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Abstract

The quasi-static evolution of an elastoplastic body with a multi-surface
constitutive law of linear kinematic hardening type allows the modeling of
curved stress-strain relations. It generalizes classical small-strain elastoplas-
ticity from one to various plastic phases. This paper presents the mathe-
matical models and proves existence and uniqueness of the solution of the
corresponding initial-boundary value problem. The analysis involves an ex-
plicit estimate for the effective ellipticity constant.

Keywords Variational inequalities, elastoplasticity, kinematic hardening, rate in-
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1 Introduction

In this two-part article we consider the quasi-static initial-boundary value problem
for small strain elastoplasticity with a multi-surface constitutive law of linear kine-
matic hardening type. The main goal is the construction and error analysis of a
discrete solution method which takes care of the multi-surface aspect of the consti-
tutive law. This will be done in the second part. In the first part, we present the
precise formulation of the initial-boundary value problem and prove existence and
uniqueness of its solution. Indeed, the existence of such solutions in the quasi-static
case has been obtained by Visintin [Vis94], chapter VII. He proves first that the
dynamic problem has a unique solution, and then considers the quasi-static case as
a singular limit. Our approach differs from his in that we use the functional frame-
work of [HR99] which in the case of a single yield surface has been already used
extensively for numerical approximation and analysis [HR95, [HR99]. In particular,
we also derive an estimate for the ellipticity constant whose size is critical for the
performance of numerical methods based on the variational formulation.
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2 The Constitutive Law

The constitutive law furnishes the relationship between the stress tensor ¢ and
the strain tensor €. The classical law of kinematic hardening goes back to Melan
[Mel38] and Prager [Pra49]. It is local in the sense that any given material point
it involves only the time histories o = o(t) and € = £(¢) at that point. It is given
by the following system of equations and an evolution variational inequality:

E=e+p

o=0o"+o? (1)
o= Ce (2)
o’ =Hp (3)
oPeZ, p:(r—oP)<0 foralrelZ (4)

The equation represents the additive decomposition of the strain € into its elastic
part e and its plastic part p as well as of the stress ¢ into the backstress ¢ and the
plastic stress o”. The equation denotes a linear elastic law, in the isotropic case
one has

Ce = 2ue + A(tre)l, (5)

where the (positive) coefficients p and A are called Lamé coefficients. Here I denotes
the second order identity tensor (an identity matrix) and tr : R¥¢ — R defines the
trace of a matrix, tre := Z?:l £;;, for e € R™4 where d is the problem dimension.
Equation couples the backstress ¢® and the plastic strain p through a linear
mapping with a positive definite hardening matrix H. For this reason, the model
— is also called linear kinematic hardening. A typical choice will be H = Al
where h > 0 is a hardening coefficient. Variational inequality formalizes the
Prandtl-Reufl normality rule, also called the principle of maximal dissipation. The
set Z C Rfyxn% describes the admissible (plastic) stresses, its boundary 07 is called
the yield surface. We will exclusively use the standard von Mises cylinder with yield
stress ¥

Z:{JGRg;Ti: ||devol| < o¥}. (6)
Here,
d
lalP=a:a, a:b=" ayb, (7)
ij=1

defines the (Frobenius) norm and the corresponding scalar product, and the deviator
of o is defined as devo := o — L(tro)l. The decomposition

RO =Xpx X, Xp={o:tro=0}, X;={tl:tcR} (8)
is orthogonal with respect to the scalar product and, according to , dev :
Réxd _, X, represents the orthogonal projection. The following lemma reformulates

sym
the variational inequality as a variational inequality with a dissipation function

D (see [HR99], page 90).



Lemma 1. Let (p,o?) € R4 x R¥X4. Then

sym sym*
o’eZ, p:(r—0oP)<0 forallTeZ (9)
together with trp = 0 hold if and only if

of: (¢ —p) <D(q) —D(p) YgeRg (10)

sym?

where D : R4 — R U {oo},

D(q) :{ a’llq|| if trq=0, (11)

+oo  otherwise
Proof. (=) We rewrite (9) as

of :(q—p)<of:q—T1:p VgeRYX! vreZ

sym>

Setting 7 = Oyl\%H if p # 0, we obtain

o?:(q—p)<oP:q—D(p) VgeREL (12)

sym

which obviously holds also for p = 0. Furthermore, if tr ¢ = 0 then
o7 q=devo? g < [|devo?lllgl| < o"llall = D(o)

which together with proves .

(<) From (10) it immediately follows that trp = 0. Setting ¢ = 2p in (10]) it
follows that devo? : p = o : p < D(p), so for all ¢ with tr(¢q) = 0 we have
devo? : ¢ = o? : ¢ < D(q), thus ||devo?|| < oY, i.e. 0P € Z. On the other hand,
q =0 yields —o? : p < —D(p), so for any 7 € Z we get

pi(r—o?) <7:p—D(p) < (7l - o)ll <0.
]

The standard model of linear kinematic hardening as described above introduces
essentially one additional internal state variable of tensor type, the plastic strain
p, whose evolution is governed by . In particular, p(t) # 0 only if o? € 0Z.
More complicated models for the constitutive law involve additional surfaces and
internal state variables. We treat here a specific model which goes back in the 1D
case to Prandtl [Pra28| and Ishlinskii [Ish54] and in the multidimensional case to
Besseling [Bes58| and Iwan [Iwa66]. The model discussed here is the one called
Prandtl-Ishlinskii model of play type [Vis94, [Kre96] with finitely many surfaces,
whose rheological structure is depicted in Figure [Il The plastic strain p is decom-
posed as

p=>Y_pn I={l,... M} (13)

rel
b

T

we have backstresses o
g b= H'rprv rel )

T
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Figure 1: Prandtl-Ishlinskii model of play type.

and plastic stresses oF
c=o0+ob, recl

and a family of a variational inequalities
oteZ, pr:(n—0of)<0 V1,€Z.,rel, (14)

with convex restrictions Z,.,r € I. If one wants to have infinitely many surfaces, a
natural way to do this is to replace by

p= /pr dp(r), (15)

I

where (£ is a (finite) measure on some set /. In that case, represents an infinite
system of variational inequalities.

3 The Boundary Value Problem

The elastoplastic continuum is assumed to occupy a bounded domain 2 C R?, with
a Lipschitz boundary I' = 0€2. The boundary I is split into a Dirichlet boundary I'p,
a closed subset of I' with a positive surface measure, and the remaining (relatively
open and possibly empty) Neumann part I'y := I'\T'p. We pose essential and static
boundary conditions, namely

u=0 onlp and oc-n=g¢g only,

where ¢ is a given applied surface force and n denotes the outer normal to the
boundary I'y. Our analysis will be restricted to the study of a boundary value
problem defined in these functional spaces:

H}D(Q) ={ve HI(Q)d|v =0onI'p},
Q = {q ‘qce deVRg;ﬁwqij < L2(Q)}7
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where H'(Q) and L?(2) are the usual Sobolev and Lebesgue spaces. The equilibrium
between external and internal forces in the quasi-static case is given by

dive(x,t) + f(z,t) =0, ze€Q,te(0,T). (16)

With the relation
5(?}) . l(avl i (9/()]‘)
N 2 (9xj 01@ ’

the variational formulation of becomes

(17)

/a:e(v)dx:/f~vdx+/g~vd5(x), (18)

Q I'n

valid for all ¢t € [0,7] and all v € H}(2). According to Lemma , we express the
constitutive law by the form given in ({10))

ol (¢ —pr) <D(qy) —Dr(py) Vgr€Q,r €T, (19)
where (note that we only consider arguments with zero trace here)
Dy(ar) = ¥l (20)
The integral form of over ) is given by

/ o7+ (g — ) da < / D, () dz — / D, (5,) d. (21)

Q

We equivalently replace v by v —u in the force equilibrium , sum the inequalities
over r and subtract to obtain

[oicw - ande- [ - Y

rel rel

Z;/ab : (qrpr)deriZI/Dr(qr)dw;/Dr@r) de - (2)
_/f.(v_u)dq;—/g-(U—u)dS(I)ZO.

In the case of a single yield surface, i.e. I = {1}, this corresponds to the primal
variational formulation discussed in Section 7.1 of [HR99]. Next, we eliminate o =
Ce = C(e(u) — p), o® = H,p, and collect the remaining unknowns as a vector of
functions

w = (u, (p)rer)

We consider w as an element of the Hilbert space (the scalar product will be defined

below)
H=H,Q)x]]Q. (23)

rel



Writing z = (v, (¢-)rer), we define a bilinear form a(-,-), a linear functional ¢(-) and
a nonlinear functional ¥ (-) by

a:HxH-—R, a(w,z)—/(Cau _ZPT : g(v)—ZqT)dx—i-

rel rel

+Z/Hpr.qrdx

rel Q

0t): H—R, (), /f Udaz+/ (t) - vdS(z),

biHoR, P jZ/ (2:)d

rel Q

(24)

From ([22]) we thus obtain the time-dependent variational inequality
a(w(t),z —w(t)) +¥(z) — Y (w(t)) > {(t),z —w(t)), forall ze H. (25)
We assume zero initial conditions
w(0) =0. (26)

We thus have arrived at the following formulation of the boundary value problem
of quasi-static elastoplasticity.

Problem 1 (BVP of quasi-static multi-surface elastoplasticity).
For given | € H*(0,T; H*) with £(0) =0, find w € H*(0,T;H) with w(0) = 0, such
that holds for almost all t € (0,T).

The case of infinitely many surfaces again leads to Problem , see [Val02].
We set
H = Hp(Q) x Li(1;Q), (27)

where

I2(1,Q) = {ff 1 Q. / 1£o][22 dpu(r) < 0o},

rel

The linear functional ¢(-) is defined as in (24). The bilinear form a(-,-), and the
nonlinear functional ¢(-) are given by

a:HxH—=R, a(w,z) :/(C(a(u)—/pT d,u(r)) : (5(@)—/qru(r)) dz+

1

i / / Hrprli g du(r) dz, (28)

biH—R, G //D%du



4 Existence and Uniqueness

In this section, we will prove the unique solvability of Problem [II We pose the nat-
ural assumption that the elastic and hardening tensors are symmetric and positive
definite,

E:CA=CE: N forall €, ) € R,

29
EHAN=H£: N forallENeREr=1,..., M, (29)
and there exist constants c, h, > 0 such that
CE: &> cl|¢]]? for all € € RY,
€€ dlll ¢ .

H,&: &> h€])2 forallé eRYr=1,..., M.
We now state the main theorem of this paper.

Theorem 1. Assume that (29) and (30) hold, let | € H'(0,T;H*) with £(0) = 0.
Then there exists a unique solution w € H'(0,T;H) of Problem .

We will prove that Theorem [1|is implied by the following theorem, which in turn
constitutes a special case of Theorem 7.3 in [HR99].

Theorem 2 ([HR99)]). Let H be a Hilbert space, a : H x H — R be a bilinear
form that is symmetric, bounded, and H-elliptic; | € H(0,T;H*) with £(0) = 0;
and v : H — R nonnegative, convex, positively homogeneous, and Lipschitz contin-
uous. Then there exists a unique w € H'(0,T;H) with w(0) = 0 which satisfies the
variational inequality for almost all t € (0,T).

In order to prove Theorem [I], we have to prove that the assumptions of Theorem
are satisfied. As mentioned above, for a finite index set [ = {1,..., M} we set

M

H=H,Q)x]]Q. (31)

r=1

The scalar product and the induced norm are given by

M M
(w, 2} = () + > (e @)z, |[wllf = (w,w)in + Y (0 p)72 s
r=1 r=1

where

(Prs )12 = / peigrde,  |Ipolle = (rpr)ie
Q

Proposition 1 (Boundedness of the bilinear form a(-,)).
The bilinear form a(-,-) is bounded in the space 'H,

jaw, 2)] < (M + DTl +_max [[B]]) leolsellre (32)



Proof. We have

/ (C(e(u) - ip,)) ; (6(1)) - i qr> dz

<|ICf| - | Zprllm le(w) qullm- (33)

Because (XM, a,)% < (M + 1) M a2 in R, and because ||e(u)z2 < |ullg:, we
have

le(u ZPrHLz < <H€ )z +Z Hn«Hm)
< (M+1) <H€(U)Hi2 + HMI%) < (M + Dl (34)

likewise for the rightmost term in . Moreover, we have

)Z / B g do] < (o ) S Z pleleds, G

.....

and . )
M M 2 /M 2
> ezl e < (Z H%H%z) (Z H%H%z) < flwllallzllze- (36)
r=1 r=1 r=1

Putting together - , we obtain the assertion. O

We now turn to the problem to find an ellipticity constant ¢, > 0 satisfying
a(w,w) > c.||w||3, for all w € H.

We first determine the largest constant k(M), M € N, such that

(xo—zfr) +Zx > k(M )ij:xg (37)

r=1
holds for all xg, x1, ...,z € R. Indeed, we have
(a:O—ZxT> —l—Zx =7 (38)
r=1
where
A=D+a®a, D=diag(0,1,...,1), a=(1,-1,...,—1). (39)

Thus, the optimal constant k(M) in is equal to the smallest eigenvalue of A,
which we will compute with the aid of the following Lemma.
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Lemma 2. Let D € RY*N be a diagonal matriz D = diag(dy, ..., dx), dj # 0 for
j=1,...,N, let a € RN. Then there holds

det(D+a®a) = ([[d)1+>_al/d). (40)

Proof. The assertion follows from the identity

_ D+a®a —a\) D —a
det(D+a®a)—det< 0 1)—det(aT 1)

_ det D —a
9o 1+ a2d;)

To see that the second equality holds, for 7 = 1,..., N we multiply the last column

—a D —a
(1) of B:_<aT 1)
by —a; and added it to the j-th column of B. Similarly, we obtain the third in-

equality in (41)), if for j = 1,..., N we multiply the j-th row of B by —a;/d; and
add it to the last row of B. O

We now determine the smallest eigenvalue \,,;, of A in . By , we obvi-

ously have \,,;, > 0. By Lemma [2] we have, if A # 0,1,
1 M
det(A — ) = =1 =M1+ — ﬁ)' (42)

Besides 0 and 1, the zeroes of |) are given by A\jo =1+ % + %\/ AM + M?. Thus,

k(M) = Apin =1+ % — %\/4M + M2 (43)
Table [1] displays some values of k.

M k

1 0.3819

2 0.2679

3 0.2087

4 0.1715

5 0.1458

10 0.0839

100 0.0098

1000 | 9.98 10e-4

Table 1: Values of k for different values of M.

Now we prove the ellipticity of the bilinear form a(-,-). By Korn’s inequality,

/||5(u)||2 dr > Kl|u||gr  for all u € H(Q), (44)
Q

holds for some constant K = K (£, d).



Proposition 2 (Ellipticity of the bilinear form af(-,-)).
The bilinear form a(-,-) is H-elliptic,

a(w,w) > (k‘(M) min{c, hy, ..., hy} min{l, K(, d)}) l[wl[3,, (45)
where k(M) is given in and ¢, h, are given in (3().

Proof. We can bound the integrand in the scalar product a(w,w) from below as

M
_Zpr) : Zp’r +ZHTp7‘ DPr Z CH€ ZPTHQ"‘Zh ||p7"||2
r=1

> min{e, hy, . .. hM}(He Zerz—i—ZHpTH) (46)

The assertion now follows from and Korn’s inequality. Note that, if (37) is valid
for all scalars z, € R, it is also valid for all tensors z, € R O

The functional

Z/D ¢)dz,  Di(q) = ofllall, (47)

r=1 Q
is a convex, nonnegative and positively homogeneous functional, because D, has
those properties.

Proposition 3 (Lipschitz continuity of the functional (-)).
The functional 1(-) is a Lipschitz continuous functional in the space H with the
Lipschitz constant

— y 3 M2
L—( maxMa,,> meas(€2)2 Mz. (48)

r=1,..,

2

Proof. Let us define 2! = (vl ¢}, ..., q},), 2% = (v*,¢%,...,¢3;). Then

0 02 = 3| [ o2l - i o

M
< ( max o) / g — 2| de. (49)
r=1

,,,,,

Moreover,

M M
1
3 / gt — g2l do < meas(@)} 3 g} — 2]l
r=1 Q r=1
l
S meas % % <Z ||qr - qT||L2> . (50)

Putting and together, the assertion follows. O]

We now have shown that all assumptions of Theorem [2| are satisfied in Problem
[} Thus, Theorem [I]is proved.

10



5 The Case of Infinitely Many Surfaces

The main existence and uniqueness theorem (Theorem (1) can be extended to the
case of infinitely many surfaces given by and . We present the results
corresponding to Propositions and [3[ and sketch the changes in the arguments,
more details are given in [Val02].

Firstly, note that the estimate in the proof of the boundedness of a(-, ) can
be modified to

letw) = [ o dut) e <2(1I@E: + D)+ [ Nl dutr)

T (51)

<2max{1, u(1)}(lle(W)l|Z2 + Il 23 1) -

and consequently the constant (M+1) in Proposition 1)is replaced by 2 max{1, u(1)},
i.e., the following proposition holds.

Proposition 4 (Boundedness of the bilinear form a(-,-), case of infinitely
many surfaces).
The bilinear form a(-,-) is bounded in the space 'H,

a(w,2) < (2max {1, u(D)YICI| + sup 1EL]) oo 2l e (52

Secondly, in order to prove the ellipticity of the bilinear form a(-,-) we will
determine a constant k(u) such that

i —/:cr dpu(r) 2+/:rf dp(r) > k(p) fv3+/1‘3 du(r) | - (53)

holds for all zg, z, € R,r € I, [ 22du(r) < cc. Indeed, applying the argument from
T
[HR99], page 168, the left side of can be bounded from below as follows,

(mo _ / 2 du(r))2+ / z} dp(r)

~
~

(54)

2_dg;(2)—é(/xrdu(r)>2+/$zdﬂ(7”)

1 1

> (1= d)(ao + [(1 = Dut) +1] [ 2autr),

1

Here d € (0, 1) is arbitrary, and we have used the inequality 2ab < da2—|—}ib2 for all a,b €
R and the Cauchy-Schwarz inequality

([eran) < [1aut)- [atautr) = u) [ azaue).

I 1 I 1
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Now, for all d € (%, 1) we have min{l —d, 1 — u([)lﬁd} > 0. Consequently, 1)
holds if we set

1—d
kE(n) = max min{l—d,l—,u([)—}
de (it ) a

(55)

= & (VG + au(D) - ()

The following proposition holds.

Proposition 5 (Ellipticity of the bilinear form a(-, ), case of infinitely many
surfaces).
The bilinear form a(-,-) is H-elliptic,

a(w,w) > (k) min{e,inf{h,}} min{1, K(Q,d)}) [[w], (56)

where k(p) is given in and ¢, h, are given in (3().
The extension of the proof of Proposition [3]is straightforward.

Proposition 6 (Lipschitz continuity of the functional ¢ (-), case of infinitely
many surfaces).
The functional (-) is Lipschitz continuous on H with the Lipschitz constant

L = sup{c?} meas(Q)Y?u(1)"/>. (57)

rel
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