F(q), σ) with f := σ(p)
p , f ′ := σ(q)

q be Π-extensions of (F, σ)

with an F-isomorphism τ : F(p) → F(q). Then τ(p) = g qi and f = σ(g)
g f ′i for some g ∈ F∗

and i ∈ {−1, 1}.

Proof: Consider any F-isomorphism τ : F(p) → F(q). Then σ(τ(p))
τ(p) = τ(σ(p)

p ) = τ(f) = f =
σ(p)

p ∈ F. By Theorem 2.2 it follows that τ(p) = g qi for some g ∈ F∗ and i ∈ Z. Since

the reversed map τ−1 : F(q) → F(p) is also an F-isomorphism, the same argument from above
can be applied: there exists an h ∈ F and a j ∈ Z such that τ(q) = h pj . Therefore p =
τ−1(τ(p)) = τ−1(g qi) = g τ−1(q)i = g (h pj)i = g hi pi j which shows that i j = 1 and hence

that i, j ∈ {−1, 1}. Moreover we have that f = σ(p)
p = σ(τ(p))

τ(p) = σ(g)
g

(

σ(q)
q

)i
= σ(g)

g f ′i. �

The next lemma states that one basically can reduce the above problem to the case that
i = 1. The other case i = −1 does not yield to something really new.

Proposition 4.2. Let (F(p), σ) and (F(q), σ) be Π-extensions of (F, σ) which are F-isomorphic
by τ : F(p) → F(q) with τ(p) = g

q for some g ∈ F∗. Then there is a Π-extension (F(q′), σ) of

(F, σ) with σ(q′)
q′ = q

σ(q) together with an F-isomorphism τ ′ : F(p) → F(q′) with τ ′(p) = g
q′ .

Proof: Write α := σ(p)
p ∈ F∗. Consider the rational function field F(q′) and define the

difference field extension (F(q′), σ) of (F, σ) with σ(q′) = 1
α q′. Now suppose that there

is an n > 0 and a g ∈ F with
(

1
α

)n
= σ(g)

g . Then we have that αn = σ(1/g)
1/g and therefore

(F(p), σ) is not a Π-extension of (F, σ) by Theorem 2.1, a contradiction. Hence by Theorem 2.1
(F(q′), σ) is a Π-extension of (F, σ). Next construct the field isomorphism τ ′ : F(p) → F(q′)
with τ ′(p) = g

q′ and τ ′(f) = f for all f ∈ F. What remains to show is that this is indeed an

F-isomorphism. First note that σ(g/q)
g/q = σ(g)

g
q

σ(q) = σ(g)
g

σ(q′)
q′ = σ(g q′)

g q′ . Moreover note that

α = σ(p)
p = σ(τ−1(g/q))

τ−1(g/q)
= τ−1

(σ(g/q)
g/q

)

. Since τ cannot map any element from F(p)\F to F, also
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τ−1 cannot map any element from F(q)\F to F. Therefore σ(g/q)
g/q ∈ F, thus α = σ(g/q)

g/q = σ(g q′)
g q′ ,

and hence σ(τ ′(p)) = σ(g q′) = αg q′ = α τ ′(p) = τ ′(α p) = τ ′(σ(p)) which shows that τ is an
F-isomorphism. �

Hence Propositions 4.1 and 4.2 from above motivate us to reduce Problem SΠ to

Problem MPE: Find a minimal product-equivalence

• Given a ΠΣ-extension (F(t), σ) of (F, σ) and f ∈ F(t)∗;

• find f ′, g ∈ F(t) such that f = σ(g)
g

f ′ where the degrees of the numerator and denominator of f ′ are minimal.

Example 4.2. In Example 4.1 we have f = σ(g)
g f ′ with g = (x+3)(x+2)(t(x+1)+1)2

(x+1)(t(x+3)(x+2)(x+1)+3(x+4)x+11) .

The next goal is to show Proposition 4.3 which says that any solution of Problem MPE also
solves Problem SΠ. First we consider further the relation between f and f ′.

Definition 4.2. Let (F, σ) be a difference field. Then f, f ′ ∈ F∗ are called product-equivalent,

in symbols f ≡π f ′, if there exists a g ∈ F∗ such that f = σ(g)
g f ′.

The observation that ≡π forms an equivalence relation will be heavily used in the sequel.
The following lemma is needed for Proposition 4.3 which connects the Problems SΠ and MPE.

Lemma 4.1. Let (F(p), σ) be a Π-extension of (F, σ) with α := σ(p)
p ∈ F. If 1 ≡π f for some

f ∈ F, there exists a Π-extension (F(q), σ) of (F, σ) with σ(q)
q = α f .

Proof: Since 1 ≡π f , there is a g ∈ F∗ with f = σ(g)
g . Suppose that there is no Π-extension

(F(q), σ) of (F, σ) with σ(q)
q = α f . Then by Theorem 2.1 there are n > 0 and h ∈ F with

σ(h)
h = (α f)n. Thus σ(h)

h = αn σ(fn)
fn , and consequently σ(h f−n)

h f−n = αn with h f−n ∈ F, a

contradiction by Theorem 2.1. �

Proposition 4.3. Let (F(p), σ) be a Π-extension of (F, σ) with f := σ(p)
p ∈ F and constant

field K and let f ≡π f ′ for some f ′ ∈ F. Then one can construct an F-isomorphic Π-extension

(F(q), σ) of (F, σ) with σ(q)
q = f ′. In particular, if f = σ(g)

g f ′ for g ∈ F∗, an F-isomorphism

τ : F(p) → F(q) can be defined by τ(p) = k g q for any k ∈ K∗.

Proof: Since f ≡π f ′, there exists a g ∈ F∗ with f ′ = σ(g)
g f , i.e., f ′/f ≡π 1. Hence by

Lemma 4.1 there is a Π-extension (F(q), σ) of (F, σ) with σ(q)
q = f ′. Now define the field

isomorphism τ : F(p) → F(q) with τ(p) = k g q for some k ∈ K∗ and σ(h) = h for all h ∈ F.
Since τ(σ(p)) = τ(f p) = k τ(f) τ(p) = k f g q = k σ(g) f ′ q = k σ(g) σ(q) = σ(k g q) =
σ(τ(p)), τ is an F-isomorphism. �

In other words, given a Π-extension (F(t)(p), σ) of (F(t), σ) with f := σ(p)
p , and elements

f1, . . . , fk ∈ F∗ with f ≡π f1 ≡π . . . ≡π fk, one can construct Π-extensions (F(t)(pi), σ) of

(F(t), σ) with σ(pi)
pi

= fi which are all isomorphic to each other.

Example 4.3. In Examples 4.1 and 4.2 the ΠΣ-fields (Q(x)(t)(p), σ) and (Q(x)(t)(q), σ) are
Q(x)(t)-isomorph with τ(p) = k g q for any k ∈ Q∗. This is exactly reflected in Identity (4)
with the specific value k = 11

6 which comes from checking initial values.

Suppose that one is able to solve Problem SΠ, i.e., to find among all those fi a specific
one, say fr, where the degrees of numerator and denominator are minimal. Then also for

the Π-extension (F(t)(pr), σ) of (F(t), σ) the numerator and denominator of f ′

r = σ(pr)
pr

will
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have minimal degrees among all the possible Π-extensions (F(t)(pi), σ). In addition, Proposi-
tions 4.1 and 4.2 ensure that there do not exist any further F(t)-isomorphic Π-extensions that
are of simpler type. In other words Problem SΠ is solved, if one can solve Problem MPE.

Finally we introduce algorithms that enable to solve Problem MPE. We want to point out
that the following results are inspired by the work of [AP02]. In particular for the special case
that (F(t), σ) is the ΠΣ-field over F with σ(t) = t + 1 the following results can be embedded
in [AP02]. On one side our algorithms are not as efficient as in [AP02] in order to solve
the Problem MPE. On the other side our results are much more general. This in particular
enables to solve the Problem MPE not only for the special case as in [AP02], but for any
ΠΣ-field (F(t), σ) over K. In particular we cover the q-hypergeometric case t ↔ qk or for
instance the case t ↔ Hk.

Lemma 4.2. Let (F(t), σ) be a ΠΣ-extension of (F, σ) and write f = u f1 . . . fk ∈ F(t) and
f ′ = u′ f ′

1 . . . f ′

k ∈ F(t) in σ-factorizations where the factors in fi, f
′

i are σ-equivalent. If
f ≡π f ′ then for all 1 ≤ i ≤ k we have fi ≡π ui f

′

i for some ui ∈ F∗.

Proof: The proof will be done by induction on k. For k = 1 nothing has to be shown. Now
suppose that the lemma holds for k ≥ 1 and consider the σ-factorizations g = v g1 . . . gk+1,
f = u f1 . . . fk+1 and f = u′ f ′

1 . . . f ′

k+1 where all factors in fi, f ′

i and gi are σ-equivalent.

Suppose that there does not exist a uk+1 ∈ F∗ such that fk+1 = uk+1
σ(gk+1)

gk+1
f ′

k+1. Write

p := v g1 . . . gk, q := u f1 . . . fk and q′ := u′ f ′

1 . . . f ′

k. Since q fk+1 = σ(p)
p

σ(gk+1)
gk+1

q′ f ′

k+1, it

follows that fk+1 = h
σ(gk+1)

gk+1
f ′

k+1 where h := σ(p)
p

q′

q /∈ F. Note that all nontrivial factors in

p, q, and q′ are not σ-equivalent with any nontrivial factor in fk+1. Hence also all nontrivial
factors in σ(p) and therefore also in h (at least one factor, since h /∈ F) are not σ-equivalent to

the nontrivial factors in fk+1. Conversely, any nontrivial factor in
σ(gk+1)

gk+1
f ′

k+1 is σ-equivalent

with any nontrivial factor in fk+1. Altogether, fk+1 =
σ(gk+1)

gk+1
f ′

k+1 h contains at least one

nontrivial factor that is not σ-equivalent in fk+1, a contradiction. Therefore there exists such

a uk+1 ∈ F, more precisely, we can take uk+1 := h ∈ F. Moreover this means that q = 1
h

σ(p)
p q′

and hence we may apply the induction assumption which proves the theorem. �

Given a field of rational functions F(t), f ∈ F(t) can be uniquely represented with f = f1

f2

where f1, f2 ∈ F[t], gcd(f1, f2) = 1 and f2 is monic. In the sequel we denote num(f) = f1

and den(f) = f2 as the numerator and denominator of f .

Definition 4.3. Let (F(t), σ) be a ΠΣ-extension of (F, σ). f ∈ F(t) is σ-reduced, if for all
k ∈ Z we have that gcd(σk(num(f)), den(f)) = 1.

With this definition that generalizes the notions in [AP02] Theorem 4.1 will give the key idea
to solve Problem MPE. Note that Lemma 4.3 is immediate.

Lemma 4.3. Let (F(t), σ) be a ΠΣ-extension of (F, σ) and f = u f1 . . . fk ∈ F(t) with fi =
∏ni

j=1 σj(h
mij

i ) be its σ-factorization. Then f is σ-reduced if and only if for all i we have that
either mij ≥ 0 for all j, or mij ≤ 0 for all j.

Lemma 4.4. Let (F(t), σ) be a ΠΣ-extension of (F, σ) and p, q ∈ F[t] with σk(p) = q for

some k ∈ Z. Then one can construct a g ∈ F[t] with deg(g) = |k| deg(p) and q = p σ(gsign(k))

gsign(k) .
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Proof: If k ≥ 0, take g :=
∏k−1

i=0 σi(p) ∈ F[t]. Then σ(g)
g =

∏k−1
i=0 σi+1(p)
∏k−1

i=0 σi(p)
= σk(p)

p = q
p . If k < 0,

take g :=
∏

−k
i=1 σ−i(1

p). Then σ(g)
g =

∏

−k
i=1 σ−i+1(1/p)
∏

−k
i=0 σ−i(1/p)

= 1/p
σk(1/p)

= q
p . Since deg(σi(p)) = deg(p)

for i ∈ Z, the lemma follows. �

Theorem 4.1. Let (F(t), σ) be a ΠΣ-extension of (F, σ) and f ∈ F(t). Then there exists an
f ′ ∈ F(t) with f ≡π f ′ such that deg(den(f ′)) < deg(den(f)) or deg(num(f ′)) < deg(num(f))
if and only if f is not σ-reduced.

Proof: Write f = u f1 . . . fk in a σ-factorization where fi =
∏ni

j=1 σj(h
mij

i ). First suppose
that f is not σ-reduced. Then by Lemma 4.3 there exist k and r, s such that mkr > 0
and mks < 0. If r > s, set w := σs(hk). Otherwise, if r < s, set w := σr(1/hk).

Then σr(hk)
σs(hk) = σl(w)

w for l = |r − s|. Hence by Lemma 4.4 there is a g ∈ F(t)∗ with

σ(g)
g = σl(w)

w = σr(hk)
σs(hk) . Thus for f ′ := f σs(hk)

σr(hk) we have deg(num(f ′)) < deg(num(f)) and

deg(den(f ′)) < deg(den(f)) with f = σ(g)
g f ′. Conversely, suppose that there are f ′, g ∈ F(t)

with f = σ(g)
g f ′ such that deg(den(f ′)) < deg(den(f)) or deg(num(f ′)) < deg(num(f)).

By Lemma 4.2 there exist gi ∈ F(t) and ui ∈ F(t) for all 1 ≤ i ≤ k such that fi =

ui
σ(gi)

gi
f ′

i . Moreover we may suppose that there exists a j such that 0 ≤ deg(num(f ′

j)) <

deg(num(fj)) or 0 ≤ deg(den(f ′

j)) < deg(den(fj)); otherwise for f ′ it would follow that

deg(den(f ′)) ≥ deg(den(f)) and deg(num(f ′)) ≥ deg(num(f)), a contradiction. Take such a

j. Write
σ(gj)

gj
= a

b with a := num(σ(gj)) den(gj) ∈ F[t] and b := den(σ(gj)) num(gj) ∈ F[t].

Since deg(num(gj)) = deg(num(σ(gj))) and deg(den(gj)) = deg(den(σ(gj))), it follows that

deg(a) = deg(b). Moreover with d := deg(gcd(a, b)), we have deg(num(
σ(gj)

gj
)) = deg(a)− d =

deg(b) − d = deg(den(
σ(gj)

gj
)). Furthermore with d′ := deg(gcd(num(

σ(gj)
gj

f ′

j), den(
σ(gj)

gj
f ′

j)))

it follows deg(num(fj)) = deg(num(
σ(gj)

gj
f ′

j)) = deg(num(f ′

j)) + deg(num(
σ(gj)

gj
)) − d′ and

deg(den(fj)) = deg(den(
σ(gj)

gj
f ′

j)) = deg(den(f ′

j)) + deg(den(
σ(gj)

gj
)) − d′. Subtracting both

equations gives deg(num(fj)) − deg(num(f ′

j)) = deg(den(fj)) − deg(den(f ′

j)). In particular

one of those differences must be positive by the choice of j. Hence deg(num(fj)) > 0 and
deg(den(fj)) > 0. But this means that f is not σ-reduced which proofs the theorem. �

Corollary 4.1. Let (F(t), σ) be a ΠΣ-extension of (F, σ) and f ∈ F(t). Any f ′, g ∈ F(t) with

f = σ(g)
g f ′ where f ′ σ-reduced is a solution of the Problem MPE.

Proof: Suppose that there is a solution φ, γ ∈ F(t) with f = σ(γ)
γ φ where the degree of the

numerator or denominator of φ is smaller than that one of f ′. Since f ≡π φ and f ≡π f ′, we
have f ′ ≡π φ. Hence f ′ is not σ-reduced by Theorem 4.1, a contradiction. �

Remark 4.1. For the rational case, i.e., (F(t), σ) is the ΠΣ-field over F with σ(t) = t + 1,

such a representation of f ∈ F(t) with f = σ(g)
g f ′, f ′, g ∈ F(t) and f ′ σ-reduced is called

rational normal form in [AP02].

Lemma 4.3 in combination with Lemma 4.4 immediately gives a recipe to solve Problem MPE.

Algorithm 4.1. An algorithm for Problem MPE

(f ′, g)=FindMinimalProductEquivalence((F(t), σ), f)
Input: A ΠΣ-field (F(t), σ) over a computable constant field, f ∈ F(t)∗.
Output: A solution f ′, g ∈ F(t) for the Problem MPE

(1) Compute a σ-factorization f = u f1 . . . fk where fi =
∏ni

j=0 σj(h
mij

i ).
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(2) for all 1 ≤ i ≤ k and all 1 ≤ j ≤ ni compute gij :=
∏j−1

l=0 σl(h
mij

i ).
(3) for all 1 ≤ i ≤ k compute mi :=

∑ni

l=1 mij .

(4) RETURN f ′ := u
∏k

l=1 h
mi
i and g :=

∏k

i=1

∏ni

j=1 gij .

Corollary 4.2. Algorithm 4.1 is correct.

Proof: Since K is computable, the σ-factorization of f can be computed. By Lemma 4.4 we

have σj(h
mij

i ) = h
mij

i
σ(gij)

gij
, and hence f = σ(g)

g f ′. By Lemma 4.3 f ′ is σ-reduced, and hence

by Theorem 4.1 the degrees of numerator and denominator of f ′ are minimal. �

Example 4.4. In Example 4.1 the σ-factorization of f is h−1 σ(h2) σ2(h) σ3(h−1) for h =
σ(t). Following the strategy of Algorithm 4.1 we compute g and f ′ from Example 4.2 as

g =
[

1
]

−1 [
h
]2 [

h σ(h)
]1 [

h σ(h) σ2(h)
]

−1
and f ′ = h−1+2+1−1 = σ(t).

Remark 4.2. We want to mention that Algorithm 4.1 returns just one of many f ′, g that
solve Problem MPE. Actually for fi =

∏ni

j=1 σj(h
mij

i ) Lemma 4.4 tells us, how any factor of
the numerator can be eliminated with any factor of the denominator in fi.

Corollary 4.3. Let (F(t), σ) be a ΠΣ-field over a computable K and f ∈ F(t)∗. If there are

a g ∈ F(t) and an f ′ ∈ F with f = σ(g)
g f ′, Algorithm 4.1 will compute such g and f ′.

Proof: This is follows by the minimal degrees of the numerator and denominator in f ′. �

Example 4.5. Let (K(x), σ) be the ΠΣ-field over K with σ(x) = x + 1 and f = (−x−2)(x+8)
(x+5)2

.

Then Algorithm 4.1 computes g = (x+5)(x+6)(x+7)
(x+2)(x+3)(x+4) with f = (−1) σ(g)

g , which gives (3).

Remark 4.3. Let (F, σ) be a ΠΣ-field over a computable K with F = K(t1, . . . , te), and let

(F(p), σ) be a Π-extension of (F, σ) with f := σ(p)
p ∈ F. Then we want to emphasize that

if there exists a Π-extension (F(p′), σ) of (F, σ) with f ′ = σ(p′)
p′ ∈ K(t1, . . . , te−1) which is F-

isomorphic to (F(p), σ), Algorithm 4.1 will find such an extension. Moreover it is important
to mention that this simplification can be applied recursively. Hence one can find an F-

isomorphic Π-extension (F(p′), σ) of (F, σ) with σ(p′)
p′ ∈ K(t1, . . . , ti) where i is minimal.

5. Representation of a (q-)hypergeometric term with a Π-extension

In this section we will analyze which kind of (q-)hypergeometric terms can be represented in
ΠΣ-fields. A sequence given by h(n) is a (q-)hypergeometric term over K, if for some n ≥ k0

on its quotient h(n+1)/h(n) can be represented as rational function in K(n) (resp. K(qn)). In
other words, a (q-)hypergeometric term h(n) can be written as a product h(n) =

∏n
k=k0

f(k)

where f(k) can be represented as a rational function in k (resp. qk). In the sequel it will turn
out that only those (q-)hypergeometric terms cannot be expressed in a ΠΣ-field that are of the
type γn r(n) where γ 6= 1 is a root of unity and r(n) is a rational function in n. Note that with
the results of the previous section one can compute such a γ and r(n), if h(n) =

∏n
k=0 f(k)

can be expressed as γn r(k); see Corollary 4.3 and Example 4.5. In this context it is important
to mention that generalizations [Sch01] of the algorithms in [Kar81, Sch02c] enable to search
for solutions of linear difference equations involving objects like γn; although there are still
open problems, these algorithms implemented in the summation package Sigma [Sch00] were
successfully applied in various concrete examples like for instance in [Sch01, Sch03a].

Lemmas 5.1 and 5.2 provide some shortcuts for the central Lemma 5.3.

Lemma 5.1. Let (K(t), σ) be a ΠΣ-field over K, and let α ∈ K∗ be a root of unity. If there

exists an n > 0 and a g ∈ K(t) with σ(g)
g = αn then g ∈ K∗ and αn = 1.
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Proof: Since α is a root of unity, we can find an r ≥ 1 with αr = 1. Suppose there exists an

n > 0 and a g ∈ K(t) with σ(g)
g = αn Hence 1 = αnr = σ(gr)

gr and therefore gr ∈ K. Since K(t)

is a field of rational functions, it follows that g ∈ K. Therefore 1 = σ(g)
g = αn. �

Lemma 5.2. Let K be a field and g, h ∈ K∗. If gn = hn for some n ∈ Z then g = v h for
some v ∈ K∗ with vn = 1

Proof: Since 1 = gn

hn =
( g

h

)n
, we have v := g

h ∈ K∗ with vn = 1 and hence g = v h. �

Lemma 5.3. Let (K(t), σ) be a Σ-extension of (K, σ) with constant field K, α ∈ K(t)∗ and

n > 0. Then there is a g ∈ K(t) with σ(g)
g = αn iff there is a g′ ∈ K(t) with σ(g′)

g′ = v α for

some v ∈ K∗ with vn = 1.

Proof: The direction from right to left is immediate by taking g := g ′n. We consider the
proof direction from left to right. If α is a root of unity, we may apply Lemma 5.1, and it
follows that αn = 1. Hence we can choose g′ := 1 and v := αn−1 with vn = 1 which shows

that 1 = α v = σ(g′)
g′ . Otherwise suppose that αn 6= 1 and hence that g /∈ K. We can write g

in form of its σ-factorization g = u g1 · · · gk, k > 0, where u ∈ K∗, gcd(gi, σ
l(gj)) = 1 for all

i 6= j, and l ∈ Z and

gi =

ri
∏

j=0

σj(hi)
mij 6= 1 (7)

where hi ∈ K[t] \ K is irreducible and mij ∈ Z. Then it follows that σ(g)
g = αn holds only,

if for all 1 ≤ i ≤ k and all 0 ≤ j ≤ ri − 1 we have that n | (mi,j+1 − mi,j) and n | mi,ri
.

But because of n | mi,ri
and n | (mi,ri

− mi,ri−1), it follows that n | mi,ri−1. Applying this
argument ri times proves that n | mij for all 1 ≤ i ≤ k and all 1 ≤ j ≤ ri. Hence gi = g′ni for

g′i :=
∏ri

j=0 σj(hi)
mij/n ∈ K[t] for all 1 ≤ i ≤ k. But this proves that there exists a g′ ∈ K(t)

with g = u g′n. Since u ∈ K∗, σ(u) = u and therefore αn = σ(g)
g = σ(g′n)

g′n =
(σ(g′)

g′

)n
. Together

with Lemma 5.2 the statement is proven. �

A direct consequence of Lemma 5.3 and Theorem 2.1 shows

Theorem 5.1. Let (K(t), σ) be a ΠΣ-field over K where σ(t) = t + 1. Then there exists a

Π-extension (K(t)(p), σ) of (K(t), σ) with α := σ(p)
p ∈ K if and only if there do not exist a

g ∈ K(t) and a root of unity v ∈ K∗ with σ(g)
g = v α.

Now consider the hypergeometric term h(n) =
∏n

k=k0
f(k) with f(n) ∈ K(n) and the ΠΣ-

field (K(n), σ) over K with σ(n) = n + 1. Moreover suppose that there does not exist a
Π-extension (K(n)(p), σ) with σ(p) = α p. Under this assumption we obtain immediately,
how h(n) must look like. By Theorem 5.1 there exists a root of unity γ and an r(n) ∈ K(n)

such that r(n+1)
r(n) = γ f(n). Hence for g(n) := (1/γ)n r(n), 1/γ a root of unity, it follows that

g(n+1)
g(n) = f(n). Therefore from a fixed k1 on and constant c ∈ K∗ we have that

h(n) = c g(n) = c (1/γ)n r(n), n ≥ k1.

In particular this gives two cases: (1) γ = 1, i.e., h(n) = r(n) can be rephrased in the ΠΣ-field
(K(n), σ). (2) γ 6= 1, i.e., h(n) cannot be represented in a ΠΣ-field.

Finally we turn to the q-hypergeometric case.
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Lemma 5.4. Let (K(t), σ) be a Π-extension of (K, σ) with σ(t) = a t and constant field K,

α ∈ K(t)∗ and n > 0. Then there is a g ∈ K(t) with σ(g)
g = αn if and only if there is a

g′ ∈ K(t) with σ(g′)
g′ = v b α where v ∈ K∗ with vn = 1 and bn = az for some b ∈ K and z ∈ Z.

Proof: The direction from right to left is immediate by taking g := g ′n tz. So we turn
to the other proof direction. If α is a root of unity, we follow the proof of Lemma 5.3.
Otherwise suppose that αn 6= 1, and hence g /∈ K. We can write g in its σ-factorization form
g = u tz g1 · · · gk where u ∈ K∗, z ∈ Z, gcd(gi, σ

l(gj)) = 1 for all i 6= j and l ∈ Z, and (7)
where hi ∈ K[t] \ K is irreducible, t - hi and mij ∈ Z. If k = 0, g = u tz. Otherwise, suppose

k > 0. Then following the argumentation of Lemma 5.3, σ(g)
g = αn holds only, if n | mij for

all 1 ≤ i ≤ k and all 1 ≤ j ≤ ri. Hence gi = g′ni for g′i =
∏ri

j=0 σj(hi)
mij/n. But this proves

that there exists a g′ ∈ K(t) with g = u tz g′n for k = 0 or k > 0. Since u ∈ K∗, σ(u) = u

and therefore αn = σ(g)
g = az σ(g′n)

g′n = az
(σ(g′)

g′

)n
. Take b := α g′

σ(g′) ∈ K(t). Then bn = az ∈ K∗,

therefore b ∈ K∗, and hence αn =
(

b σ(g′)
g′

)n
. Thus the lemma is proven by Lemma 5.2. �

Lemma 5.5. Let K(q) be a rational function field, b ∈ K(q)∗ and n > 0. Then bn = qz for
some z ∈ Z if and only if b = u qr for some r ∈ Z and u ∈ K∗ with un = 1.

Proof: The implication from right to left follows immediately. For the other proof direction
suppose first that z = 0. Then bn = 1, therefore b ∈ K∗, and setting u := b and r := 0 shows
this implication. Now suppose that z > 0 and bn = qz. If b ∈ K(q) \ K[q] then bn /∈ K[q],
a contradiction. Hence b ∈ K[q]. Since z > 0, b ∈ K[q] \ K, and therefore r := deg(b) > 0.
Moreover, it follows that deg(b) n = z > 0. Thus we can write bn = (qr)n. Therefore by
Lemma 5.2 b = qr u for some u ∈ K(q)∗ with un = 1. Hence u ∈ K∗ which proves this case.
Otherwise, if z < 0, consider ( 1

b )
n = q−z. Then by the same argumentation, it follows that

1
b = qr u for some r ≥ 0 and u ∈ K∗ with un = 1. Thus b = q−r 1

u with
(

1
u

)n
= 1. �

A direct consequence of Theorem 2.1, Lemma 5.4, and Lemma 5.5 gives

Theorem 5.2. Let (K(q)(t), σ) be a ΠΣ-field over K(q), q transcendental over K, where

σ(t) = q t. Then there exists a Π-extension (K(q)(t)(p), σ) of (K(q)(t), σ) with α = σ(p)
p ∈ K(q)

if and only if there do not exist a g ∈ K(t) and a root of unity v ∈ K∗ with σ(g)
g = v α.

6. Hypergeometric terms in ΠΣ-fields and certain difference rings extensions

In the end of Subsection 2.2 it is indicated that the construction of Π-extensions for a given
nested product/sum expression might lead to problems. In the sequel this fact will be illus-
trated in more details. Assume that we want to find the right hand side of the identity

n
∑

k=0

(2k + 3k − 4)4k

(2k + k)(2k + 2k − 2)
=

2n + 2(4n) + n

2n + n
(8)

with our difference field machinery. As in Subsection 2.2 indicated, we try to construct a ΠΣ-
field in which the summand f(k) can be represented. In our concrete example we start with
the constant field Q and build up a ΠΣ-field that enables to formulate the sequences given by
k → 4k → 2k. In order to represent the summation object k with its shift S k = k+1, we first
construct the Σ-extension (Q(x), σ) of (Q, σ) with σ(x) = x + 1; Theorem 2.1 ensures that
this is indeed a Σ-extension. Next we try to formulate the sequence given by 4k in (Q(x), σ).
Since there does not exist an n > 0 such that 4n ∈ H(Q(x),σ), it follows by Theorem 2.1 that

we can adjoin 4k to our difference field in form of a Π-extension (Q(x)(p), σ) of (Q(x), σ) with
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σ(p) = 4 p. Next we want to express the product 2k =
∏k

l=1 2 in this difference field. We check
algorithmically that there does not exist a g ∈ F with σ(g) = 2 g. On the other side we fail to

adjoin this product in form of a Π-extension by Theorem 2.1, since 22 = σ(p)
p ∈ H(Q(x)(p),σ).

Loosely speaking, one can avoid this problem by adjoining 2k before 4k, i.e. constructing
the Π-extension (Q(x)(p′), σ) with σ(p′) = 2 p′ and afterwards rephrase 4n as t′21 ∈ Q(x)(p′).
Then the indefinite summation problem can be posed as follows: find a g′ ∈ Q(x)(p′) with

σ(g′) − g′ = p′2(p′+3x−4)
(p′+p′)(p′+2p′−2) . For instance with our package Sigma [Sch00] we compute the

solution g′ = p′2/(p′ + 2x− 2) which means that g(k) = (2k)2/((2k) + 2k − 2) is a solution of
g(k +1)−g(k) = f(k). With telescoping we immediately obtain the right hand side from (8).
Intuitively one can avoid many such problems, if one splits products into smallest possi-

ble atomics, like
∏k

l=1(4l) =
(
∏k

l=1 2
)2∏k

l=1 l; adjoining objects like k! or 2k cannot cause

anymore problems. But dealing with
∏k

l=1(−4l) =
(
∏k

l=1 −2
)2∏k

l=1 l =
(
∏k

l=1 2
)2∏k

l=1 −l

might cause problems, if afterwards one also needs k! and 2k. Actually, one could handle also
such kind of problems, if one allows difference ring extensions like (−1)k; then one could split

the above product into
∏k

l=1(−4l) = (−1)k
(
∏k

l=1 2
)2∏k

l=1 l. Summarizing, splitting products
into smaller parts enables to construct a ΠΣ-field for a given multisum expression in many
instances. In particular, if one fails to represent such an expression in a ΠΣ-field, one can try
to extract a product γk where γ a root of unity such that all other products can be rephrased
in a Π-extension. As already emphasized in the beginning of Section 5, terms like γn can be
treated at least partially algorithmically to solve linear difference equations.

The above considerations will be formalized in Theorem 6.2 and Corollary 6.1 for the ΠΣ-
field (K(x), σ) over K with σ(x) = x + 1. In order to achieve this, we will suppose that the
constant field is given as the quotient field of a unique factorization domain U. Throughout
this section the factorization in a unique factorization domain U[x] will play a major role.
So for U := Z the complete factorization of 6x3 + 6x2 − 6x − 6 is 2 · 3(x + 1)2(x − 1) and
for U := Z[i] it is −i(i + 1)23(x + 1)2(x − 1). We want to emphasize that in this section we
understand under the factorization f ∈ U[x] not only the factorization of polynomials over
U, but also the factorization of the content in U of an element in U[x]. Moreover recall that
each element f ∈ K(x) can be represented in the form f =

∏n
i=1 fmi

i where the fi ∈ U[x] are
irreducible, pairwise prime and mi ∈ Z; if mi ≥ 0, f ∈ U[x]. An irreducible element f ∈ U[x]
is an U[x]-factor in g ∈ U[x] (resp. g ∈ K(x)), if there exists an i and a unit u ∈ U∗ such that
g = u fi. So for instance in 2 x ∈ Z[x] we have that 2 and x are Z[x]-factors. Similarly 2, 3
and x are Z[x]-factors in 2

3x ∈ Q(x).

In the sequel we will consider the following subclass of ΠΣ-fields; for examples see Remark 3.2.

Property 6.1. Let U be a unique factorization domain where all units are roots of unity, K
be its quotient field, and (K(x), σ) be the ΠΣ-field with σ(x) = x + 1 over K.

First we show some important properties for U[x] that are related to Subsection 2.3.

Proposition 6.1. Let (K(x), σ) be a ΠΣ-field with Property 6.1. Then (K(x), σ) is a differ-
ence ring extension of the difference ring (U[x], σ) with σ(x) = x + 1. Moreover, if f ∈ U[x]
is irreducible, σk(f) is irreducible for any k ∈ Z.

Proof: Recall that K(x) is the quotient field of K[x]. Since K is the quotient field of U,
K(x) is the quotient field of U[x]. Hence U[x] is a subring of K(x). Since σk(f) ∈ U[x]
for any f ∈ U[x] and k ∈ Z, (Q(x), σ) is a difference ring extension of (U[x], σ). Now let
f ∈ U[x] be irreducible and suppose that σk(f) is reducible for some k ∈ Z, i.e., we find
f1, f2 ∈ U[t] with σk(f) = f1 f2 where the fi are not units. Hence f = σ−k(f1) σ−k(f2) where
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σ−k(f1), σ
−k(f2) ∈ U[x]. In particular this means that also the σ−k(fi) cannot be units, since

otherwise σ−k(fi) ∈ U, and hence σ−k(fi) = fi, a contradiction. But this means that we
find a nontrivial factorization f = σ−k(f1) σ−k(f2), a contradiction. Consequently σk(f) is
irreducible for any k ∈ Z. �

Definition 6.1. Let (U[x], σ) be a difference ring with σ(x) = x + 1 where U is a unique
factorization domain. f ∈ U[x] is σ-prime to g ∈ U[x], if gcd(σk(f), g) = 1 for all k ∈ Z.

Note that f ∈ U[x] is σ-prime to g ∈ U[x] if and only if g is σ-prime to f ; in short we will
just say that f, g are σ-prime, or not σ-prime.

Lemma 6.1. Let (K(x), σ) be a ΠΣ-field over a semi-computable K with Property 6.1 and
f, g ∈ U[x] be irreducible. Then one can decide algorithmically if f, g are σ-prime.

Proof: By Proposition 6.1 σk(f) ∈ U[x]\U is irreducible for any k ∈ Z. Hence f, g are σ-prime

iff there does not exist a k ∈ Z with σk(f)
g ∈ K. Thus the lemma holds by Theorem 2.3. �

Lemma 6.2, which is closely related to Lemma 4.4, gives the main tool to express an atomic
product in the already constructed Π-extension.

Lemma 6.2. Let (K(x), σ) be a ΠΣ-field with Property 6.1 and (K(x)(p1, . . . , pe), σ) be a

Π-extension of (K(x), σ) with αi := σ(pi)
pi

∈ U[x] irreducible. If f ∈ U[x] is irreducible but not

σ-prime with an αj, 1 ≤ j ≤ e, there is a g ∈ K(x)∗ with f = u
σ(g tj)

g tj
for some root of unity

u. If K is semi-computable, such a g and u can be computed.

Proof: Since f, αj are not σ-prime, we can write f = u σk(αj) for a k ∈ Z and a unit

u ∈ U. If k ≥ 0, take g :=
∏k−1

i=0 σi(αj). Then u
σ(g tj)

g tj
= u

∏k
i=1 σi(αj)

∏k−1
i=0 σi(αj)

αj = u σk(αj) = f . If

k < 0, take g :=
∏

−k
i=1

1
σ−i(αj)

. Then u
σ(g tj)

g tj
= u

∏

−k
i=1 σ−i(αj)

∏

−k+1
i=0 σ−i(αj)

αj = u σk(αj) = f . If K is

semi-computable, k can be computed by Theorem 2.3, and hence also u and g. �

Lemma 6.3 and 6.4 are needed to prove Theorem 6.1 which gives a criterion if certain hyper-
geometric terms can be represented with a Π-extension.

Lemma 6.3. Let (K(x), σ) be a ΠΣ-field with Property 6.1. Suppose that the α1, . . . , αe ∈
U[x], e ≥ 1, are irreducible and pairwise σ-prime. Then for mi ∈ Z, not all mi zero, there

does not exist a u ∈ K(x) such that σ(u)
u = αm1

1 . . . αme
e .

Proof: Suppose there exists such a u ∈ K(x). Take any j, 1 ≤ j ≤ e, with mj 6= 0. First
suppose that αj ∈ U. Write u =

∏r
j=1 pni

i in its prime factorization with pi ∈ U[x]. If pi /∈ U,

αj - pi. Since σ(pi) /∈ U is also prime, αj - σ(pi). Otherwise, if pi ∈ U, σ(pi)
pi

= 1. Hence

αj cannot be a U[x]-factor in σ(u)
u , a contradiction to mj 6= 0. Therefore we may suppose

that αj ∈ U[x] \ U with mj 6= 0. Now let m ∈ Z be maximal such that the irreducible
σm(αj) ∈ U[X] is a U[x]-factor in u. Then it follows that σm+1(αj) ∈ U[X] is a U[x]-factor

of σ(u) but not of u. Therefore σm+1(αj) must be a U[x]-factor in σ(u)
u . Since the αi are

pairwise σ-prime, it follows that σm+1(αj) = αj , and hence m = −1. Now let l ∈ Z be

minimal such that σl(αj) ∈ U[X] is a U[x]-factor in u. Clearly l ≤ m = −1. Moreover σl(αj)

is a U[x]-factor in u but not in σ(u), otherwise l is not minimal. Therefore σl(αj) must be

also a U[x]-factor in σ(u)
u . Since the αi are pairwise σ-prime, it follows that σl(αj) = αj , and

hence l = 0, a contradiction to l < −1. �
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Lemma 6.4. Let (K(x), σ) be a ΠΣ-field with Property 6.1 and (K(x)(p1, . . . , pe), σ) be a Π-

extension of (K(x), σ) with αi := σ(pi)
pi

∈ U[x] irreducible. Then the αi are pairwise σ-prime.

Proof: Suppose that αi, αj are not σ-prime for some i < j. Since the αi are irreducible, by

Lemma 6.2 there is a g ∈ K(x) and a unit u ∈ U with σ(g)
g = u αj . By assumption u is a root of

unity and thus um = 1 for some m > 0. Hence σ(gm)
gm = αm

j , and thus (F(p1, . . . , pj−1)(pj), σ)

is not a Π-extension of (F(p1, . . . , pj−1), σ) by Theorem 2.1, a contradiction. �

Lemma 6.5. Let (F(t1, . . . , te), σ) be a ΠΣ-extension of (F, σ) where for any Π-extension ti
we have σ(ti)

ti
∈ F∗. If there is a g ∈ F(t1, . . . , te)

∗ with σ(g)
g ∈ F then g = w tk1

1 · · · tke
e where

w ∈ F∗ and ki ∈ Z. In particular, ki = 0, if ti is a Σ-extension.

Proof: We proof the corollary by induction on n. For e = 0 nothing has to be proven. Now
suppose that the corollary holds for e ≥ 0 and consider a ΠΣ-extension (E(te+1), σ) of (E, σ)

with E = F(t1, . . . , te). Let g ∈ E(te+1) such that α := σ(g)
g ∈ F. Applying Theorem 2.2

we get g = w t
ke+1

e+1 where w ∈ E with ke+1 ∈ Z. In particular, if te+1 is a Σ-extension, it
follows that ke+1 = 0, and hence g ∈ E. By the induction assumption this case is proven.

Otherwise, if te+1 is a Π-extension, we have α = σ(g)
g = σ(w)

w fke+1 with f := σ(te+1)
te+1

∈ F and

thus σ(w)
w = α

fke+1
∈ F. Together with the induction assumption the corollary is proven. �

Theorem 6.1. Let (K(x), σ) be a ΠΣ-field with Property 6.1 and (K(x)(p1, . . . , pe), σ) be

a Π-extension of (K(x), σ) with αi := σ(pi)
pi

∈ U[x] irreducible. Moreover let α ∈ U[x] be

irreducible. Then there exists a Π-extension (K(x)(p1, . . . , pe)(p), σ) of (K(x)(p1, . . . , pe), σ)
with σ(p) = α p if and only if α is σ-prime with all the αi.

Proof: By Lemma 6.4 all the αi are pairwise σ-prime. In particular, if (K(x)(p1, . . . , pe)(p), σ)
is a Π-extension of (K(x)(p1, . . . , pe), σ) with σ(p) = α p, also α is σ-prime with all the
αi. This proves the direction form left to right. Conversely, suppose that there does not
exist such a Π-extension. Then by Theorem 2.1 there exists a g ∈ F and n > 0 such that
σ(g)

g = αn. By Lemma 6.5 we have g = w pk1
1 · · · pke

e for some w ∈ K(x) with ki ∈ Z. Hence
σ(w)

w = αn α−k1
1 · · ·α−ke

e where n > 0 and α, α1, . . . , αe ∈ U[x] are irreducible. Now suppose
that α is σ-prime with all the αi. Then we may apply Lemma 6.3, and it follows that there
does not exist a w ∈ K(x)∗, a contradiction. Hence α is not σ-prime with one of the αi which
proves the theorem. �

Together with Lemma 6.1, Lemma 6.2 and Theorem 6.1 one finally can design Π-extensions
in which one can represent arbitrary hypergeometric terms up to the multiplication with a
root of unit.

Theorem 6.2. Let (K(x), σ) be a ΠΣ-field with Property 6.1 and α1, . . . , αr ∈ K(x)∗. Then
there exists a Π-extension (E, σ) of (F, σ) with the following property: for all 1 ≤ i ≤ r there

is a gi ∈ E and a root of unity ui ∈ U∗ with αi = ui
σ(gi)

gi
. If K is semi-computable and one

can factorize in U[x], such a Π-extension together with the ui and gi can be constructed.

Proof: Write αi = wi
∏λ

j=1 f
mij

j where the fj ∈ U[x] are irreducible and pairwise prime,
mij ∈ Z and wj a root of unity. We will show by induction on λ that there exists a Π-extension
(E, σ) of (K(x), σ) such that for all fj there exists a gj ∈ E and a root of unity uj ∈ U∗ with
σ(gj)

gj
= uj fj . Moreover, the extension E = F(p1 . . . , pe) will be constructed in such a way

that all σ(pi)
pi

∈ U[x] are irreducible, more precisely we will have that σ(pi)
pi

∈ {f1, . . . , fλ}.
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Given this result, it will follow that σ(hi)
hi

= vi αi for the root of unity vi := wi
∏λ

j=1 u
mij

j and

hi :=
∏λ

j=1 g
mij

j ∈ E, which will prove the first part of the theorem.

First we consider the base case λ = 1. By Lemma 6.3 there do not exist a g ∈ K(x) and

an n > 0 such that σ(g)
g = fn

1 . Hence by Theorem 2.1 we can construct a Π-extension

(K(x)(p1), σ) of (K(x), σ) with σ(p1)
p1

= f1. Now suppose that for an s with λ > s ≥ 1 we

already have constructed a Π-extension (E, σ) of (K(x), σ) with the above assumptions. If

fs+1 is σ-prime with all the σ(pi)
pi

for 1 ≤ i ≤ e, by Theorem 6.1 we can construct a Π-

extension (E(pe+1), σ) of (E, σ) with σ(pe+1)
pe+1

= fs+1 and we can set gs+1 := pe+1. Applying

our induction assumption together with the property of fs+1 the property still holds that
σ(pi)

pi
∈ {f1, . . . , fs+1} for all 1 ≤ i ≤ e + 1, i.e., σ(pi)

pi
is irreducible. Otherwise, if fe+1 is not

σ-prime to one of the σ(pi)
pi

, there exists by Lemma 6.2 a g ∈ E and a root of unity u such

that σ(g)
g = u fs+1. This proves the first part of the theorem.

Now suppose that K is semi-computable and one can compute the prime factorization in U[x].

Hence the prime factorizations for the αi = wi
∏λ

j=1 f
mij

j can be computed. Moreover, by
Lemma 6.1 one can check algorithmically if fs+1 is σ-prime with all the αi. In particular,

in case of existence, one compute such a g ∈ E and u as stated above with σ(g)
g = u fs+1 by

Lemma 6.2. This finishes the constructive part of the theorem. �

So far the above theorem proposes to split all products into atomics and to adjoin them (up to
a root of unit) in form of Π-extension. It is important to mention that one can avoid to adjoin
unnecessary products, if one first simplifies the given products as suggested in Corollary 4.3.

Next we show that hypergeometric terms can be expressed with one additional difference ring
extension. For this result we need the following lemma; for a proof see [Sch01, Lemma 3.6.2].

Lemma 6.6. Let (F, σ) a difference field and 1 6= γ ∈ F be a k-th root of unity. Then there
is a difference ring extension (F[y], σ) of (F, σ) with y /∈ F, constσF[y] = constσF, σ(y) = γ y
and yk = 1.

Corollary 6.1. Let (K(x), σ) be a ΠΣ-field with Property 6.1. Then for α1, . . . , αr ∈ K(x)∗

there exists a Π-extension (E, σ) of (K(x), σ) and a difference ring extension (E[y], σ) of (E, σ)

with yk = 1, σ(y)
y ∈ K and constσE[y] = K with the following property: for all 1 ≤ i ≤ r there

is a g ∈ E[y] with σ(g)
g = αi.

Proof: Let γ be a k-th root of unity that generates the cyclic group of units in U. Obviously,
k > 1. By Theorem 6.2 there is a Π-extension (E, σ) of (K(x), σ), gi ∈ E∗ and roots of unity

ui ∈ U with σ(gi)
gi

ui = αi. Moreover by Lemma 6.6 there is a difference ring extension (E[y], σ)

of (E, σ) with ym = 1, σ(y) = γ y and constσE[y] = K. Since γ is a generator of the roots of

unity, there exist ni ≥ 0 with ui = γni . With g′i := gi y
ni we have

σ(g′i)
g′i

= γni σ(gi)
gi

= αi. �

Contrary, to split product extensions into atomics clearly increases the algorithmic com-
plexity to deal with Problems LDE and GOH. In general, if one has given a Π-extension
(F(p1, . . . , pe), σ) of (F, σ), one might merge extensions to just one Π-extension.

Proposition 6.2. Let (F(t1, . . . , te), σ) be a Π-extension of (F, σ) with αi := σ(ti)
ti

and u ∈ F

a root of unity. Then there exists a Π-extension (F(t), σ) of (F, σ) with σ(t) =
(

u
∏e

i=1 αi

)

t.

Proof: Suppose such a Π-extension (F(t), σ) of (F, σ) does not exist. Then by Theorem 2.1 we

have σ(g)
g = (u

∏e
i=1 αi)

n for some n > 0, g ∈ F. Let k > 0 such that uk = 1 and take m := n k
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and g′ := gk. Then σ(g′)
g′ = (

∏e
i=1 αi)

m and hence 1
αm

e
= σ(g′)

g′
∏e−1

i=1 αm
i =

σ(g′ tm1 ...tme−1)

g′ tm1 ...tme−1
. Thus

αm
e ∈ H(E,σ) with E := F(t1, . . . , te−1), a contradiction by Theorem 2.1. �
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