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Abstract

We consider several partial differential equations frequently used in im-
age and signal processing. These equations are derived from variational
principles such as the Energy method. We transfer the equations into an
appropriate weak formulation leading to systems of polynomial equations.
By symbolic computation method we can analyze the parameter depen-
dence of the solutions. In particular, we find that for certain parameter
ranges uniqueness of the solutions is not given.

1 Introduction

In image and signal processing variational principles play an important
role for extracting interesting information in the image or signal. In gen-
eral a gray-scale image is modeled as a two-dimensional function f(z,y). A
given pixel-image is considered a discretization of this function. An impor-
tant task in image processing is the segmentation problem, i.e., to split a
given image into several disjoint regions where the image is homogeneous.
Nonlinear partial differential equations and variational principle has been
shown very successful for this task. We will analyze certain properties of
the discretized equations derived from the Energy method (see Section 2)
by symbolic computation.
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In the framework of signal processing we are interested in denoising
and signal recovery. In this case a signal is described by a one-dimensional
function f(z) which values indicate the signal strength. Given real or sim-
ulated data, the signal is in general contaminated with noise. Considering
the denoising problem, one is interested in reconstructing the unperturbed
signals from the noise-contaminated one.

In many application the available signal has undergone several steps
of filtering, for instance, the function f(z) can be blurred. To extract
physical relevant information, e.g. jumps, a process of deblurring has to
be performed.

All these problems have in common, that the original information in
the signal or image has to be reconstructed from perturbed data, hence
they should be treated within the theory of inverse problems ([2, 6]).

We focus on the Energy method for denoising and signal recovery, that
means, we want to reconstruct a given signal by minimizing an appropriate
functional leading to a variational problem.

A extensive list of appropriate functionals are known (see, e.g., [1]). In
particular, functionals involving the B V-norm play a central role, whenever
one is interested in piecewise constant discontinuous solutions [13, 16]

Recently, the interest in certain nonlinear and nonconvex functionals
has been increased, for they have shown to yield better results than the
convex ones in many cases. We mention the well-known Mumford-Shah
functional [12], which serves as a prototype for an image segmentation and
deblurring tool [11].

Although the denoising problem is one of the simplest inverse prob-
lems, the Energy method is not restricted to this case. In fact, the Energy
method has the potential to be generalized to nonlinear inverse problems.
For instance, the Mumford-Shah functional has successfully been used as a
regularization term in [15]. Hence, we consider the denoising and deblur-
ring problem just a benchmark problem, with the hope that an analysis of
this simple case can bring insight into the more complicated nonlinear one.

2 Energy method

Here we stick to the one-dimensional case, the two-dimensional case rele-
vant for images is of course similar. By the Energy method we obtain an
approximation to the unknown unperturbed signal by minimization of a

functional .

E(u) = 2 /(u — ug)?dz + /\'/gb(ug)dx (1)

over all u(z) € L?(Q2). Without loss of generality we may assume that u(z)
is defined on the unit interval Q = [0, 1].

In (1) ug is the given perturbed signal and the reconstruction is sought
as

ul == min E(u).
u€L2(Q)



The parameter X' has to be chosen appropriately, it controls the trade-off
between the approximation term [(u —ug)?dz and the regularization term
[ #(u2)dz. The latter is necessary to force the solution u! to contain the
interesting noise-free information.

The function ¢ determines the behavior of the solution u!. If the inter-
est lies in non-smooth solutions, and in identifying jumps, frequently used
functions are

bi(s) = %log(l-l-ﬂs)
b = g

with a positive real parameter .
Formally deriving the first order necessary conditions we find that a
solution has to satisfy the following nonlinear diffusion equations:

\Y
(’LL - U()) = Avm for ¢ = ¢1 (2)
Vu
(u - UO) = AVW for qs = ¢2 (3)

together with Neumann boundary conditions
uzp(0) = ugy(1) =0

and A = \'3.

The diffusion operators in (2),(3) are sometimes called Perona-Malik-
filters [14]. There is an interesting relation between the minimizers of the
functional (1) and the Mumford-Shah functional mentioned in the intro-
duction. In fact, it has been shown [4] that for certain choices of ¢, solutions
of the discretized equations approximate minimizers of the Mumford-Shah
functional in the sense of I'-convergence.

Note that solutions to these equations only exist formally, since the
corresponding functionals are non-convex. The question of existence and
uniqueness of such equations is rather involved and is not yet settled (see
[1, 11], and [9] for the parabolic case).

In order to deal with equations for which existence can be proven,
additional smoothing terms in the energy functional can be useful. For
instance, in [5] the following energy functional was proposed:

E(u) = %/(u — ug)?dz + )\/(}Sg(ui)d:v + e/ui(w)dw, e>0 (4

The corresponding equation for the first order necessary condition are sim-
ilar to (3) but with an extra term eAwu on the right hand side. In this
equation an extra parameter ¢ has been introduced. From a practical
point of view, € should not be too large, since then the smoothing effects
of the Laplace operator A dominates the equation and the solutions will



be blurred. On the other hand, choosing € too small might give rise to
multiple solutions.

Hence, it seems to be important to investigate the interplay of the
different parameters A, 8,¢ and the discretization number. By symbolic
computation, we will see, that the parameter dependence of the solutions
can be shown by an implicit functions only related to one grid node. More-
over, for a certain range of parameters we can find branching points where
uniqueness of the solution for the the discretized problem does not hold.

3 Discretization in the FE Space

Starting from Equations (2),(3) we derive a weak formulation. We then
discretize this system using finite element methods, which leads to a system
of polynomial equations in the unknowns. This system can be treated by
algebraic methods, which yields us solutions, which are polynomials in the
parameters A, 8.

In one dimension Equation (2) can be rewritten as

)\U:c:c(l - ﬁu%)

T = AT B2

or equivalently,

ud

(u — ug)(1 + ful) = X0y (ugy — ﬁ?)

Now we multiply the equation with a test function v(z) and integrate
by parts to find the following weak formulation:

A(u,v) == /[0 .

)

3

(u—u)(1 +ﬁu§)udx+x/[0 1](uw—ﬂ%)vwda: —0 Yo (5)

The operator A(u,v) is polynomial in u,u; and linear in v,v,;. Now we
approximate both u(z),v(z) by usual finite element. Let v;(z) be the finite
element shape functions, then we set

N N
u(z) ~ up(z) = Zuzvz(a:) v(z) ~ vp(z) = Zv,vz(x)
i=1 i=1

This leads to a polynomial equations in the unknown wu;:
A(’U,h,’l)i) =0 = 1,2, ...N. (6)

A discretization of (3) can be done in a similar manner: (3) can be
rewritten as

(u—up)(1+ Bu:‘;)?’ = A0z (ugy — ﬂui)

Hence, the corresponding operator A(u,v) is given by

’

A(u,v) = /0 . (u —ug)(1 + ful)3vdz + X /[0,1](U:c — Bud)vydx
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Using finite elements we again arrive at a system of polynomial equations
for the unknown (u;)Y ;.
And furthermore, a functional of the form (4) leads to the operators

Ac(u,v) = /[01

El

3
Uy

?)’Uzdﬂi

(7)

(u— up) (1 + Bu)vdz + A/ (14 &)uz — B(1— )
[0,1]
for ¢ = ¢1, and
A(u,v) = /[0’11 (u — ug) (1 + fuZ)3vdz + X /[0,11 Pe(ug)vgdr (8)
for ¢ = ¢ with

pe(2) = (1+€)z+ Ble —1)2° + %6,8225 + %53&7.

4 Solving the Discrete Solutions by Sym-
bolic Computation

To solve for solutions to the discrete form (6), either Newton type methods
or direct symbolic computation (since it is a system of polynomial equa-
tions) can be considered. The Newton type methods are very efficient if the
discrete equation is elliptic, especially when it is parameter-free. However,
based on the previous discussion, the specific differential equations which
we investigated in this paper can not be proved to be elliptic, hence the
finite element solutions to the discrete form will not be unique in many
cases. We therefore prefer using the symbolic methods for a direct compu-
tation (like eliminations [17] or Groebner basis computation [18]), which
is more promising to obtain all possible (parameter-dependent) solutions.
And furthermore, the complexity of using those symbolic approaches will
not be strongly affected by the existing number of parameters.

The symbolic computation for solving those finite element solutions can
be carried out on certain computer algebra software (e.g. [8]). For instance,
we can show one typical example for solving the discrete equation (6) for
the case ¢ = ¢;.

Let the finite element space constructed by piecewise-linear sample
function and a uniform domain partition on [0, 1] into 4 intervals, which
produce 3 undeterminates ui, ue and ug (ug = w1, us = ug according to the
Neumann boundary condition).

We set the parameter § = 1 and by taking

)1, forze0,1/2],
YT —1, forze (1/2,1),

a discontinuous initial signal. The discretized initial signal is obtained by
piecewise-linear interpolation using the sample functions.



The discrete equation (6) turns out to be the following A-parameter
dependent form. It contains three polynomial equations:

Py :=1/3uy + 1/24us + 4u3 — Suguy + 4u? — dugu? — 4 ug + 64/3\ud
+4duy — 64/3\u — 64 udu; + 64 ugu? + 4/3ud + 8/3ui — 128udu;
+192u3u? — 64/3uju; — 64/3udu? + 256/3udud — 224/3usui — 128ugu’
+3/8 + 32uj + 32ut + 32/3u3 + 64/3uf = 0;

Py :=1/24u1 + 1/6ug + 1/24u3 — Suguq + 4u? — 4u? + Suzus — 4udu,
+8Aug — 128/3 u3 — 4 u;y + 64/3\u3 — duzul — 4\ug + 64/3\u}

+64 udu; — 64 ugu? — 64 udug + 64 uzu’

+16/3u3 + 4/3u$ + 4/3u3 — 128udug + 192udu? — 128uqu?
—224/3uju; + 256 /3udu? — 64/3udud — 64/3usu} + 32u} + 128/3u3
+32/3ud — 32ui + 32/3u3 + 128udug — 192uu3 + 128uzud — 64/3ujus
—64/3udud + 256 /3udud — 224/3uzuj = 0;

P3 :=1/24uy + 1/3uz — 4u3 — 4u3 + Sugug — 4\ug + 64/3\ud — 4u3us
+4duz — 64/3\u3 + 64 udugy — 64 uzud + 4/3u3
+8/3u3 — 32uj + 32/3ud — 32uj + 64/3uj + 128uduy — 192uu’
+128uzu3 — 224/3ujug + 256 /3uius — 64/3udud — 64/3uzus — 3/8 = 0.
We now obtain various results for u;, (i = 1,2,3), depending on the
evaluation of the parameter A. For the case A € {—1, %} we obtain unique
solutions:

A=—1 wu; =0.7771972598, wuo =0, wuz = —0.7771972598
A= % up = 1.7560008097, wug =0, wuz = —1.7560008097.

However, for the value A = 1 we find that the discrete equation (6)
contains more than one solutions according to the symbolic computation:
The values of u1,uo, us can be various combinations of the following results.

u € {.06678774,.1011679,.2215499, 2690963,
1.957513,1.957947, 1.967635, }
upy € {—.04065422, —.03888544, 0, 03888544, .04065422, }
us € {—1.967635, —1.957947, —1.957513, —.2690963,
— 2215499, —.1011679, —.06678774},

Note that all those possible results are not easy to allocated by usual
Newton type methods.

Obviously, the same solving procedure of the symbolic methods also
works in other cases, e.g., if ¢ = ¢9 or if we change the construction way
of the finite element space.

5 Investigation of Parameter-dependent
Solutions

We may also obtain the A-parameter solution u;, (i = 1,2...N) directly by
symbolic computation, and the relation of those 2 variables (u; and A) can
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be shown clearly by implicit function graphs.

For instance, based on the example we discussed in the last section, let
us set up an uniform partition of the domain [0, 1] yielding N = 2 and let
us use the same construction of the finite element space.

We define the initial signal as the following discontinuous function

-1, forz €]0,1/3],
up =4 0, for z € (1/3,2/3],
1, for z € (2/3,1],
then the relation between the parameter A and one certain indeterminate

(e.g. ug) can be solved out easily by the symbolic computation, which will
be the following equation with only two variables:

1296 u3 — 108 \ug — 1296u5 — 72u3 — Tug + 6 = 0.

We can now draw the function by the computer algebra software on
Maple. Let us take A\ corresponding to the z-coordinate and wuo to the
y-coordinate, then the function graph appears as Figure 1.

0.6
0.4
0.2

YO+

0.2

—0.4

—0.6

-08 -06 -04 -02 0 02 04 06 08
X

Figure 1:
It is clearly shown from Figure 1 that only if we chose the value of
parameter A within a small interval (roughly in (—0.52,0.3)), we can solve

the discrete equation uniquely, and the value around —0.52, 0.3, 0.48 etc.
are the critical points where the number of the discrete solutions changes.
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(The graph is completed by a “pacPlot” function of computer algebra soft-
ware , which can make the output quality much better than the normal
implicit plot Maple function.) Analyze the relation between A and the
other indeterminate u; is now trivial.

We can consequently analyze the e-dependent solution to (7) based on
the previous results. From the graph we know there will be unique discrete
solution if we chose A = 1/5. Let us compute (7) by fixing the parameter
A =1/5, we will get the function graph in Figure 2 which shows the relation
between parameter € and grid value of us on grid node 2/3. The associated
implicit function is:

1296€us + 108uge — 936u3 + 6480u3 + 143ug — 30 = 0.

0.5

y0-|

—0.5

5 % 3 2 4 o 1 3
X

Figure 2:
From Figure 2 we see that for positive €, (z = €) the discrete solution
is unique. This picture fits into the theory, since the term involving € was

introduced in (4) in order to obtain a unique solution.
If we change the definition of the initial signal

. — 1, forze]0,1/3],
7 0, forze(1/3,1],

we obtain a relation between the parameter A and wuy by the following



implicit equation, which looks a little more complicated:

—75/8 — 4310577 /4X*u3 — 5609655/8\3uy — 23085/422 + 1594323 /47
+338985/8u3\? — 20962395/8\3u3 + 4782969 /4  uj — 33480783 /2\5us
—46943955 /8 uy + 3874204897\°u3 — 3826375223 u3 — 387420489uj \!
—203391/2)X% — 16081011/8\2u3 + 56549259/16u3 A3 + 20726199/2)\°
+16474671/2u3\* + 5314410uj\3 — 172186884\ u2 + 172186884\ uj
—1161/8X\ — 153/2uy — 2241/32u% — 42039/16 u? — 229635 /2u3
—21627/16u3 — 5427/8u[2]® — 1763451/64u3 — 618921 /8 \uj
+1764909/16\2u3 — 201933 /4\2uy — 43821 /16Aug + 1317303 /32)us
=0.

However, we can still draw the above function graph so that the num-
bers of the discrete solution can be seen clearly with respect to parameter
A

0.4

0.24

—0.2 1

—0.4 4

Figure 3:

Once again (from Figure 3) we find, only if we choose the value of
parameter A close to 0, the discrete solution is unique.

If the numbers of parameters is less than 2, we can always compute an
implicit representation form for the unknowns wu;,7 = 1,2...N depending
on the parameters. The complexity of the symbolic computation only
increases slightly.



6 Conclusion and Remarks

We have seen that symbolic computation can successfully be applied to the
above partial differential equations, leading to qualitative and quantitative
information on the solutions. In particular, the set of the solutions for
certain parameter ranges can be found easily, in contrast to numerical
methods. A combination of symbolic and numerical method by a two-grid
algorithm, where the results of symbolic computation on a coarse grid are
used as a starting guess for a Newton type method on the fine grid seems
to be an interesting perspective for the future. Such an algorithm has been
used for approximating minimal surfaces [7]. Recently, equations similar to
the minimal surface equation have become important in the field of Level-
Set methods [3] and for inverse problems with discontinuous solutions [10].
We expect that a symbolic solution technique can significantly improve
such algorithms.
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