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Abstract

In this paper we discuss an efficient solution method for problems of elasto-
plasticity. The phenomenon of plasticity is modeled by an additional term in the
stress-strain relation, the evolution of this additional term in time is described by
the Prandtl-Reuß normality law. After discretizing the problem in time, we derive
a dual formulation. Our solution algorithm is based on an equivalent minimization
problem, which is presented for an isotropic hardening law. Since the objective is
non-differentiable, we use a differentiable, piecewise quadratic regularization. The
algorithm is a successive sub-space optimization method: In the first step, we solve a
Schur-complement system for the displacement variable using a multigrid precondi-
tioned conjugate gradient method. The second step, namely the minimization in the
plastic part of the strain, is split into a large number of local optimization problems.
Numerical tests show the linear complexity of the presented algorithm.

Keywords Elasto-plasticity, finite element method, multigrid method

1 Introduction

The use of elastic material laws in mechanical models is often not sufficient in many
real life applications. The phenomenon of plasticity can be described by an additional
non-linear term in the stress-strain relation. Plasticity models have a long history
in the engineering community. The interested reader is referred to the excellent
monographs by Kachanov [13] and Zienkiewicz [22] for detailed information. The
rigorous mathematical and numerical analysis of different elasto-plastic models has
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been a topic of mathematical research during the last two decades, see e.g. [9], [10],
[14], [20] and the literature cited there.

The admissible stresses are restricted by a yield function depending on the harden-
ing of the material. Furthermore, this yield function characterizes the plastic behav-
ior: isotropic hardening, kinematic hardening, visco-plasticity and perfect hardening.
The Prandtl-Reuß normality law describes the time development.

The starting point of the finite element method is the time-discretized variational
formulation. This dual formulation in each time step is equivalent to an optimization
problem depending only on the displacement vector u and the plastic part of the
strain p:

f(u, p) = min
v,q

f(v, q),

under an equality constraint, with f being a convex, non-differentiable function with
quadratic terms. Further on, only the case of plasticity with isotropic hardening
will be considered. A differentiable and piecewise quadratic objective is obtained by
regularization of f , thus standard methods can be applied.

The main idea for the algorithm is to use the Schur-complement form of the
discretized problem in the displacement variable uh. Thus the minimization problem
reduces to

uh = argminvh
f̃(vh, qopt(vh)),

where qopt(vh) denotes the optimal plastic part of the strain with respect to vh. The
system matrix depends nonlinearly on p, therefore the problem is linearized in this
variable. Correcting the error, the plastic part of the strain is determined locally by
Newton’s method.

The method presented in this talk is based on the approach proposed by C.
Carstensen [4]. In contrast to [4], we introduce some regularization of the local
minimization problems making the cost functional differentiable and allowing us to
use the fast converging Newton method. Moreover, we use a special adapted to the
problem, multigrid preconditioned conjugate gradient (PCG) method for the Schur-
complement problems arising at each incremental step.

The multigrid PCG solver for the elasto-plastic Schur-complement together with
above mentioned Newton solver for the local minimization problems allows to solve
efficiently large scale 2D and 3D plasticity problems. These features make this ap-
proach competitive with other approaches proposed in monographs [9], [14], and in
the collection [17] reflecting the state-of-the-art in fast plasticity solvers.

For the theory of elasto-plasticity based on variational inequalities and its ana-
lytical background see e.g. [4], [6], [7], [9], [10], [16], [18], [19] and [21]. Multigrid
literature can be found in e.g. [2], [8], and [12]. For the theory of finite elements see
e.g. [1], [3], and [5].

The paper is organized as follows: In Section 2, we give a brief overview on the
basic equations of elasticity and plasticity. First we derive a dual formulation and
then an equivalent optimization problem for general hardening laws. Furthermore,
only the case of isotropic hardening will be considered. Section 3 is devoted to the
construction of the solution algorithm. In Section 4, numerical experiments show the
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fast convergence and the efficiency of the algorithm. Finally, an outlook on the work
still to do is given.

2 Elasto-plasticity

2.1 Definition of the problem

According to the basic theorem of Cauchy, the stress field σ ∈ L2(Ω, Rn×n) of a
deformed body Ω in Rn (n = 2, 3) with Lipschitz-continuous boundary has to fulfill
the equations

σ = σT in Ω, (1)

−div σ = b in Ω, (2)

with b being the vector field of given body forces. The linearized Cauchy-Green strain
tensor is appropriate in the case of small deformations, and is obtained by using the
displacement vector u ∈ H1

0 (Ω)n:

ε(u) =
1

2
(∇u + (∇u)T ) a. e. in Ω. (3)

Moreover, in the case of small deformations the strain is split additively into two
parts:

ε(u) = A σ + p a. e. in Ω. (4)

Here, A σ denotes the elastic, and p the plastic part. The linear, symmetric, positive
definite mapping A from Rn×n to Rn×n describes the linear elasticity, thus C = A−1

is the elasticity tensor.
Purely elastic material behavior is characterized by p ≡ 0. The modeling of

plasticity requires another material law in order to determine p. There are restrictions
on the stress variables described by a dissipation functional ϕ, which is convex, and
non-negative, but may also attain +∞. The first restriction is

ϕ(σ, α) < ∞ a. e. in Ω. (5)

The hardening parameter α is the memory of the considered body and describes
previous plastic deformations. Its structure and dimension depend on the hardening
law. The above inequality indicates that α controls the set of admissible stresses. The
pair (σ, α) is called generalized stresses and values are called admissible if ϕ(σ, α) <

∞.
The time development of p and α is given by the Prandtl-Reuß normality law

which states that for all other generalized stresses (τ, β) there holds:

ṗ : (τ − σ) − α̇ : (β − α) ≤ ϕ(τ, β) − ϕ(σ, α) a. e. in Ω, (6)

where ṗ denotes the time derivative of p, i.e., ṗ = ∂p
∂t

, and : is the scalar product of
matrices such that A : B =

∑n
i,j=1 AijBij for all A,B ∈ Rn×n.
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Figure 1: Domain of admissible stresses

If we consider the two above inequalities (5) and (6) without α, that is the case
of perfect plasticity, then ϕ describes the domain where the stress is admissible, see
figure 1. The functional ϕ attains only the values 0 or +∞. Inequality (5) allows σ

to remain only within the convex domain. It follows from (6) that in the interior of
this domain the time derivative of p has to satisfy the inequality for all τ chosen from
the dotted circle, so it has to be zero, and the material behaves elastically. Whereas
on the boundary, ṗ can only show in the direction of the normal vector for all τ from
the dotted semicircle if the material behaves plastically.

Now we are in the position to define the initial value problem:

Problem 2.1. We look for the displacements u ∈ W 1,2(0, T ; H1
0 (Ω)n), the plastic

strain p ∈ W 1,2(0, T ;L2(Ω, Rn×n)), the stress field σ ∈ W 1,2(0, T ;L2(Ω, Rn×n)), and
the hardening parameter α ∈ W 1,2(0, T ;L2(Ω, Rm)), such that (1) - (6) are satisfied
under the initial condition b(0) = 0.

The time dependent variational inequality (6) is solved by an implicit time dis-
cretization, for example generalized midpoint rules like Crank-Nicholson or implicit
Euler schemes. An implicit Euler discretization for the weak formulation leads to the
next problem definition:

Problem 2.2. Let H ⊆ H1
0 (Ω)n, Ln×n

sym ⊆ L2(Ω, Rn×n
sym ) and Lm ⊆ L2(Ω, Rm) be

closed subspaces. We seek (u, p, σ, α) ∈ H × Ln×n
sym × Ln×n

sym × Lm, such that for given
u0 ∈ H; p0, σ0 ∈ Ln×n

sym and α0 ∈ Lm at some time step t0 the following conditions
are satisfied for t1 = t0 + ∆t:

∫

Ω
σ : ε(v) dx =

∫

Ω
b v dx ∀v ∈ H, (7)

∫

Ω
{(p − p0) : (τ − σ) − (α − α0) : (β − α)} dx

≤ ∆t

∫

Ω
ϕ(τ, β) dx −

∫

Ω
ϕ(σ, α) dx,

(8)

for all (τ, β) ∈ Ln×n
sym × Lm.
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Rn×n
sym denotes real, symmetric n × n matrices. The inequality (8) reads as

1

∆t
(p − p0,−α + α0) ∈ ∂ϕ(σ, α). (9)

The sub-differential ∂ϕ(b) is defined by the relation

a ∈ ∂ϕ(b) ⇔

∫

Ω
a : (c − b) dx ≤

∫

Ω
ϕ(c) dx −

∫

Ω
ϕ(b) dx.

Since ϕ is convex, the above equation is equivalent to:

(σ, α) ∈ ∂ϕ∗(
1

∆t
(p − p0,−α + α0)). (10)

ϕ∗ is the dual functional of ϕ, which is computed by the Fenchel transformation:
ϕ∗(y) := supx {y : x − ϕ(x)}.

Substituting σ = C (ε(u) − p) in (7) and (10) the simplified Problem 2.3 can be
obtained.

Problem 2.3. Find a triple (u, p, α) ∈ H × Ln×n
sym × Lm, such that the following

conditions are satisfied for all (v, q, β) ∈ H × Ln×n
sym × Lm:

∫

Ω
C[ε(u) − p] : ε(v)dx =

∫

Ω
b v dx, (11)

∫

Ω
{C[ε(u) − p] : (∆t q − p + p0) + α : (−∆tβ + α0 − α)}dx ≤

≤ ∆t

∫

Ω
ϕ∗(q, β)dx − ∆t

∫

Ω
ϕ∗(

p − p0

∆t
,
α0 − α

∆t
)dx.

(12)

Problem 2.3 is the stationary condition of a minimizer in the following mini-
mization problem 2.4. Vice versa, a minimizer of f of Problem 2.4 is a solution of
2.3:

Problem 2.4. Find the minimizer (u, p, α) ∈ H × Ln×n
sym × Lm of

f(u, p, α) :=
1

2

∫

Ω
C[ε(u) − p] : (ε(u) − p)dx +

1

2

∫

Ω
|α|2dx

+∆t

∫

Ω
ϕ∗(

p − p0

∆t
,
α0 − α

∆t
)dx −

∫

Ω
b u dx.

(13)

The dissipational functional ϕ and thus its dual functional ϕ∗ are determined by
the special kind of hardening law: isotropic hardening, kinematic hardening, visco-
plasticity and perfect hardening. For deriving an algorithm, the dual functional has
to be calculated explicitely. From now on, only the case of isotropic hardening will
be considered. But the structure of the optimization problems are similar for the
other hardening laws, so the basic idea of the algorithm will work again and will lead
to slight modifications in the algorithm.
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2.2 Isotropic hardening

In the case of isotopic harding the space dimension m of the hardening parameter α

is 1, i.e., α is a scalar function. The dissipational functional ϕ is defined as follows
(see [4]):

ϕ(σ, α) =

{

0 if Φ(σ, α) ≤ 0,
∞ if Φ(σ, α) > 0,

with the given yield function Φ(σ, α) = |dev σ| − σy(1 + αH). σy > 0 is the initial
yield stress and H > 0 the modulus of hardening. dev is the deviation and defined
by dev A := A − 1

n
tr(A) · In, where tr(A) :=

∑n
i=1 Aii is the trace of a matrix.

The dual functional will be computed only for values from the set of admissible
stresses, i.e., ϕ(σ, α) = 0:

ϕ∗(A,B) = sup
| dev σ|≤σy(1+αH)

(σ : A + αB)

The pair (c · In, 0) is element of the set of admissible stresses for all c ∈ R. The
scalar product σ : A (and the supremum, too) is finite only if trA = 0 for all matrices
A. Then, dev A = A.

The other admissible pair considered is (λA,α) with λ =
σy(1+Hα)

|A| . Here, the
scalar product is

σ : A + αB = λA : A + αB = λ|A|2 + αB

= σy(1 + Hα)|A| + αB

= σy|A| + α(σyH|A| + B)

Since (σ : A + αB) ≤ ϕ∗(A,B), the expression (σyH|A| + B) must be smaller or
equal to zero in order to obtain a finite supremum.

The dual functional of the dissipational functional ϕ reads as:

ϕ∗(A,B) =

{

σy|A| if trA = 0 ∧ (σyH|A| + B) ≤ 0,
∞ if trA 6= 0 ∨ (σyH|A| + B) > 0,

with the two arguments A = p−p0

∆t
and B = α0−α

∆t
. The minimization of (13) with

respect to α affects only the term
∫

Ω |α|2dx under the restriction (σyH|A| + B) ≤ 0.
The unique solution is α = α0 +σyH|p− p0|. So we obtain a simplified minimization
problem:

Problem 2.5. Find the minimizer (u, p) of

f(u, p) :=
1

2

∫

Ω
C[ε(u) − p] : (ε(u) − p)dx +

1

2

∫

Ω
(α0 + σyH|p − p0|)

2dx

+

∫

Ω
σy|p − p0|dx −

∫

Ω
b u dx

(14)

under the constraint tr (p − p0) = 0.

The restriction tr (p− p0) = 0 deduces from the condition tr A = 0. The unique-
ness of the minimizer follows from the properties of the dual functional, see [6].
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3 Algorithm

Time and space discretizations are needed to describe the mathematical model nu-
merically. For the numerical tests only equidistant time intervals will be used. The
notation is the same as for the time discretized problems of Section 2: For given
variables (with index 0) of an initial time step t0, the upgrades of the variables at
the time step t1 = t + ∆t have to be determined. The basic idea for solving the
quasi-static problem is using a uniform time discretization and iterate in each time
step until the minimizers, i.e., the displacement u and the plastic part of the strain
p, are determined. Then these values and the separately calculated α are used as the
reference values with index 0 for the next time step t2.

If a function is quadratic, then the minimum can be computed easily, e.g. by
Newton’s method. Unfortunately, f in (14) is not. The matrix C is symmetric and
positive definite, thus C[ε(u) − p] : (ε(u) − p) behaves quadratically in (ε(u) − p).
The second term is quadratic in p, since p0 (the result of the previous time step) and
α0 are considered as constants. The last term behaves linearly in u, so it adds to the
right hand side of the corresponding system of equations, see (19). The only term
not behaving quadratically is the third one containing an norm the sharp bend of
which may cause trouble.
The term |p| is regularized by smoothing the norm function as follows:

|p|ε :=

{

|p| if |p| ≥ ε,
1
2ε
|p|2 + ε

2 if |p| < ε.
(15)

For small ε, the function f(u, p) is very similar to the original one, but its properties
change enormously. Therefore, it will be referred to by the new symbol f̄ .

Another simplification is defining the change of p by p̃ = p − p0, and using it as
an argument of the objective instead of p:

f̄(u, p̃) :=
1

2

∫

Ω
C[ε(u) − p̃ − p0] : (ε(u) − p̃ − p0) dx −

∫

Ω
b u dx

+
1

2

∫

Ω
α2

0 dx +
1

2

∫

Ω
σ2

y H2 |p̃|2 dx +

∫

Ω
σy (1 + α0 H)|p̃|ε dx.

(16)

Now the spatial discretization is carried out by the standard finite element method
using quadratic tetrahedral finite elements. For reasons of better readability and
coherence, the name of the vector denoting the discretized displacement u is again u.
The same is valid for p̃, p0, but furthermore the symmetric matrices are transformed
to vectors, e.g. in 2D

(

p̃11 p̃12

p̃12 p̃22

)

=⇒





p̃11

p̃22

p̃12



 ,

such that the objective and other equations can be written in a matrix and vector
notation. Now, the objective is equivalent to

1

2
(Bu − p̃)T C(Bu − p̃) +

1

2
p̃T H(|p̃|ε)p̃ + (−BT Cp0 − b)T u (17)
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under the constraint tr p̃ = 0. Here, Bu denotes the discretized strain ε(u). H is
the Hessian of the discretized objective with respect to p̃, it depends on |p̃|ε and is
computed as

H =

(

σ2
yH

2 +
2σy(1 + α0H)

|p̃|ε

)

Q

where Q is the result of regarding p̃ as a vector and defined by

2D: Q =





1 0 0
0 1 0
0 0 2



 , 3D: Q =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

















.

Hence the matrix norm is defined by |p| =
(

pT Qp
)

1

2 .
In order to gain a linear system of equations, the Hessian is computed in every

iteration step using the current p̃, but apart from this the dependence on |p̃|ε will be
neglected. This is not an exact method to determine the change of the strain, but
the error will be corrected later on as p̃ will be computed separately.

Since the constraint tr p̃ = 0 is linear, i.e., in 2D: p̃22 = −p̃11, in 3D: p̃33 = −p̃11−
p̃22, it is equivalent to project the problem with the matrix P onto a hyperplane,
where the constraint is satisfied exactly: p̃ = P p̄ with

2D: P =





1 0
−1 0
0 1



 , 3D: P =

















1 0 0 0 0
0 1 0 0 0
−1 −1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

















.

In matrix notation the minimization problem (17) with the new variable p̄ now reads
as

1

2

(

u

p̄

)T (

BT CB −BT CP

−P T CB P T (C + H)P

)(

u

p̄

)

+

(

−b − BT Cp0

P T Cp0

)T (

u

p̄

)

−→ min!

(18)
The above matrix is positive definite, thus the minimizer (u, P p̄) has to fulfill the

necessary condition of the derivative being equal to zero:

(

BT CB −BT CP

−P T CB P T (C + H)P

)(

u

p̄

)

+

(

−b − BT Cp0

P T Cp0

)

= 0. (19)

Extracting p̄ from the second line in (19) and inserting it into the first one yields the
Schur-Complement system in u:

BT (C − CP (P T (C + H)P )−1P T C)Bu =
−b − BT (C + CP (P T (C + H)P )−1P T C) p0.

(20)
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This linear system is solved by a multigrid preconditioned conjugate gradient method,
see [11]. From the numerical tests we have seen that it is not necessary to use the
multigrid preconditioner arising from the plasticity problem, the preconditioner for
the related problem of elasticity is sufficient and much faster. Furthermore, the
nested iteration approach was used, which means that the starting values for the
coarse grid correction are the restrictions of the fine grid functions.

The stopping criterion for the algorithm in each time step is

|f̄(un+1, pn+1) − f̄(un, pn)| ≤ ε|f̄(u0, p0)|

The minimization in p̃ can be done locally for each element, as no connections
over several elements (e.g. derivatives) occur. For minimizing the function f̄ in p̃, all
the terms depending only on u become redundant. The remaining function, called
F , becomes

F (p̃) =
1

2
p̃T Cp̃ + pT

0 Cp̃ − p̃T Cε(u) +
1

2
σ2

yH
2|p̃|2 + σy(1 + α0H)|p̃|ε. (21)

Then, p̃ is determined by a modified Newton’s Method, where the constraint is con-
sidered. The local Newton system to determine the search direction ∆p̄ writes as

P T F ′′(p̃)P∆p̄ = −P T F ′(p̃). (22)

4 Numerical results

The algorithm was implemented in NGSolve - the finite element solver extension pack
of the mesh generation tool Netgen1 developed in our group [15]. As finite element
basis functions on the triangular, resp. tetrahedral elements we chose piecewise
quadratic functions for u and piecewise constant functions for p. Furthermore, the
full multigrid method was used, i.e., we started with a coarse grid, solved the problem,
refined the grid, solved the problem on the finer grid et cetera.

The testing geometry is the half of a three-dimensional ring, see left figure 2
for a 2D-sketch. The problem is symmetric, so considering only the upper quarter,

F

F

F

Figure 2: Halfring and reduced problem

see right figure 2, under symmetry boundary conditions is sufficient. The material

1Download at http://www.hpfem.jku.at/netgen
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constants are chosen as E = 1, ν = 0.2, H = 0.01, σy = 1 and the force working on
the right edge is F = 0.25 (to fulfill the safe-load assumption). The inner quarter
radius is 1, the outer radius is 2, and the thickness is 1.

Figure 3: Plasticity domain (darkgrey)

Figure 3 shows the darkgrey domains where the material has plastified, the light-
grey area is still elastic. Figure 4 shows the linear complexity of the algorithm.
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Figure 4: Linear complexity of algorithm (Dofs versus time)

5 Conclusions

In this paper the theory of elasto-plasticity has been combined with the nested iter-
ation approach and a multigrid preconditioned conjugate gradient solver. A quasi-
static algorithm solving the case of isotropic hardening in 3D has been designed,
implemented and tested. The numerical results demonstrate the fast algorithm per-
formance with linear complexity.

Our future work will concentrate on implementing the algorithm for other hard-
ening laws and adaptive refinement techniques, and doing numerical analysis to prove
the convergence observed in the numerical example.
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