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Abstract

This paper presents a new solution strategy for a standard topology optimization
problem: the minimal compliance problem. This problem contains a partial differen-
tial equation (PDE) as a constraint resulting in a large scaled optimization problem
after the finite element discretization. Therefore efficient solution techniques pay off,
since the computational costs are rather high due to repeated solution of the direct
field problem given by the PDE constraint. In this paper we present a new adaptive
solution method involving adaptive multilevel techniques. Topology optimization
problems are ill-posed, so regularization is needed. In our algorithm we combine two
regularization techniques, in fact filter methods, such that their disadvantages are
eliminated and only their positive properties remain. Numerical experiments are per-
formed with several benchmark problems, where our multilevel approach turns out
to be quite efficient. For solving the optimization problems arising in each iteration
step, the method of moving asymptotes is used.

Keywords: Topology Optimization, Minimal Compliance, Filter Methods, Adap-
tive Mesh-Refinement, Multilevel Approach.

1 Introduction

For the development and design process of new products or structures it is of great im-
portance to find the best possible layout. However it is basically unclear how to choose
the initial topology, i.e., where to place material and where to place holes. Also due to
the fact that the topology is crucial for finding the optimal layout, it pays off to start the
design process with optimizing the basic layout. So it turned out that in the recent decade
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the field of topology optimization, although it is relatively new, is rapidly expanding with
an enormous development in terms of theory, computational methods and applications in-
cluding commercial applications (e.g., Optistruct by Altair). Often topology optimization
is named together with structural optimization, whereas structural optimization is a col-
lective term for topology, shape and thickness optimization. The first is by far the most
general as it does not assume the connection of the structural parts, whose shapes and sizes
are modified. Shape optimization can, e.g., be seen as a post processing tool after topology
optimization, where the shape of the boundary of a product is tuned with respect to some
criterion. Thickness optimization is the subject of finding a thickness function so that
the resulting design will, e.g., sustain some loads as efficiently as possible. Truss topology
problems can be viewed as such a sizing problem. A comprehensive review of these field
is given in the monograph by BENDS@E AND SIGMUND [2] and in the survey articles by
ESCHENAUER AND OLHOFF [10] and ROZVANY [13]. All contain many references on the
various aspects of this field of optimization in general.

This paper deals with a multilevel approach to minimal compliance problems. In these
problems an optimal material distribution is searched with respect to maximal stiffness
and restriction to the total volume used. Minimizing compliance turned out to be a stan-
dard problem in topology optimization. However it already contains the most basic, but
non-trivial difficulties like mesh dependent solutions, local minima and checkerboard phe-
nomena. The rest of this report is organized as follows. In the next section an introduction
to topology optimization by means of minimizing compliance is given. In the following two
sections some aspects of topology optimizations are treated, namely material interpolation
and regularization. Then, in the next section, our multilevel algorithm is introduced and
motivated by the considerations of the previous sections. Also some numerical calcula-
tions are presented, which will show the efficiency of the hierarchical approach. In the last
section conclusions are drawn and some plans for the future improvements are discussed.

2 The Minimal Compliance Problem

This section gives an introduction to the field of topology optimization on the basis of
the so-called minimal compliance problem. That is, how to design the stiffest (or least
compliant) structure under a given fixed load, possible support conditions and restriction
on the volume of the used material.

The beginning of this section is devoted to the equation that determines the state of
equilibrium of a structure under applied external forces. In the following, L, denotes the
L, spaces (1 < p < c0) equipped with the norm || - ||z,, and H* denotes the Sobolev
spaces equipped with the norm || - ||g,. Details about Sobolev spaces can be found in
ADpAwms [1]. Geometric vectors are written in bold-face and | - | denotes the Euclidean
norm of such a vector. Similarly L, and H* denote the spaces of vector valued functions
which components belong to L, and H* respectively.



Figure 1: The reference domain and applied forces in a minimal compliance problem.

2.1 The State Equation

Let Q C R? (d = 2,3) be a fixed domain, the so called ground structure. Furthermore
is a open, bounded connected domain with a Lipschitz boundary I'. Moreover let I';, C I,
ITy| > 0 be the part of the boundary where the displacements are fixed, and I'; = T'\ T, the
part where boundary tractions are predescribed. Later on the optimal design is generated
referring to this ground structure.

For describing material in Q let p € L*(€2) be a function representing the material
density which fulfills 0 < p < p < 1 almost everywhere (a.e.) in €2, where p is some positive
lower bound. Then, let E},, describe an elasticity tensor of fourth order, satisfying the
usual symmetry, ellipticity and boundedness assumptions, representing a certain isotropic
material. Further, let n be a monotonously increasing material interpolation function,
mapping [p, 1] to (0,1], and describing how the actual density influences the elasticity
tensor (e.g., to enforce ’black and white’ designs) at a given point x. More information
about material interpolation is given in Section 3. Then the actually used elasticity tensor
is variable over the ground structure and is defined as

Eiju(p(x)) = n(p(x) By, forx € Q. (1)

Here it is required that (1) = 1 and that 0 < n(p) < 1, which describes a very compliant
material pretending to be void. -

Now for a fixed p and for a fixed 7, the displacement field u € V| fulfills the following
equilibrium or state equation in its variational formulation:

a(p;u,v) =£4(v) for all v € mathbfV, (2)

where Vo = {v e H'(Q) | v=0onT,} is the space of kinematically admissible displace-
ments. The energy bilinear on V X Vj is defined as

a(pru,v) = / Eujia ()5 (w)en(v) dx, 3)

1
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defines a linear, bounded functional on V, where f € L?(Q2) defines the body forces and
t € L2(T';) describes the boundary tractions.

Again let n be fixed, but p arbitrary, then a(p;u,v) satisfies the following conditions
(see, e.g., CIARLET [9]):

Ay >0 um(g)”v“%pm) <a(p;v,v), forallv eV, (5)
which is due to Korn’s inequality, and
Jue >0 Ja(p;u,v)| < pol|ullar o ||v||ar @), for allu,v e V.

For the V-ellipticity (5) it is crucial that n(p) is strictly positive. Assuming that the linear

load form ¢(v) fulfills the following boundedness criterion

148%
ey

dug >0: 14 _
s 14 0£veEVy ||V||H1(Q)

S M3,

the total potential energy of the structure, given by a fixed p, and the load form ¢, can be
stated as

T(piv) = sa(p;v,v) — €(v).

The equilibrium displacement field u is now the unique minimizer of J(p;v) with respect
to v € Vy, i.e. the principle of minimum potential energy or the principle of virtual work,
when equivalently characterized as the solution of (2).

2.2 The Optimization Problem

The considered design problem consists now of minimizing the compliance (maximizing the
stiffness) of a structure, with respect to the state equation (2) and some design constraints.
For sake of simplicity the body forces in (4) are omitted. Furthermore it is assumed that
a proper material interpolation function has been chosen. Mathematically this can be
formulated as the following optimization problem:

min £(u) 6)

PEL>(£2),ueVy
subject to:  a(p;u,v) =£(v) for all v € Vy,
fQ p(X) dx S Vo,
p<px)<1 ae inQ,

(
(7)
(8)
(9)

Clearly constraint (7) represents the state equation, constraint (8) controls the volume of
the used material, where v is a positive bound on the volume used, and (9) ensures that
the density stays in reasonable bounds.

In the above formulation the problem would lead to in a simultaneous (all-at-once)
approach, reducing the error of the constraining state equation is done at the same time
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as minimizing the objective. But usually, and also in this work, the state variable u is
eliminated through (7), resulting in a nested (black-box) approach. For a given admissible
p the solution of (7) is ensured and then denoted by u(p), arriving at the nested formulation
of the minimal compliance problem:

omin - fu(p) (10)
o p(x) dx <, (11)
p<px)<1 ae inf (12)

Now the state constraint (7) is hidden in the objective (10), which means that for every
function evaluation or derivative calculation the state equation has to be solved.

Both approaches, the simultaneous and the nested one, have advantages and disadvan-
tages, but it is not within the scope of this report to discuss this, although it is a very
interesting subject.

2.3 Discretization using Finite Elements

When solving problems like (6) - (9) or (10) - (12) numerically they are usually discretized
using finite elements. For a well funded theory of the finite elements method see, e.g.,
BRAESS [7], BRENNER AND ScOTT [8] and GROSSMANN AND Roos [11]. Following a
standard finite element procedure the ground structure ) is partitioned into n = O(h™9)
finite elements 7;, where h is the used discretization parameter. For a more detailed
description of the triangulation we refer to CIARLET [9]. It is worth noticing that there
are two different variables, the displacements u and the density p, but for both the same
finite element mesh is used.

The density p is approximated by a piecewise constant finite element function p, i.e.
p is constant over every finite element 7;,. The displacement field u is approximated as
element-wise quadratic functions and the finite element function u is now the the unique
solution of:

a(p;,v) =4(¥)  forallve V] (13)

where 'V} illustrates a finite dimensional subspace of V. Whenever mesh refinement is
performed it is done in such a way that V} D VI if h < H. Let the vector u* € RN
contain the coefficients of the finite element function @ € V{* and so the discrete analogon
of the state equation (2) turns from (13) to the following linear system of equations:

K(p"u" =f" € RM. (14)

Here, f* denotes the load vector and K(p") is the stiffness matrix, depending on the design
vector in the form

n

K(p") = 3 n(p})K., (15)

=1
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where K, are the element stiffness matrices extended to N, x N, matrices, which are
weighted with the values of the material interpolation function evaluated at the elements
densities.

Now, with u”(p") denoting the unique solution of (14), the discrete analogon of the
continuous objective (10) is thuh(ph). Furthermore let the vector v represent the vol-
umes of the finite elements such that v! = |7;|. Then the discrete version of the minimal
compliance problem can be posed as follows:

: T
min 2" (u"(p")) (16)
Vi ph < g, (17)
p<pt<1, i=1,...,n (18)

3 Material Interpolation Schemes

Actually the basic question in the minimal compliance problem is how to distribute a
certain amount of material such that the resulting structure is as stiff as possible. So, for
each point of the ground structure one has to decide whether to occupy it with material or
not. In this thermology the continuous constraint (12) should be replaced by the discrete
version p(x) € {p,1} a.e. in Q. But in order to avoid e.g. branch and bound techniques
to solve the discretized '0-1’ problem the discrete valued constrained is relaxed and the
continuous one is used. However, the design variable is then allowed to attain values
between 0 (in fact p) and 1, which is unwanted, and those intermediate values should be
penalized to obtain again a more or less 0-1 or ’black and white’ design.

By far the most popular penalization method is the so called SIMP (Solid Isotropic
Material with Penalization) model, which has turned out to be extremely efficient. Here
a nonlinear interpolation model of the form 7(p(x)) = p(x)?, with p > 1 is used, where
intermediate values give very little stiffness in comparison to the amount of used material.
In other words, by choosing a higher value than 1 for the parameter p, it is inefficient for
the algorithm to choose intermediate density values. When minimizing compliance the
volume constraint is usually active in the optimal design and computations showed that in
this case the optimal layout turns out to be an almost black and white design, if the value
of p is high enough, usually p > 3 is needed. Additionally if one wants to interpret ’grey’
areas in the final design as a composite of materials, also p > 3 is required. Various aspects
of interpolation schemes also with respect to material properties can be found in BENDSOE
AND SIGMUND (3, 2]. When a lower bound p on the density is used, the regions in the
optimal design covered by this value can be interpreted as void or as a very compliant
material. Following this idea we could see the used material over the ground structure
as a composite of two materials, whereas one of those is interpreted as void. If Ey and
E; denote the Young’s moduli for the two used materials, the Young’s modulus of the
composite at a point x is given by

E(p(x)) = Eo + n(p(x))AE, (19)
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Figure 2: SIMP-Interpolation scheme with various values for p.

where AE = E; — Ey. Using (19) as the actually used material tensor instead of (1) it is
now possible to set p = 0 if it is assumed that £} > Ey > 0 to ensure the V-ellipticity (5)
of the bilinear form (3). Furthermore in (15) n(p?) has to be replaced by F(pf). Concerning
the Poisson’s ratios vy and v it is assumed that they are the same for both materials. The

SIMP interpolation model can then be expressed as
Ey(p(x)) = Eo + p(x)’ AE.

An alternative approach to the SIMP method is the following interpolation model:

p(x)

E,(p(x)) = Ey + AFE, 20
where ¢ > 0. This model is called RAMP, which stands for Rational Approximation of
Material Properties. One of the advantages of the RAMP model with respect to the SIMP
model is the behavior of the derivative of the material model at p(x) = 0. Comparing the
derivatives yields the following:

AFE ifp=1 1

where it is worth noticing that the F(0) is discontinuous in the parameter p, while E(0)
is continuous in the parameter q. The fact that £ (0) = 0 for values of p greater than 1
makes it very hard to move material, which is not the case when using the RAMP model.
An other disadvantage of SIMP versus RAMP is that the mass depends linearly on the
element density p and the element stiffness depends on the power of pl, which results in
a non finite ratio of mass to stiffness when p? attends zero. More information is given in
BENDS@E AND SIGMUND (2], and a detailed motivation and introduction to the RAMP
interpolation scheme can be found in STOLPE AND SVANBERG [15].

A totally different approach to penalize intermediate density values is to choose the
material interpolation function n(p(x)) = p(x) and add an additional constraint to the
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Figure 3: RAMP-Interpolation with various values for q.

optimization problem to encourage ’black-and-white’ optimal designs. Such a penalty
constraint could e.g. look like the following:

P(p(x)) = / (1 - p(x)) (p(x) — p) dx < e (21)

Of course such a penalty function could also be added as a penalty term to the objective
functional.

4 Regularization

A naive formulation of topology optimization tasks like minimizing compliance will lead to
difficulties due to the ill-posedness in the sense that there are no optimal solutions. The
physical explanation is, that given a structure with a certain volume one can improve the
stiffness by introducing a lot of small holes without changing the actual volume, which will
lead to an indefinite perforation of the structure. Mathematically speaking the reason for
this effect is the non-closeness of the feasible design set.

An optimization problem is said to be well-posed when the two following conditions are
valid: The objective functional has to be lower semi-continuous and the feasible set has to
be compact, and both properties have to be fulfilled with respect to the same topology. For
the minimal compliance problem (10) - (12), the feasible set is weakly* compact in L>(2).
However, the objective functional is not weakly* lower semi-continuous in L*°({2) when
the material interpolation function is chosen according to the SIMP or RAMP technique,
in contrast to the original choice n(p) = p. But when using n(p) = p and penalizing
intermediate values using (21), the set of feasible designs not weakly* closed anymore, see
BORRVALL AND PETERSSON [5], and the problem lacks solutions again.

The effect that a larger number of holes appears and that more and more fine-scaled
parts yield a more detailed structure, when solving the same problem on finer and finer
grids, is called mesh-dependence. An illustration of the mesh-dependence effect can be seen



in Fig. 4. Ideally refining the mesh should result in the same optimal design, but with a
better and smoother description of the boundary. Basically there are two different ways
to circumvent the ill-posedness, namely relazation methods and restriction methods.
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Figure 4: Mesh refinement without regularization. Solutions on a mesh with 449, 1839, 7319,
and 29443 elements, respectively.

Relaxation methods in principle enlarge the feasible set of designs. Well-posedness is
achieved by introducing an infinitely fine microstructure in every element of the structure
and using the homogenized properties of these microstructures as material properties of
that element. A deeper insight of this homogenization approach to topology optimization is
given by, e.g., BENDSGE AND SIGMUND |[2].

In comparison with relaxation methods, restriction methods reduce the set of feasible
designs, such that a sufficient closeness is gained. Mainly this is achieved by adding one
extra constraint to the problem, ruling out the possibility for fine scale structures to for-
mate, or by using some filter techniques, filtering the sensitivities or directly the density.
Summarizations of various restriction methods are given by BENDS@E AND SIGMUND [2],
SIGMUND AND PETERSSON [14], BORRVALL [4] and BOURDIN [6].

Two different filter methods to restrict the design space are used in the calculations
presented in this report. The first one is called Regularized Intermediate Density Control
(RIDC) and is discussed in detail in BORRVALL AND PETERSSON [5]. Here the material
interpolation function is chosen as 7(p) = p such that the problem without any penalization
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of intermediate density values is well posed. In the literature this problem is often called
the variable thickness sheet. But in order to calculate a black and white optimal design
the intermediate density values are penalized by an additional constraint like (21). To get
a sufficiently closed set of feasible designs, (21) is modified such that the design variable p
is filtered firstly by a convolution operator S and then penalized via (21). Let S : L*(Q) —
L?(Q) be an integral operator defined as

S(0) = [ 6xypy) dy, x €0 where (x,y) = Cymax (0,1 - X221

0
C(x) is chosen such that [, ¢(x,y) dy = 1. Basically this means a linear convolution with
a cone of base radius R. The penalizing constraint now looks as the following:

P(p) = /9(1 — S(p(x))(S(p(x)) — p) dx < ep, (22)

where a suitable value for €, must be found by experiments. Since this procedure is mostly
very expensive, this is a serious disadvantage of this approach. But on the other hand for
problems like minimal compliance it is mathematically well founded.

The second filter technique is used together with the RAMP interpolation scheme (20).
Here not the density, but the discrete element sensivities of an objective J are modified as
follows (e.g., see SIGMUND AND PETERSSON [14]):

dJ 1 n dJ
== n Hi, pf—a 23
Op PR i Hip ; * op (23)

where the convolution operator H;; with filter radius R is defined as

H;r =max {0, R — dist(i, k)}, fori,k=1,...,n.

The operator dist(, k) represents the distance of the geometrical centroids of element &
and element 7. Roughly speaking this filter replaces the original derivatives by a weighted
average of the derivatives of the surrounding area. The advantage of this filter approach is
that it is very easy to implement and it turned out to work very well in various different
topology optimization problems in 2D and in 3D. Moreover it is very robust with respect
to coarse grids. But it must be pointed out that this filter is purely heuristic and it is not
quite understood which problem is actually solved. In the following we will call this filter
the mesh-independence filter and refer to it as MIF.

Both filter techniques are able to control the minimal length scale of the components
in the optimal design. The larger the filter radius R is, the larger is the minimal length
scale or the thicker are the occurring components, which is important, e.g., to ensure that
the optimal structure is not to complicated to be manufactured. This influence of the filter
radius can be seen Fig. 5.

Another numerical anomaly is the so called checkerboard effect, which can be seen in
Fig. 6. The appearance of checkerboard patterns is due to bad numerical modeling. For
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Figure 5: Different sizes of the filter radius: left R = 0.15 and right R = 0.05.

some combinations of finite element discretizations for the design p and the displacements
u these patterns are given an artificial high stiffness when analyzed in their discretized for-
mulation. In the above mentioned citations a detailed explanation and various techniques
to prevent these effects are described. Both filters mentioned above have the nice property
to remove checkerboard effects or at least reduce them sufficiently.

Figure 6: The checkerboard effect in the MBB beam example.

5 Solution Approaches

This section is dedicated to the methods how to solve the discretized problem (16) - (18).
For sake of simplicity the index A indicating a discretized variable, like in p", will be
omitted in this section, since we only treat the discrete problem anyway.

5.1 Basics of a Convex Programming Method

The problem (16) - (18) is solved iteratively by sequential approximations. We use the so-
called Method of Moving Asymptotes (MMA) proposed as a successor of its mother method
CONLIN by SvANBERG [16]. This method is now quite popular in the field of structural
optimization. Similar to methods like SQP, at every iteration step, an approximating sub-
problem is constructed and solved. In MMA these subproblems are convex and separable
and rely on gradient information at the given iteration point as well on some information
of the latest iterations. The generated subproblem is then solved either by a dual method
or by an interior point method. This solution is then used as the actual iterate in the next
iteration.
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Given an iteration point x(*) an approximation of a given function f will look like the
following: Firstly two parameters L*) and U®) are chosen, such that

Lz(-k) < xz(k) < Uz-(k) fori=1,...,n.
Based on these parameters the approximation f (k) of the given function f is defined as:
) nof W o
FO ) =r® +3° R : (24)

i=1 U(k) — T; T; — Lgk)

K3

where 7(*) and the coefficients p*), q*) are chosen as

ox;

0, if 5L (x®) <o,

2
() _ { (U = aP) 2L x®), if 2L (x®) > 0

" 0, if 2L (x®) >0
T - <x(-k) - L(k))2 DI (x®)y, if 2L (xM) < 0,

7 [ ox;

®) " n p(k) q(k)
nt = IC =) et wom )

i1 \U; L €T

The parameters L*) and U®) act like asymptotes in (24) and control, loosely speaking,
the range for which f*) approximates f reasonably. More details on how to choose the
asymptotes and how to generate strictly conservative approximations, can be found in
SVANBERG [16, 17] and in BRUYNEEL, DUYSINX, AND FLEURY [12].

The reason why MMA-like methods are popular in topology optimization (combined
with a nested approach like in (10) - (12)) is quickly explained. Typically a large number
of design variables appears in these problems, since for a good representation of the design
one has to work with rather fine finite element meshes and for each element at least one
design variable is used, in comparison to a rather small number of constraints. With respect
to the large number of design variables the use of SQP methods is very costly if not even
impossible, due to the fact that gathering second order information for the approximation
of the Hessian could be an insuperable task. Now the two advantageous features of MMA
are that the approximating subproblems are convex and separable. Separability means
that the necessary conditions of optimality of the subproblem do not couple the design
variables, which yields that instead of one n-dimensional problem one has to solve n one-
dimensional problems per iteration. Convexity means that dual or primal-dual methods
can be used to attack the subproblems. These two valuable properties allow to reduce the
computational costs for solving the subproblems significantly.

5.2 A Multilevel Idea

In our multilevel approach we basically tried to combine the two filter methods mentioned
in the last section, such that their disadvantages are eliminated and their advantages
remain.
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Figure 7: Data flow of our algorithm. Figure 9: Adaptively refined mesh.

At the beginning the problem is solved on the coarsest grid. Here, at the first level, we
use the mesh-independency filter for regularization together with the RAMP interpolation
scheme combined with a continuation method. The latter means that the RAMP-parameter
q is slowly raised through the optimization progress. In the first few iterations ¢ = qq is
chosen, then for next ones some higher value, until a wanted upper value @, for ¢ is
reached where the design is finally fully optimized. The advantage of such a continuation
method is that one avoids to get early stucked in an unwanted local minima, which may
happen if the calculation is done only with one value of ¢, chosen to large. Since the
compliance objective functional (16) is convex for ¢ = 0 and concave for ¢ = AE/Ey, it is
a natural idea to start with g = 0 and end with ¢, = AE/Ey, see, e.g., STOLPE AND
SVANBERG [15].

There are two major reasons why we use MIF combined with RAMP on the coarse grid.
On the one hand we can use coarser grids as with the RIDC method and on the other hand
we use the optimal design p* of the coarse grid to get a realistic value for p in (22), setting
ep = P(py), which saves us costly experiments to find a proper value for ep. Although we
adapted the MIF formula (23) in an obvious way to work also on unstructured grids, we
didn’t achieve as good results as on uniform refined grids. So we continue on the refined
grids with the RIDC method, which works fine on unstructured grids, is mathematically
well-founded and moreover, since the effective density and the original density p are the
same (n(p) = p), there are no doubts which density to plot. The basic data flow of this
multilevel approach can be seen in Fig. 7.

So far the adaptive mesh refinement is based on geometrical information gained through
identifying elements near the interface between void and material of an optimal design using
IIS(p(x)) — p(x)|| as an indicator. An example of a coarse and an adaptively refined mesh
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is shown in Fig. 8 and Fig. 9, respectively.

6 Numerical Experiments

We tested the approach described above with several known benchmark examples and
got very good results from all of them. Here we will present results gained from the
problems which can be seen in Fig. 10 to 12, where the basic settings, e.g., applied loads
and boundary condition, as well the final solutions are shown. We stopped the algorithm
when the relative difference of the two latest designs is less then 5- 102 and the relative
difference of two successive objective values is less then 5-107° (following BORRVALL AND
PETERSSON [5]). For solving the direct problem so far Cholesky factorization is used. The
Tables 1 to 4 show the computational data for each example. The columns n., n, and
n, contain the number of finite elements, the degrees of freedom w.r.t. the displacements
and the degrees of freedom w.r.t. the density, respectively. The other columns ¢4, tv,
topt and t;; show the time used for one evaluation of the state equation, of the derivatives,
for the solution of the subproblem and the time for one whole iteration, respectively. The
difference in time between t;; and the other three columns is mainly used for applying
the filter, which is done recursively. In the last column the number of iterations is listed.
The last lines in these tables always show the data of the experiments where we did the
computations on only one uniform mesh, where the elements were of the size of the smallest
ones of the mesh in level 4, which gives an impression about the gained speedup.

‘ ‘ Nel ‘ Nu ‘ Ny ‘ tstate ‘ ty ‘ Topt ‘ tis ‘ Iter. ‘
level 1: | 1352 | 5694 1352 | 0.8 | 0.4 |0.01| 1.3 171
level 2: | 2848 | 13180 | 2848 | 2.0 | 0.8 | 0.02| 2.9 31
level 3: | 8428 | 41116 | 8428 | 8.0 2.3 10.07| 11.3 14
level 4: | 17666 | 87336 | 17666 | 22.7 | 4.8 | 0.15 | 334 10
level 5: | 37536 | 186716 | 37536 | 48.4 | 10.2 | 0.38 | 103.3 | 8

| direct: | 88559 | 356484 | 88559 | 573.1 | 24.9 | 1.07 [ 978.3 | 152 |

Table 1: Computational data from the MBB beam problem.

7 Conclusions and Outlook

In our multilevel approach we combined two filter techniques such that their disadvantages
are eliminated and we gain from their good properties. Finally we ended up with an
efficient method to solve minimal compliance problems with a high resolution of elements
around the interface between void and material.

So far only numerical examples in 2D are presented, but the code is written such that
the step to 3D computations can be done without too much effort. Another point of
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‘ ‘ Ney ‘ Nu ‘ Ny ‘ tstate ‘ ty ‘ Lopt ‘ tit ‘ Iter. ‘
level 1: | 1852 7654 1852 1.7 0.5 | 0.01 2.3 143
level 2: | 3283 14824 | 3283 3.7 0.9 |0.02| 48 48
level 3: | 8255 | 39744 | 8255 124 | 2.2 | 0.05| 15.9 28
level 4: | 16639 | 81694 | 16639 | 28.2 | 45 | 0.10| 37.8 21
level 5: | 37992 | 188522 | 37992 | 60.0 | 10.3 | 0.21 | 120.1 15

| direct: | 117695 | 472704 | 117695 | 1498.7 | 33.2 [ 0.81 | 2109.1 | 135 |

Table 2: Computational data from the wheel example.

‘ ‘ Neg ‘ Nu ‘ N, ‘ tstate ‘ ty ‘ Lopt ‘ tit ‘Iter. ‘
level 1: | 449 1920 449 0.2 [0.1]001| 0.4 119
level 2: | 1016 | 4758 1016 | 0.6 | 0.3]0.01| 1.0 32
level 3: | 2843 | 13926 | 2843 | 2.4 |0.8]0.02| 34 23
level 4: | 6136 | 30424 | 6136 | 5.7 | 1.7]0.04 | 85 13
level 5: | 11652 | 58028 | 11652 | 13.0 | 3.2 | 0.08 | 23.1 8

| direct: | 29443 | 118736 | 29443 | 147.3 | 8.3 [ 0.20 | 186.7 | 113 |

Table 3: Computational data from the first cantilever beam problem.

‘ ‘ Nel ‘ Tu ‘ n, ‘ tstate ‘ ty ‘ Lopt ‘ tit ‘ Iter. ‘
level 1: | 1463 | 6068 1463 1.2 0.4 | 0.01 1.6 103
level 2: | 2761 | 12564 | 2761 2.7 0.8 {0.03| 3.6 24
level 3: | 7624 | 36924 | 7624 9.3 2.1 10.08| 12.2 13
level 4: | 17164 | 84684 | 17164 | 25.3 | 4.6 | 0.20| 35.9 9
level 5: | 36954 | 183168 | 36954 | 56.2 | 10.0 | 0.47 | 117.9 7

| direct: | 94066 | 377934 | 94006 | 1211.9 [ 26.1 | 1.31 | 1626.3 | 89 |

Table 4: Computational data from the second cantilever beam problem.
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Figure 11: The half of a wheel, R = 0.1, volume fraction 0.2, measurements: 4x2.

Figure 12: Two cantilever beam examples, R = 0.1, volume fraction 0.5, measurements 2x1 and
3.2x2.

high interest is also the upgrade of the solver for the direct field problem from Cholesky
factorization to a multigrid preconditioned conjugate-gradient method. Since we already
have a hierarchy of solutions on different grids it is natural to use a multigrid method for
solving the direct field problem. Moreover, for an efficient use of multigrid methods some
difficulties have to be overcome. For instance, a tricky and non-trivial problem will be the
handling of the interface between void and material form level to level. In order to describe
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the this interface more precisely so far only local h-refinement is done. However this leads
to a large number of elements and variables, respectively. Consequently, the usage of an
adaptive hr-method including mesh-unrefinement will be an effective alternative strategy.
Moreover, the application of the MIF method to unstructured grids is also a desirable goal.

But despite all this plans concerning the nested approach to minimal compliance (topol-
ogy optimization) problems, the final aim is to combine all the above improvements with
a stmultaneous approach, which will be a very challenging task.
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