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Abstract

In this paper we propose new regularization methods, based on dy-
namic programming techniques for optimal control problems of linear
quadratic type. The aim of these methods is to approximate the solution
of linear inverse ill-posed problems. We follow two different approaches:
On the first one, we derive a continuous regularization method from the
Hamilton—-Jacobi Equation and the Pontryagin maximum principle. On
the second approach, we use the Bellman optimality principle and the
dynamic programming equation as starting point to obtain a discrete reg-
ularization method. We prove regularization properties for both methods
and also obtain rates of convergence. A numerical example concerning
integral operators with convolution kernels is used to illustrate the theo-
retical results.
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1 Introduction

Let X, Y be Hilbert spaces. We consider the inverse problem of finding u € X
from the equation
Fu=y, (1)

where y € Y are the data and F' : X — Y is a linear ill-posed operator.

Since the operator F is ill-posed, the solution u does not depend in a stable
way on the right hand side y and regularization techniques have to be used
in order to obtain a stable solution. Continuous and discrete regularization
methods have been quite well studied in the last two decades and one can find
relevant information, e.g., in [7, 8, 11, 12, 14, 15] and in the references therein.
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Our main interest consists in developing regularization methods for solving
the inverse problem in (1). Our approach is based on the solution technique for
finite dimensional linear quadratic control problems, called dynamic program-
ming (see, e.g., [2, 3, 4, 5, 6]).

We start by giving a brief description of the optimal control problems men-
tioned above. These problems are characterized by possessing a linear dynamic
and a quadratic objective function. To illustrate the ideas, let us consider the
following constrained optimization problem:

Mimimize J(z,w) := /T(x(t),Lx(t)) + (w(t), Mw(t)) dt
S.t. ’ )

' = Az + Bw, t >0, z(0) =z,

where z(t) € R™ is the system trajectory, w(t) € R™, t > 0 is the control
variable, A, L € R»", B € R»™, R € M"™™ are given matrices and g € R" is
the initial condition.

The goal of the control problem is to find a pair of functions (z,w), minimiz-
ing the quadratic objective function J and satisfying the constraint imposed by
the linear dynamic system — such pairs are called admissible processes. This is a
quite well understood problem in the literature. The first approach discussed in
this paper consists in adapting a solution technique for this problem (dynamic
programming) in order to derive a continuous regularization method for the
inverse problem in (1). This is achieved as follows: First we have to define an
optimal control problem related to (1), what is done by choosing an objective
function related to the residual ||F(u) — y||. Furthermore, we use as initial con-
dition any approximation ug € X for the least square solution u! of (1). The
dynamic corresponds to the choice of a descent direction for the regularization
method. This completes the definition of the optimal control problem.

The next step in the formulation of the regularization method consists in
using the spectral decomposition of the operator F, in order to obtain, from the
dynamic programming approach, an optimal process for the control problem in
(2). Finally, we prove that the optimal trajectories u(t), t € [0,T], generate a
family of regularization operators Ry := u(T') for problem (1), in the sense of
[7]-

As alternative approach, we use as starting point the discrete optimal control
problem

N—-1
Mimimize J(z,w) := (zn,SzN) + Y {zk, Lzg) + (wi, Mwy,)

= Q
S.t.

ZTpt1 = Az + Bwg, k=0,...,N -1, zo € R".

The matrices A, B, L, M have the same meaning as in problem (2) and S € R™"
is positive definite. Notice that, in the discrete optimal control problem, the
final time T of the continuous case is substituted by the number of discrete steps
N eN



Again, using the dynamic programming technique for this discrete linear
quadratic control problem, we are able to derive an iterative regularization
method for the inverse problem (1). In this discrete framework, the dynamic
programming approach consists basically of the Bellman optimality principle
and the dynamic programming equation.

So far dynamic programming techniques have only been applied to solve
particular inverse problems. In [9] the inverse problem of identifying the initial
condition in a semilinear parabolic equation is considered. In [10] the same au-
thors consider a problem of parameter identification for systems with distributed
parameters. In this paper however, the dynamic programming methods are used
in order to formulate an abstract functional analytical method to treat general
inverse problems.

This paper is organized as follows: In Section 2 we derive the methods
discussed in this paper. In Section 3 we analyze some regularization properties
of the proposed methods. Rates of convergence are derived under abstract
source conditions. We also provide an a priori parameter choice which yields
optimal order convergence rates. Furthermore, we are able to give, for the
discrete regularization method, a characterization of the filter functions (for the
regularization operator) in terms of Chebyshev polynomials. In Section 4 we
present numerical realizations of the discrete regularization method as well as
a discretization of the continuous regularization method. We use both methods
for solving an integral equation of the first kind. We compare the performance
of our method with the Landweber iteration and also with the CG-method.

2 Derivation of the regularization methods

2.1 A continuous approach

We start this section defining an optimal control problem associated with the
linear inverse problem described in (1). Let ug € X be any approximation
for the minimum norm solution uf € X of (1). Our goal is to find a function
w:[0,T] = X such that, u(0) = ug and

IFu(T) =yl ~ [|Fu’ ~y]|. (4)

In the control literature, the function u is called trajectory (or state) and its
evolution is is described by a dynamical system. For simplicity, we choose a
linear evolution model, i.e.

u' = Au(t) + Bu(t), t>0.

where A, B : X — X are linear operators and v : [0,7] — X is the control of the
system (compare with the classical problem in (2)). Since our main concern is to
satisfy the property described in (4), it is enough for our purpose to consider a
simpler dynamic, which does not depend on the state u, but only on the control
v. This justifies the choice of the dynamic: w' = v, ¢ > 0. In this case, the
control v corresponds to a velocity function.



The next step is to choose the objective function for our control problem.
Recalling the formulation of the linear quadratic control problem in (2) and also
the goals described in (4), the objective function has to be related to the mini-
mization of both the residual norm and the velocity norm along the trajectories,
i.e.

T
I(u,v) = %/0 1Fu(t) = ylI* + lv(@®)I* dt.

Putting all together we obtain the following abstract optimal control problem
in Hilbert spaces:

T
Mimimize J(u,v) = %/ |1 Fu(t) —yl* + o) dt
0

s.t.
u'=v, t>0, u(0)=ug,

(5)

where the (fixed but arbitrary) final time T' > 0 will play the role of the reg-
ularization parameter. The functions u,v : [0,7] — X correspond respectively
to the trajectory and the control of the system, and the pairs (u,v) are called
processes.

Next we define the residual function £(t) := Fu(t) — y associated to a given
trajectory u. Notice that this residual function evolves according to the dynamic

e'=Fu'(t)=Fo(t), t>0.

With this notation, problem (5) can be rewritten in the following form

T
Mimimize J(g,v) = L / le@®I” + lo@)|* dt

0 (6)
s.t.
g =Fv, t>0, €(0)=Fug—y.

The next result states a parallel between solvability of the optimal control
problem (5) and the auxiliary problem (6).

Proposition 2.1. If (4,v) is an optimal process for problem (5), then the pro-
cess (£,7), with € := Fu —y, will be an optimal process for problem (6). Con-
versely, if (£,0) is an optimal process for problem (6), with £(0) = Fug —y, for
some ug € X, then the corresponding process (G, ) is an optimal process for
problem (5).

In the sequel, we derive the dynamic programming approach for the optimal
control problem in (6). We start by introducing the first Hamilton function.
This is the function H : R x X3 — R given by

H(t,e,\v) = (X, Fv) + 3[(e,€) + (v,0)].

Notice that the variable A plays the role of a Lagrange multiplier in the above
definition. According to the Pontryagin’s maximum principle, the Hamilton



function furnishes a necessary condition of optimality for problem (6). Fur-
thermore, since this function (in this particular case) is convex in the control
variable, this optimality condition also happens to be sufficient. Recalling the
maximum principle, along an optimal trajectory we must have

0= %guﬁuxxnm@nzzzﬂxﬂ+v@. (7)

This means that the optimal control ¥ can be obtained directly from the La-
grange multiplier A : [0,7] — X, by the formula

3(t) = —F*\(t), Vt.

Therefore, the key task is actually the evaluation of the Lagrange multiplier.
This leads us to the Hamilton-Jacobi equation. Substituting the above expres-
sion for v in (7), we can define the second Hamilton function H : R x X2 — R

H(t,u,\) = géi)r}{H(t,e, Av)} = 3ee) — (N FF*)).
Now, let V' : [0,7] x X — R be the value function for problem (6), i.e.

V(t,€) := min {% ftT lle(8)]]? + [|v(s)||? ds | (g,v) admissible process
for problem (6) with initial condition &(t) = g} . ®)

The interest in the value function follows from the fact that this function is
related to the Lagrange multiplier A by the formula: A(t) = 9V/0e(t,€), where
€ is an optimal trajectory.

From the control theory we know that the value function is a solution of the
Hamilton—Jacobi equation

ov ov

E(t,@) +H(t,€,g(t,6)) = 0. (9)
Now, making the ansatz: V(t,e) = (e, Q(t)e), with Q : [0,T] — R, we are able
to rewrite (9) in the form

(e,Q'(t)e) + (e,€) — (Q(t)e, FF*Q(t)e) = 0.

Since this equation must hold for all £ € X, the function () can be obtained by
solving the Riccati equation

Q'(t) = - I+ QMFF Q). (10)

Notice that the cost of all admissible processes for an initial condition of the
type (T,¢) is zero. Therefore we have to consider the Riccati equation (10) with
the final condition

Q(T) = 0. (11)



Once we have solved the initial value problem (10), (11), the Lagrange mul-
tiplier is given by A(t) = Q(t)&(¢t) and the optimal control is obtained by the
formula v(t) = —F*Q(¢t)é(t). Therefore, the optimal trajectory of problem (5)
is defined via

' = —F*Q#)[Fua(t) —y], @(0)=uq- (12)

We use the optimal trajectory defined by the initial value problem (12) in
order to define a family of reconstruction operators Ry : X — X, T € R,

Rr(y) = a(T) = uo— / FQU)[Fa(t) — y] dt. (13)

We shall return to the operators {Rr} in Section 3 and prove that the family
of operators defined in (13) is a regularization method for (1) (see, e.g., [7]).

2.2 A discrete approach

In this section we use the optimal control problem (3) as starting point to
derive a discrete reconstruction method for the inverse problem in (1). Again,
let ug € X be a given approximation for the minimum norm solution u! € H of
(1) and N € N. Analogously as we did in the previous section, we aim to find
a sequence {uy}1_, in H, starting from ug = ug, such that

[Fun =yl ~ [|Fu’ —yl|. (14)

As in the previous section, we have now a discrete trajectory, represented by
the sequence uy, which evolution is described by the discrete dynamic

upyr = Aup + B, k=0,1,...

where the operators A and B are defined as before and {v; }5 ', is the control
of the system (compare with (3)). As in the continuous case, we shall consider
a simpler dynamic: ugt1 = ug +vg, k=0,1,... (i.e., A= B =1I). To simplify
the notation, we represent the processes (ug,vi)~_, by (u,v).

The objective function is chosen similarly as in the continuous case:

N-1
J(u,v) = 3{Fun —y, S(Fun —y)) + 3 kE 1Fue = ylI” + lloxll?
=0

with some positive operator S : Y — Y. Putting all together we obtain the
following abstract optimal control problem in Hilbert spaces:

Mimimize J(u,v) = {(Fun —y, S(Fun —y))

N-1 .
+ 3> o 1Fur —ylI* + [Jogll? (15)
s.t.
Up41 =Up + Vg, k=0,1,..., yoeH

where the (fixed but arbitrary) number of discrete steps N € N will play the
role of the regularization parameter.



As in the continuous approach, we define the residual sequence ey, := Fuy—1y,
associated to a given trajectory u. Notice that

Ekt1 = Fugr1 —y =¢ep + Fup, k=0,1,...

With this notation, problem (15) can be rewritten in the form

N-1
Mimimize J(g,v) = L{en,Sen) + 3 3 llexl® + [|vxl?
k=0

s.t. (16)

€41 =€k + Fog, k=0,1,..., g0 =Fup—y.

Notice that Proposition 2.1 holds also for the discrete case, i.e. if (a,?) is an
optimal process for problem (15), then the process (€,7), with & := Fug — v,
will be an optimal process for problem (16) and vice versa, as one can easily
check.

In the sequel, we derive the dynamic programming approach for the opti-
mal control problem in (16). We start by introducing the value function (or
Lyapunov function) V : R x X = R,

V(k,&) := min{Ji(g,v) | (g,v) € Zy(&) x XN_k},
where
1 =t 2 2
Tulerv) = 3ften Sen) + T llesl + gl
J:
and
Zp(€) = {e€ XN—h+1 | ex =&, Ejy1=¢€j+ Fvj, j=k,...,N — 1}.

(Compare with the definition in (8)). The Bellman principle for this discrete
problem reads

V(k, &) = min{V(k+1,&+ Fv) + 5((£,€) + (v,0)) |[ve X}.  (17)

The optimality equation (17) is the discrete counterpart of the Hamilton-Jacobi
equation (9). Notice that the value function also satisfies the boundary condi-
ton: V(N,€) = (¢, 5¢).

As in the continuous case, the optimality equation have to be solved back-
wards in time (k= N —1,...,1) recursively.

For k = N — 1, we have

V(N =-1,§) = min{5({§ + Fv, S+ Fv)) +(£,&) + (v,0)) | v € X}. (18)

A necessary and sufficient condition for uy_; to be a minima of (18) is given
by v+ F*S(€£ + Fv) = 0. Solving this equation for v we obtain

On-1 = —(F*SF+I)"'F*S¢.



In order to obtain the optimal control recursively, we evaluate the matrices

Sy = S;
for k=N—-1,...,0 evaluate
Ky = (F*Spp1 F+ )7 F*Spyy;
Sk = (I—FKk)*Sk+1(I—FKk)—i—K;:Kk—FI,

(19)

Once the matrices K, and Sy are known, we obtain the optimal control recur-
sively, using the algorithm:

€o = Fug —y;
for k=0,...,N —1, evaluate
O 1= —Kpéy; (20)
Ug4+1 = Up + Vg ;
Ekt1 = Ep + Fop;
to obtain the optimal control & = (%o,...,0n-1), the optimal trajectory for
problem (16) & = (&, . ..,&nN), and the optimal trajectory for problem (15) @ =
(tg, - . ., un). Furthermore, the optimal cost is given by V(0,&q) = %(50, Soo)-

3 Regularization properties

3.1 Regularization in the continuous case

In this section we investigate the regularization properties of the operator Ry
introduced in (13). Consider the Riccati equation (10) for the operator Q: We
may express the operator @(t) via the spectral family {F\} of FF* (see e.g.
[7]). Hence, we make the ansatz

Q(t) = / 4(t, \)dF) .

Assuming that ¢(t, \) is C' we may find from (10) together with the boundary
condition at t =T that

/ (£q(t,A) +1—gq(t,\)?A) dF\ =0, ¢(T,\)=0.

Hence, we obtain an ordinary differential equation for g:

%Q(ta )‘) =-1+ /\Q(t, )‘)2 (21)
The solution to these equations is given by
1 1
t,A) = ——= tanh(VA(t — T)) = —= tanh(VA(T —t)). 22
q(t, A) ey (VA -=T)) ey (VAT - 1)) (22)

If t < T, then Q(t) is nonsingular, since lim, ,q % = a and % is

monotonically decreasing for z > 0. Hence the spectrum of () is contained in



the interval [tanh((ﬁ"%

i , (T —t)]. Now consider the evolution equation (12):

The operator @(t) can be expressed as Q(t) = q(t, FF*); by usual spectral
theoretic properties (see, e.g., [7]) it holds that

F*q(t, FF*) = q(t, F*F)F*.
Hence we obtain the problem

w(t) = —qt, F*F)(F"Fu(t) - F'y) (23)
u(0) = wug (24)

We may again use an ansatz via spectral calculus: if we set

ut) = / o(t, \VAEAF*y

where E) is the spectral family of F*F', we derive an ordinary differential equa-
tion for g. Similar as above, we can express the solution to (23,24) in the form

cosh(vVA(T—t))

1- _
u(t) = / °°SA“WT) dE\F™y + / —Cosi(s\}{(x\(/j)\:T)t))dE)\UO. (25)

Setting t = T we find an approximation of the solution

1— —1
1
ur = u(T) = [ —=22D g, pe +/7dE uo. 26
g @) / A Ay cosh(v/AT) ATo (26)

Note the similarity to Showalter‘s methods [7], where the term exp(AT') instead
of cosh(v/AT) appears.

Theorem 3.1. The operator Ry in (13) is a regularization operator with qual-
ification pg = 0o:
If the data are exact, y = Ful and u' satisfies a source condition for some
v>0
JweX: ul=(FF)u, (27)

we have the estimate
lur —ut]] < € T2

If the data are contaminated with noise, ||y — ys|| < § and y = Ful with u'
as in (27), then we have

urs —utl| < C,T72* 4+ 6T.
078 w

In particular, the a-priori parameter choice T ~ it yields the optimal order
convergence rate
2
llur,s — ull] ~ §2e1.



Proof: For simplicity we set ug = 0, the generalization to the inhomogeneous
case is obvious. (26) gives an expression of the regularization operator in terms
of a filter function:

Ry = / F(T, \)dE\F*y

FT,2) = A~ (1 - m> _

According to [7] we have to show that the filter function f(T', ) satisfies the
properties (regarding 1/T as regularization parameter).

with

1. for T fixed, f(T,.) is continuous;

2. there exists a constant C such that for all A > 0

IMF(T, M| < C;

3. lim fr(A) =71, VA€ (0,]|F*F||.
T—o0
1. is clear since limy_o f(T, \) = TTZ the function can be extended continuously
to A =0.

. _ . 1
2. holds with C =1 since 0 S m S 1.

3. is obviously is the case since limr_,o cosh(s) = oo.
We have to show that the qualification pg = oo: this needs an estimate
wy (T) such that
MA = AT, N)]) < wu(T).

It holds that
AH AH
<2
cosh(VAT) ~  exp(VAT)

Hence, for all p >0, w,(T) ~ C,T~% holds.
On the other hand, we see that f(¢,\) is monotonically decreasing. Hence,
it takes the maximum value at A = 0:

ML =M(T,N)]) = < 2(2p)** exp(—2p) T,

sup | f(¢, M) < 5 T2
A>0

Using the results in [7] it follows immediately that with - = a we have a
regularization operator of optimal order. [ |

If we compare the dynamic programming approach with the Showalter method,

they are quite similar with 77 ~ Ts,. Hence, to obtain the same order of
convergence we only need y/T’s,, of the time for the Showalter method.

10



3.2 Regularization in the discrete case

The dynamic programming principle allows us to find an sequence of approxi-
mate solutions {uy} which is a minimizer to a certain functional.

From regularization theory we are motivated to choose a functional which
includes the norm of the residuals ||Fuy — y||.- Since in general this will not
necessarily yield a regularization, we include an additional term involving w41 —
ug. Now analogous to the continuous case we want to minimize the functional

J({ur}ilo) Z | Fux =yl + Z g1 — ugl® (28)

with respect to all sequences {uy}¥_, satisfying ug = 0. The reason for choos-
ing the norm of the residuals is clear, since we want to find an (approximate)
solution to the equation F'u = y. The second term is important to obtain a
regularization method, since it controls the size of the steplength between two
successive iterations.

At first sight it is not at all obvious that there is a constructive method
for minimizing (28) with respect to all sequences {uy}y_,. However, we show
that the minimization problem can be treated within the framework of Subsec-
tion 2.2.

Define ¢, as the k-th residual: € := Fug —y, k = 0..., N, where uy is
the solution we compute at the k-th iteration step. The control is defined as
Vg = Ug41 — Uk, K =0...N — 1. As initial starting value we set ug = 0. Hence
we obtain the k-th iterate from the control variables by

k—1
g = Zvj. (29)
=0

From these definitions we obtain the following condition, which is trivially sat-
isfied, when v and € are defined in this way:

€r+1 = € + Fug. (30)

Using the above notations, the minimization of (28), with initial condition ug =
0, is equivalent to the optimization problem in (16).
We now can use the results of Subsection 2.2 with S = I The dynamic
programming principle yields the iteration procedure
SN = T
K (F*Sk+1F—|—I)_1F*Sk+1, k=N-1...0
S = (I—FKk)*Sk_;,_l(I—FKk)+K;:Kk+I, k=N-1,...,0

If K, Sy are computed, we obtain the control vy and the error ¢, from

€ = Y
Vg = —Kka, k‘=0,...,N—1
€r+1 = €+ Fop= (I— FKk)Gk

11



The iterate uy, which represents an approximation to the solution, can be
calculated from (29).

Now we want to consider the mapping y — uy as an iterative regularization
operator where N acts as regularization parameter. This mapping can be rep-
resented by filter functions gy using spectral theory, similar to the continuous
case. The following lemma serves as preparation for this purpose. Let Ej, F)
be the spectral families of F*F, FF*.

Lemma 3.2. If Sp41 has a representation as Sk+1 = [ fr+1(N)dFx, with a con-
tinuous positive function fry1, then so has Sk, = [ fr(A\)dFx and the following
recursion formula holds:

~ frerr M)A+ 1) +1

fe() = W - (31)

frrr (M)A +1 frrrt(MA+17

Proof: We use the identity F*f(FEF*) = f(F*F)F* (see [7], (2.43)), which
holds for any piecewise continuous function f. Since fi41 is positive, the inverse
(fert (WA + 1)1 exists, and

Ky = / et A+ 1) fepr(\dEy F*.

From the identity above and some basic algebraic manipulation we obtain

Sk = / (Ferr A + 172 frpr + (Frrr WA+ 1) 72 figr (V)X + 1dF)y

=/(fk+1()‘)(/\+1)+1)

_ frr1
GO+ = J1+ fors 4E-

A+ 1
m

By definition we have Sy = I, fx obviously satisfies the hypothesis of the
theorem with fx =1 and hence, by induction, all Sy have a representation via
a spectral function fy.

An obvious consequence of the recursion formula is the following recursion:

_ v
by (X))

with hg(A) := Afi(A) + 1 and the end condition hx(A) = A+ 1.
Now we want to find a filter function gn to express uy = [ gn(A)dEy\F*y.

Using the expression I — FKy = [ (fe1(A)A + 1)"' dFy we conclude

he(X) =2+ A (32)

_ 1
€kt1 Z/(fk+1()\))\+1) L dFye; :/md}?)ﬁk Z—/mdﬂy
i=1 1
Tee1(N) e (Y)
= [N g e = [ WY g,
ok ) H T ) Y

12



Now we replace fit1 = 5 (hit1 — 1) and use (29) to obtain

it1(A) =1
()

II
1 1 1
. /0')‘ (szlhj(’\) szihj()‘)>

1 1 ,
- / X (1 S ey (A)> dE\F™y, (33)

where hy, satisfies the backwards recursion formula (32) and the end condition
hn(A) = A+ 1.

In particular, the N-th iterate, which is our approximate solution, can be
expressed as uy = fa gn (A)dEy\F*y, with the filter function

dE')\F*y

e

=

I
T~
> =
>

1 1

|
The following theorem yields a representation for gn in Terms of Chebyshev
polynomials.

Theorem 3.3. Let T),(z) be the Chebyshev polynomial of the first kind of order

() e ()]

Proof: Define p;(\) := II{_y_.hx(X), i = 0...N — 1. From the end condition
for hy we find pg = A + 1. Furthermore, follows from (32)

_ pi(N)
hn—i(})

gn(A) =

1
py

=24+ )pi(N) —pi1 (),

(35)
hence p; satisfies a three-term recursion. From (32) we see that p1 = A2 +3A+1.
If we introduce p_1(A) := 1, then the initial conditions p_1()), po(A\) together
with the three-term recursion (35) completely determine p;.

We proof the identity

pN-1(A) = T2N+1/(:1\\/T?)

For N = 0 we have p_1(\) = 1 and, since T;(z) = z, it follows ¢; = 1. Since
Ts(z) = 42° — 3z we find for N = 1 that go(A\) = A+ 1 = p;(A). Hence, the

Pitr1(A) = hy i 1(A)pi(A) = 2+ N)pi(A)

= QN()\); VN > 0.

13



identity py—1(A) = gn(A) holds for N = 0,1. Since two initial conditions and
the three-term recursion uniquely determine the sequence p;()\), ¢;(\) we only
have to show that g; satisfies the same recurrence relation as p;. Note that the
following identity holds for all N > 1 (cf. [13]):

T2N+3(.CL') - TQN_l(.’E) = 2T2N+1(.€E)T2(.’E) = 2T2N+1 (ﬂf)(2.€L‘2 - ].)
Put 7 = (3 4+ 1)'/2 and multiply the identity by (2 +1)7/2 we get
Tonys(y/53+1)  Tonoa(y/5+1) Tony1(y/4 +1)

—~ = (A+2).
+1 341

NP9

+1

>

Thus gy satisfies gnvy1(A) = (A + 2)gy — gn—1, which is the same recurrence
relation as p,. Hence gy = pn_1. |

Corollary 3.4. gn(A) has the following representations:

1 cosh (arcosh(\ /3 + 1))
v = 1| 1= , A>0 (36)
cosh ((Zn + 1)arcoshy/2 + 1))
1 1
gv(A) = <~ |1- . (37)
o (Bt ) Genemce

Proof: Equation (37) follows from the representation formula for T,,1 (see
[13]):

Tont1(z) = Z ( 27;;; ! ) g2 (2 — )™
m=0

For the identity (36) we start with the well-known representation (see [13])
Tn(x) = cos(n arccos(z)), |z| <1

From cos(z) = cosh(iz) and arcosh(z) = 7 arccos(z) we get by analytic extension
the identity
T,.(z) = cosh(n arcosh(z)), = > 1.

From this representation (36) follows, since A > 0. |

The next result concerns the regularization properties of the proposed iter-
ative method.

Theorem 3.5. The mapping y — un s a regularization operator, as N — 0.
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Proof: We have to proof the similar properties for the filter function gx(A) as
for the continuous case.
First of all, using L’Hépital’s rule we find

lim gy (\) = — lim 2 it lim 2 ( £ ) !
m = — Iim — _— = — —_—
o I A—0 d Toniry/2 +1 z=1dz \Ton41(2) 8y/2 +1

1N (1) -Tony, (1) CN+1)% -1
8 Ton+1(1)2 8 ’
where we used T},(1) = 1, T"(1) = n?. Hence gn()\) can be extended continu-
ously to A =0,
The estimate |Agn(A)| < C reduces to

cosh <arcosh(\/§)>

1- < C,
cosh ((2n + 1)arcosh % + 1))
but, by the monotonicity of cosh, it holds that 0 < % <1, asa
consequence the constant C' can be chosen C' = 1.
Finally, lim gn(A) = 3 holds, since lim cosh((2N + 1)z) = oo. [ |
N—oo N—oo

We now can proof the convergence rate result similar to the continuous case:

Theorem 3.6. Let un be defined as above. If the data are exact, y = Ful and
ul satisfies a source condition (27) for some v > 0, then

llun — || < CLN =, (38)

If the data are contaminated with noise, ||y — ys|| < § and y = Ful with ut
satisfying (27), then we have constants C,,,C, independent of N,d, such that:

luns —ull] < C,N72 4+ CSN.
The choice N ~ §%FT yields the optimal order convergence rates
llun,s — ul|| ~ 621 (39)
Proof: We have to find an estimate for
IAY(1 = Agn (M) S wp(N), VYA>0.

Hence we need a bound for

¥ cosh (arcosh(, /3 + 1))

A>0.
cosh ((2N + 1)arcoshy/ 3 + 1))

? -

£ =

15
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We may transform the variables z := (2 4+ 1)'/2, y = arcosh(z) and, using

cosh(y)? — 1 = sinh(z)?2, we get

A
1

4" sinh(y)? cosh(y)

EA(z(y) = cosh ((2N +1)y))

For y > 0 we may use the addition theorems for cosh:
|cosh((2N + 1)y)| = | cosh(2Ny) cosh(y) + sinh(2Ny) sinh(y)|

= | cosh(y) cosh(2Ny)| (1 + tanh(2Ny) tanh(y)) | > | cosh(y) cosh(2Ny)|,
and, with the estimate cosh(z) > 3 (exp(z) + 1), we get

sinh(y)? Lo sinh(y)?
cosh(2Ny) — = “exp(2Ny) + 1

I¢(y)] < 4% =4"2n(y)

Now differentiation yields the necessary condition for a maximum of n: £ (1+
exp(—z)) = tanh(z). By monotonicity we see that this equation has a unique
solution z* > 0 for N > v, which must be the maximum of 7(y), since n(0) =0
and n(oc0) = 0.

Now express sinh(z) = —~2nh(z)

1
\/1 tanh(z)2’ use exp(z)+1

<1, we get for N > 2v

(Yo __(texp(at) 1
\/1—— (1+exp(—a))2 N

Hence we get for all v and N > 2v

n(z) <

1

A |1 —Agn(A )| < C(2N)2"

which immediately yields (38) (cf. [7]).
For a proof of (39) we have to find an estimate

gn(A) <Cn, VYA>0.

Using the same transformation as above, we have to bound for all y > 0,

cosh((2N + 1)y) —cosh(y) _ 2sinh((N + 1)y) sinh((N — 1)y)

o) = S h(y)P cosh(@N + Dy) . sinh(y)?cosh((2N + 1)g)

sinh((N + 1)y)? <9 sinh((NV + 1)y)?
sinh(y)2 cosh(2Ny) — sinh(y)?(cosh(Ny)2 + sinh(Ny)?2

sinh((N + 1)y) \* _ o0
= (Sinh(y) cosh(Ny)> = 24(y)".

Now we may calculate the derivative (using summation formulae for sinh, cosh),

sinh(2y) — % sinh(2Ny)
( sinh(y)? cosh(Ny) )

Y'(y) = )

16



Now by differentiation it is easy to see that for positive y the function sinh(2y) —
+ sinh(2Ny) is strictly monotonically decreasing and it vanishes for y = 0.
Hence 9 has negative derivative for y > 0 and 4'(0) = 0. Thus the maximum
must be at y = 0. By L’Hopital’s rule

$(0) = lim sinh((N + 1)y)

=N+1.
y—0 sinh(y) +

Hence [gny(A)| < 2(N +1)2 < CN?, with a constant C independent of N. With
the results of [7, Theor. 4.3] the proof is finished. [ |

4 Numerical experiments

We are now concerned with the numerical realization of the described algorithm.
We consider the discrete variant (19,20) and a discretization of the continuous
algorithm (10,12).

The first one has a straightforward implementation. For the continuous
approach we use an explicit time-discretization Q' (t) ~ ALt(QnH — @)- Then
Equation (10) becomes an iterative procedure: (note that the Riccati-equation
has to be solved backwards in time)

Qn = Qnp1+AtI—-Qu1FF'Qpny1), n=N-1...0
Qn = 0.

Equation (12) is discretized in a similar manner:
Upt1 = Up — A(F*Qpn(Fup, —vy)), n=0...N-—-1

together with some initial condition ug.
A more efficient method is to use a recursion for B, := F*(@Q,. Since @, is
symmetric, then
Bn = Bn+1 + At(F* - B*Bn+1).

Hence we get
Unt1 = Up — At(Bp(Fupn — y))-

Since we used an explicit discretization scheme, the method will be only
stable if we bound the stepsize appropriately, e.g., At||F*F|| < 1. The explicit
discretization has the advantage that no matrix inversion is needed, by pay-
ing the price of a restricted stepsize. A detailed analysis of the regularization
properties of this iterative scheme, in the spirit of Section 3, is of course also
possible.

As a benchmark problem we consider an integral equation of the first kind:

Fu:/o k(z,y)u(y)dy.

For a discretization of this operator, we split the unit interval I = [0, 1] into m
subintervals and discretize u by using a uniform discretization with piecewise
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linear, continuous splines on each subinterval (also known as Courant-finite
elements). The integral is evaluated by the trapezoidal rule one each subinterval.

As evaluation points for « we used z; = i/m, ¢ = 0,...,m. This results in a
(m + 1) x (m + 1) matrix equation:
Fotim = Ym. (40)

We tested our algorithms with F' replaced by the discretized version F,,.

We do not address the question how the discretization parameters m has
to be related to the regularization parameter (the iteration index in our case),
but we simply consider the discretized equation as the given ill-posed problem.
Hence we use the Euclidean norm in R™+! on the discrete variables ., Y.

For our numerical test we used two different kernel functions k(z, y):

ki(z,y) = { (1- %ﬁ)(ﬁ if (x —elgg <0.1 (41)
ka(z,y) = #% exp(—20(z — y)?). (42)

The first one is 6-times continuously differentiable and hence leads to a mildly
ill-posed problem. The second one ko(z,y) is smooth, hence it leads to an
exponentially ill-posed problem.

We tested our methods for two exact solutions

1 if 03<2<05

ul(z) = z(1 —z)+cos(20z), wub(z) = { 0 else

We compared both algorithms with the Landweber-iteration and the CG-
method (see, e.g.,[7]). Throughout our numerical experiments we used a dis-
cretization of m = 300.

Figure 1 shows the error ||uy — u'|| over the iteration index N on a log-log
scale for the four algorithms and the different choices of ut and k(z,y). Here the
full line corresponds to the discrete dynamic programming method, the dotted
line to the Landweber iteration, the dashed-dotted to the continuous method
with explicit time discretization, and the dashed line to the conjugate-gradient
method.

We observe that the two methods based on dynamic programming tech-
niques are almost similar. Moreover these two methods have about the same
convergence rates than the conjugate-gradient algorithm, indicated by the same
slope of the lines. Although the CG-method seems to be faster over all.

However, we observed that the performance of the CG-method essentially
depends on the scaling of the matrix. Note that it is well-known that a clustering
of the eigenvalues can significantly improve its performance (see [7]).

Hence we tested the dependence of the discrete dynamic programming method
and the CG-method on scaling effects.

For this, we multiplied Equation (40) with a constant factor v > 1, leaving
the solution !, invariant. The corresponding eigenvalues of F*F are multiplied
with 72, hence they are less clustered.
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10° 10' 10° 10° 10' 10°

k(z,y) = ki(z,y), uf =ul k(z,y) = ki (z,y), uf =u}

vvvvv

k(z,y) = ka(2,y), uf =u] k(z,y) = ka(2,y), ul =u}

Figure 1: Evolution of the error ||ux —uf|| for exact data for all four algorithms.

Figure 2 shows the results for v = 10,100, 1000 for the CG-method and
the discrete dynamic programming technique. The other two algorithm are not
stable in this case (for instance the Landweber iteration requires ||F*F|| < 1),
and are not shown. We used the exponentially ill-posed kernel kqo(x,y) and
ul = uJ{ with the same discretization as above.

Finally we contaminated the data with 10% random noise. The results are
shown in Figure 3. Since in this case the iteration cannot converge, a correct
stopping criteria would be necessary. An a-priori stopping criterium was derived
in the Theorems 3.1, and 3.6 Of course a-posteriori stopping criteria are more
flexible. A more detailed analysis of these rules (e.g., Morozov’s discrepancy
principle, or the Engl-Gfrerer-type rules [7]) are out of the scope of this work.
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Figure 2: Effect of scaling: Evolution of the error ||uy —ut|| for the CG-method
and the discrete dynamic programming technique. Results corresponds to the
choice v = 10, 100 and 1000 respectively.

5 Final remarks and conclusions

Notice that, if @), is chosen constant, the continuous regularization method pro-
posed in this paper reduces to a preconditioned Landweber iteration. Therefore,
the dynamic programming regularization method can be considered as a gener-
alization of the Landweber method.

Numerical comparison with CG-method for scaling effects shows that, for
operators with less clustered eigenvalues, the dynamic programming method
performs better. We also observed that the convergence rate of the dynamic
programming method increases with the clustering of eigenvalues. This is not
the case by the CG-method, which convergence rate is invariant with respect to
the scaling effect.

We observed that, for ||F*F|| < 1, the different implementations of the
dynamic programming method gave similar results. In this case, it is advisable
to use the explicit time discretization of the continuous regularization algorithm,
since it requires no matrix inversion.
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10° 10" 10° 10° 10' 10°

k($7y) = kZ(way)a ut = UJ{ k(x,y) = k2($7y)7 ut = u;

Figure 3: Evolution of the error ||ux —ut|| for noisy data for all four algorithms.

21



References

[1] R.A. Adams. Sobolev Spaces. Academic Press, New York, 1975.

[2] R. Bellman. An introduction to the theory of dynamic programming. The
Rand Corporation, Santa Monica, Calif., 1953.

[3] R. Bellman. Dynamic programming. Princeton University Press, Princeton,
N.J., 1957.

[4] R. Bellman, S.E. Dreyfus, E. Stuart. Applied dynamic programming. Prince-
ton University Press, Princeton, N.J., 1962.

[5] R. Bellman, R. Kalaba. Dynamic programming and modern control theory.
Academic Press, New York — London, 1965.

[6] S.E. Dreyfus. Dynamic programming and the calculus of variations. Aca-
demic Press, New York — London, 1965.

[7] H.W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse Problems.
Kluwer Academic Publishers, Dordrecht, 1996.

[8] H.W. Engl, K. Kunisch, A. Neubauer. Convergence rates for Tikhonov regu-
larization of nonlinear ill-posed problems. Inverse Problems 5:523-540, 1989.

[9] A.B. Kurzhanskii, I.F. Sivergina. The dynamic programming method in in-
verse estimation problems for distributed systems. Doklady Mathematics
53:161-166, 1998.

[10] A.B. Kurzhanskii, I.F. Sivergina. Dynamic programming in problems of the
identification of systems with distributed parameters. J. Appl. Math. Mech.
62:831-842, 1999.

[11] H.W. Engl, O. Scherzer. Convergence rates results for iterative methods
for solving nonlinear ill-posed problems in D. Colton, H.W. Engl, A. Louis,
J. McLaughlin, W. Rundell, eds., Surveys on solution methods for inverse
problems, Springer, Vienna, 2000.

[12] M. Hanke, A. Neubauer, O. Scherzer. A convergence analysis of the
Landweber iteration for nonlinear ill-posed problems Numer. Math., 72:21-
37 ,1995.

[13] W. Magnus, F. Oberhettinger, R. P. Soni. Formulas and Theorems for
the Special Functions of Mathematical Physics. Springer, Berlin Heidelberg,
1966.

[14] V.A. Morozov. Regularization Methods for Ill-Posed Problems. CRC Press,
Boca Raton, 1993.

[15] U. Tautenhahn. On the asymptotical regularization of nonlinear ill-posed
problems. Inverse Probl., 10:1405-1418, 1994.

22



