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Abstract

We consider the identification of a parameter in an elliptic equation which -
in its weak formulation - can be described by a strictly monotone and Lipschitz
continuous operator from knowledge of the physical state. Taking advantage of the
special structure, we develop a derivative free Landweber iteration for solving this
nonlinear inverse problem in a stable way. Thereby, the Fréchet differentiability of
the parameter-to-output map as well as conditions restricting its nonlinearity are
no longer required. Instead, the convergence analysis is performed under natural
assumptions already associated to the solvability of the direct problem allowed to
be also nonlinear. Numerical experiments are presented.

1 Introduction

This paper focuses on an iterative method for solving the inverse problem

Flq) ==, (L1)

where the nonlinear parameter-to-output map F maps the parameter ¢ € X onto the
(unique) solution u, € Y of a possibly nonlinear elliptic state equation that can be weakly
formulated by means of a strictly monotone and Lipschitz continuous operator. Thereby,
X and Y are Hilbert spaces. Given an observed or desired physical state z € Y, the
parameter identification problem is to determine a parameter g, for which u,, = z holds.
Problem (1.1) can also be understood as the problem of controlling the physical state in
an optimal way.

As example, the parameter identification problem of estimating the positive parameter
q = q(x,y) in the elliptic equation

(9(22a + v2yy))ax + (@(2yy + V222) )y + (Q2ay)ey = [ onQ C R? in Q (1.2)

(where v and f are known constants) from knowledge of its solution z is considered. In
a first model for the sag bending process related to the manufacture of car windshields, z
represents the displacement of a glass sheet corresponding to a desired windshield and ¢

Unstitut fiir Industriemathematik, Johannes Kepler Universitit, A-4040 Linz, Austria. E-Mail:
kuegler@indmath.uni-linz.ac.at.



denotes the sought for glass material parameter that contains the information needed in
order to achieve the target z by that process, see [19] for more details. Considering (1.2)
as an equation for the unknown parameter ¢, this inverse problem leads - depending on
the fastening of the glass sheet, i.e., depending on the boundary conditions on z - to a
second order pde that changes its type between elliptic and hyperbolic, we refer to [24],
[11] and Section 4 for examples. Facing a mixed type situation, neither existence, unique-
ness of a solution ¢ nor its continuous dependence on the data z could so far be proven.
Furthermore, a numerical strategy for directly solving equation (1.2) for ¢ is missing. A
possible resort is based on the abstract formulation (1.1) of the inverse problem (we shall
return to the windshield problem in Section 4).

Though in the introductory example only a linear state equation is considered (i.e., (1.2)
considered as an equation for z), one already can draw a general conclusion for the pa-
rameter identification problems to be treated in this paper: The inverse problem (1.1) is
nonlinear due to the nonlinearity of the forward operator F. Furthermore, the existence
of a solution cannot be guaranteed in general, and if a solution exists, it may not depend
continuously on the data. Hence, parameter identification problems typically belong to
the class of nonlinear inverse and ill-posed problems.

In the following, it is always assumed that the (exact) data z are attainable, i.e., that
a solution ¢, to (1.1) exists, and focus on the aspect of stability. In practice, the data
z may not be known exactly due to measurement or model errors, but only a rough
approximation z° with

lz—2°| <6 (1.3)

may be available. Then, a numerically stable and reliable approximation of ¢, can only be
sought by the use of regularization techniques, see [6] for a general introduction. Facing a
nonlinear ill-posed problem as (1.1), the probably most widely used method is Tikhonov-
regularization, where the approximate solution is sought as the minimizer of

12° = F(@)|I* + Bllal*, (1.4)

see [7]. Since - opposed to the linear case - this functional is no longer convex and the deter-
mination of an appropriate regularization parameter can be rather numerically expensive,
iterative methods are an attractive alternative. Based on a successive minimization of

A
g 512 = F@)P

see [8] for a comprehensive survey (A is a scaling parameter), the regularization effect now
is simply obtained by stopping the iteration at the right time. Denoting the iterates by
q, the discrepancy principle for instance determines the stopping index k. (8) by

12° = Flg )l <76 < [|2° = F(gp)ll, 0<k <k, (1.5)



for some sufficiently large 7 > 0. The (final) residual 2° — F(g)_) for the regularized
solution q,‘z* then is of the order of the noise level §, which is the best one should ask for.
Note that without an estimate for the data error ¢ a regularization method in the strict
sense of the definition cannot be constructed, see [6].

However, given an initial guess in the neighbourhood of the true solution g, i.e.,

4. € B,ja(a0) C D(F) (1.6)

for some p > 0, convergence of the iterates, both for exact data, i.e., gz — ¢, as k — oo,
as well as for perturbed data, i.e., q,‘z* — g« as 0 — 0, could so far only be guaranteed
under severe restrictions on the parameter-to-output map F' and its Fréchet derivative.
The most straightforward method is the Landweber iteration

@ =g+ A () (2° — F(q)), (1.7)

where F”(g)* denotes the Hilbert space adjoint operator to F”(g?). Still, convergence of
(1.7) requires the local boundedness

IF' (@l < L, q € By(q) (1.8)

of the iteration operator and the nonlinearity condition

1£(q) — F(o) = F' (@)@ — o)l < nll F(Q) — F(@)ll, 4,7 € By(o) (1.9)
with 7 < 1/2 (indepently of the scaling parameter ) or the Newton-Mysovskii condition
I(F"(q) = F'(¢:))F'(a2)*|l < Cnuallg — aull, g € D(F). (1.10)

to be satisfied, where F’(q,)* denotes a left inverse of F”(g.), see [10] and [5]. In [10] and
6], (1.9) has been discussed for underlying linear elliptic state equations, then meaning
a strong smallness assumption on p in (1.6) due to < 1/2. Cases with nonlinear direct
problems have not been addressed. In [11], we failed to verify (1.9) for this kind of inverse
problems, no matter, if the nonlinearity of the direct problem was due to known terms of
the differential operator or the unknown parameter itself, see the next section for exam-
ples. The alternative condition (1.10) has - to our knowledge - not been discussed at all
in the context of parameter identification.

In order to relax condition (1.9), the modified Landweber iteration

G = 6+ AG(@) (2 = F(qR)) (1.11)

was suggested in [21], for which convergence could be established without the Fréchet
differentiability of F' but still requiring

1F(q) — F(q) = G(9)(@ — )l <nllF(q) — F(all, 4,4 € By(qo) (1.12)
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with n < 1/2 and
IG(@)I| <L, q€ By(q) (1.13)

In [21], (1.11) was again applied to (1.1) only in connection with a linear direct problem.
The discussions in [3] and [11] show that, when given a nonlinear direct problem, the
chances for constructing an operator G(-) suitable for (1.12) are very limited. Finally, we
mention that the convergence analysis of more advanced iterative regularization methods,
see [8], is based on even stronger conditions on F' and F”, i.e., they then would imply (1.9).

In this paper, we present a derivative free Landweber method for solving (1.1) in the
presence of (possibly) perturbed data. Though it formally looks like (1.11), the modified
nonlinearity condition (1.12) is not needed for proving convergence. Instead, our choice
of the iteration operator G(-) (for which (1.12) holds under no circumstances) allows to
derive in Section 3 the desired convergence results under natural conditions already as-
sociated to the solvability of the underlying direct problem to be discussed in Section 2.
Since we no longer have to mind the nonlinearity of the latter, our theory then uniformly
applies to a wide range of identification problems covered by (1.1). In addition, the nu-
merical effort compared to (1.7) will be reduced since solutions to auxiliary pde-problems
and/or derivatives of the iterates with respect to the physical state become redundant,
see also the numerical experiments in Section 4.

Since we focused on limits of the classical theory for Landweber iteration and its variants
suggested in the literature, we want to emphasize that this theory has been developed for
a widely larger range of inverse problems than considered in this paper, see [10]. Con-
centrating only on the subclass of parameter identification in elliptic pdes as introduced
above, it is not surprising that the classical theory leaves space for improvements.

2 The Direct Problem

Let Yy be a closed (not necessarily strict) subspace of Y. Both for the Hilbert spaces X
and Y, the inner products and norms are denoted by (-,:) and || - ||, their meaning can
always be identified from the context in which they appear. Furthermore, let Y be the
dual space to Yy, equipped with the duality product (-, -) and the duality map J : Y — ;.

Given a parameter g out of an admissible set () C X, the direct problem consists in
solving the abstract elliptic state equation

Clou=f in Y;, (2.14)
for which we shall assume

Assumption 1. Let Q C X be a set of admissible parameters. For q € () the operator
C(q) maps from Yy into the dual space Yy, i.e.

C(q) : Yo — Yy
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Furthermore, there exist positive constants ay and cs such that
ai|lv —w||* < (Clg)v — ClQw,v —w) v,w e Yy (2.15)

and
(C(g)v — ClQw,y) < asllv —wll[ly|| v,w,yeY (2.16)

hold for all ¢ € Q.

Under Assumption 1, which states the strict monotonicity and the Lipschitz continuity of
C(q), the direct problem (2.14) is uniquely solvable for f € Y and any ¢ € Q, see, e.g.,
[25]. In order to emphasis the dependence on the parameter, the solution is denoted by
uq € Yp.

Already with respect to the parameter identification problem, we also assume

Assumption 2. For allp € X and u € Yy the operator C(p) satisfies
C(p) = B+ A(p)

with
A(u € L(X, YY) (2.17)

and a parameter independent, possibly nonlinear operator B acting from Yy to Y.

Hence, on the one hand the parameter g shall appear linearly in the direct problem (2.14).
On the other hand, we also require A(p)u € Yy not only for p € @ - which would already
be given by Assumption 1 - but also for p € X. Note that C(p) : Yy — Y{' still only has to
be invertible if p € ). Furthermore, we emphasize that despite of (2.17), the nonlinearity
of (2.14) may be due to the parameter g itself.

Simple examples of partial differential equations that can be treated in this abstract
framework with Y = H'(Q) and Y, = H}(Q) are

Example 1.

—Au+q(u) = f in Q,
u = 0 on 09,

with
<A@Mﬂ&zz(£g@ﬁd@ (2.18)
(Bu,v) = /Vqu dz, (2.19)

X = HY(I) for an appropriate real interval I, and

Q={qeX|y<qd <7},



or

Example 2.

—V(q(z)Vu) +b(u) = f in Q,
u = 0 on 09,

with
(Alqu,v) = /Q o(2) VUV da,
(Bu,v) = /Qb(u)v dz,

X C L>(2) and

Q={qeX|y<q<7}. (2.20)
A priori, there are no restrictions on the type of nonlinearity, i.e., functions in (2.14) may
depend on z and u, Vu, |Vul|, ... Furthermore, our assumptions are not limited to second

order pdes, see for instance (1.2) and Section 4, and the unknown parameter may also
appear in higher order terms of the pde-operator. Besides, neither the Dirichlet-type nor
the homogeneity of the boundary condition are essential for the forthcoming theory.

Turning to Example 1, the choice of () implies the Lipschitz continuity and strict monotonic-
ity of the parameter q. These properties also hold for the Nemyckii operator

Ng:Y =Y, 0—q) (2.21)
with ¥ = Ly(Q). Hence, we have

allv —w|? < ale—wH2+1/Q(v—w)2 dx

< (Bl —w),v—w)+ / (q) — q(w)) (v — w) de
= (C(g)v - ClQw,v — w)

with a; = 1/(1 4 Cr) and CF denoting the constant in the Friedrichs-inequality

/ u? dr < C’%/ |Vul? dz
Q Q
which holds for all u € H}(Q). Furthermore,

<B(U - w)? y) + <A(Q)v - A(Q)wa y>
lo = wl[l[yll + llg(v) = a(w)ll3 [lylly
v —wll[y]
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holds with ay = 1+ 4. Hence, Assumption 1 is fulfilled. Since X = H*(I) can be embed-
ded into Cy(I) (the set of continuous and bounded functions) and the linearity of A()u
is obvious, also Assumption 2 is satisfied.

Especially for problems involving space dependent parameters, assumption (2.17) may
be understood as a condition on the Hilbert space X. Considering, e.g., Example 2 in
higher dimensions, (2.17) requires a more regular Hilbert space X than needed for As-
sumption 1 due to X C L*(f2). However, this discrepancy can also be found in the
classical theory of Landweber iteration already due to (1.6), and hence is not specific to
our strategy. Assumption 1 is then easily satisfied for Example 2 with any monotone and
Lipschitz continuous b.

In the next section, we introduce a derivative free Landweber algorithm for the iden-
tification of the parameter ¢ in (2.14) from knowledge of its solution. Convergence can
easily be obtained under Assumptions 1 and 2, then - as opposed to (1.9) or (1.12) -
uniformly applicable to a wide range of identification problems of that type.

3 The Derivative Free Landweber Iteration
We set D(F') = @ and define the parameter-to-output map
F:DF)CX —=Y,q— uy, (3.22)

where u, denotes the solution of problem (2.14). Then, our parameter identification
problem is given by

F(q) = 2, (3.23)

where z € Y denotes a solution of (2.14) for some g, € Q). We recall that F is a nonlinear
operator, even if the direct problem is linear. Furthermore, it is important to distinguish
between the pde-operator C'(¢q) and the forward operator F. Though both are associated
to the direct problem (2.14), their meaning is not the same. While C(q) simply describes
the direct problem, F'(q) actually represents its solution. As a consequence, neither the
invertibility nor the monotonicity and Lipschitz properties of C'(¢) have to hold for F.

Considering also possible data perturbations, we assume that the noisy data 2° belong to
the solution space Y, and satisfy the error bound (1.3). Of course, the perturbed data

have not to be attainable.

Now we are able to introduce to the derivative free Landweber iteration

Gher = G + AL(G)" (2 — ugg) (3.24)



for solving problem (1.1) with perturbed data (1.3) in combination with the discrepancy
principle (1.5). Thereby, the linear operator L(q) : X — Y} is defined by

L(g)p = —J A(p)uy, (3.25)

which exists according to Assumption 2 and hence admits a Hilbert space adjoint. The
construction of the iteration operator (3.25) is in fact motivated by the ideas presented
in [9] and [17]. For illustration, we consider the iteration for our two reference Examples
1 and 2. In the first case, (3.24) translates into

(@1 p) = (@p) — A / Plug) - (2 — ug) de,

in the second case, we obtain

(@211,2) = (g0 ) = A / p(x)Vug - V(2° = up) d, (3.26)
Q
where p € X is a testfunction. In general, derivatives of the parameter or of known
functions in B with respect to the solution u are no longer required by our method since
F(-) is not involved. Furthermore, only (2.14) has to be solved once per iteration step in
order to obtain g, while (1.7) would also require to solve the linearized direct problem

with 2% —u,s as right-hand side, see [11].
k

Thinking about convergence of the iteration algorithm (3.24), the first idea of course
is to choose G(q) = L(q) in (1.11) and to consider the modified nonlinearity condition
(1.12). Though we can show that

(ug — ug — L(q)(q — q),ug — ug) < (1 — an)lJug — ug|?,

we failed in proving

(ug = ug = L(9)(q = q), ug — ug) > cllug — ug — L(g)(q = @) llug — ]|

for some (positive) constant c. Based on the discussion led in [11], we think that (1.12)
cannot be satisfied by L(q) even if the direct problem is linear. Another idea is to consider
(3.24) (at least for 6 = 0) as a fixed point iteration for

L(q) = q+ L(q)"(z — uy),

but also this approach seems to fail. Finally, we emphasize that the monotonicity of C(q)
does not yield monotonicity of F.

Hence, none of the available theories can be applied in order to establish convergence
of method (3.24). Nevertheless we next show that Assumptions 1 and 2 suffice to derive
the desired results.



3.1 Convergence Analysis

As in the case of the classical Landweber iteration (and all the variants discussed in the
literature), the method (3.24) can only converge if the iteration operator L(-)* is (locally)
uniformly bounded and the scaling parameter X is properly chosen. Hence, we assume for
our analysis (and shall verify for our examples) that

IL(@)l < L, q € By(q) (3.27)
with a ball B,(go) of radius p around gy satisfying
B,(a) € D(F). (3.28)
Now, Assumptions 1 and 2 yield that
aillug —ugl* < {C(@Q)ug — C(Q)ug, ug — ug)
= (A(Q)ug — A(Q)ug, ug — ug)
= (L(g)(q — @), uq — ug) (3.29)
for ¢, ¢in B,(qo). Hence, (3.27) can be understood as sufficient condition for the Lipschitz
continuity of the parameter-to-output map F with Lipschitz constant L/a;. Condition
(3.27) does not imply the Fréchet differentiability of I since the operator B is not in-

volved. However, we emphasize that (3.27) is also needed if one wants to guarantee the
boundedness of F” in the classical iterations, see [11].

Regarding Example 1, the embedding X C C,(I) yields the existence of a constant ¢
such that ||p||« < €||p|| for p € X. Hence, we get

[(L(@)p; 0)| < lIpllollvll < éllpllfv]l,

i.e., condition (3.27) holds with L = & Turning to Example 2, we have

(Alp)v, w) < clp[lvflflwl]

because of X C L*(Q). Then, by means of Assumption 1, we obtain (3.27) with
L=d[|f]l/a.

In general, the analysis of an iterative regularization method follows a basic scheme.
First, one proves that the error e; = ||} — ¢.|| is monotonically decreasing, i.e., ex41 < e,
as long as the stopping rule is obeyed. Afterwards, one shows convergence of the iterates
qr in the noise free situation based on an estimate of boundedness for the output residues.
In the presence of noisy data, the stopping rule is used in order to obtain the desired
regularization property of the iterative method.



In our convergence analysis of (3.24) we adopt the approach of [10]. However, all esti-
mates concerning the iteration operator now have to be done differently, since we neither
require the Fréchet differentiability of F' nor the nonlinearity conditions (1.9) or (1.12).
For the sake of brevity we denote the solutions of the direct problem (2.14) corresponding
to the k-th iterate ¢} in the following simply by wuy.

Proposition 3.1. Let Assumptions 1 and 2 hold, let L(-) satisfy (3.27). Furthermore,
assume that g, is a solution of (3.23) in B,/2(qo) and let A and T be chosen such that
2 (a1 - 0‘—) A2>D (3.30)

T

holds, where D is a fized positive constant. In case of noisy data 2° satisfying (1.3), we
denote by k. the stopping index of the iteration according to the discrepancy principle
(1.5) with T satisfying (3.30). Then, we have

g — @bl < llgw —@ll, 0<k <k, (3.31)
and
> 12— uglf? < (3.32)
k=0
For 6 =0 (with T = oo in (3.30)), we have
D - w* < (3.33)
k=0

Proof. Given ||qo — ¢.|| < p/2, we assume

g} — a.]| < p/2

for k < k.(9) and argue by induction. Then, the iteration step (3.24) is well-defined, and
it follows

g = aial® = llg- — ax®
= 2ML(@) (g — ), 2° —wr) + A L(gp) " (2° — wi)||*. (3.34)
The following considerations play the decisive role in our analysis and are only possible
for the special iteration operator (3.25). Because of its definition, (2.17) and
A(q.)z + Bz = A(q))ug + Buy in Yy,

we get

— (2" — e, L(q}) (g — 47))

= (2 —ug, Age — q)un)

= (2% —up, A(g)ur — A(qy)2) + (2° — ug, Buy, — Bz)

(2° = ur, C(g)ur — C(gu)2)

— (2" — g, O(q)2° = Clg)ur) + (2° — ur, C() 2" — C(g.)2)

—a |2 — upll* + anll2’ — wellll2° — 2Il, (3.35)

IN
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where the inequality holds because of (2.15) and (2.16). Estimation (3.35) makes the
nonlinearity condition (1.12) used in the classical proof unnecessary, still one now can
continue similarly to the latter. Using (3.35) in (3.34), one obtains

lg- = giall” = llgx — aall®

<128 — A (20425 — a1 |2® — || + A28 — ukH> .
Following the discrepancy principle (1.5), one gets from (3.30) that
lg: = a2sa* + AD|12° = wil® < llge — @}

for k < k, = k.(5). This implies assertion (3.31) and g}, € B,/2(q.) C B,(qo). Further-
more, one can conclude that

ky—1 ki—1
AD Y 12 = wel® < ) (laf — aull® = llakyn — @)
k=0 k=0

holds, which leads to the inequality

ko —1 5
2 £2 s 2 P
k0 <) 2 —wl? < oD
k=0
and hence to assertion (3.33). O

Regarding condition (3.30) we see that it can always be satisfied by choosing the A suffi-
ciently small and 7 sufficiently large. Note that the use of a ”large” 7 in the discrepancy
principle (1.5) might cause a too early termination of the iteration. However, this problem
is not specific to the iteration (3.24) but also appears in the theories for (1.7) and (1.11)
(where 7 — oo as 7 — 1/2 in (1.9) or (1.12)). Furthermore, our stopping rule no longer
requires the (in practical situations) unknown constant 7 but only depends on quantities
associated to the direct problem.

The estimation (3.33) shows that in the absence of data noise the residual norms of
the iterates tend to zero for k — oo, hence - if the iteration converges - the limit certainly
is a solution of problem (3.23). In the case of noisy data, (3.32) yields the existence of a
unique stopping index k, such that ||2° — uy|| > 76 holds for all k < k., but is violated at
k = k.. Together with (1.5), one obtains the relation

k.(8) = O(67?)
between the stopping index k, and the noise level §.
Turning to convergence of (3.24), we first consider precise data and show that the it-
erates ¢ tend to a solution of (1.1). The basic idea is to verify that g, is a Cauchy

sequence. Again we follow [10], but once more we only require the properties of the
pde-operator C(q).
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Theorem 3.1 (Convergence). Let § = 0 in (1.3). Furthermore, let (3.27), and As-
sumptions 1 and 2 hold. If (3.23) is solvable in B,)2(qo), then g converges to a solution

qx c Bp/g(qO) Of (323)

Proof. Let ¢ be any solution of (1.1) in B,/2(qo), i.e., ug = 2, and set
ex =gk — q-

Proposition 3.1 yields
lex|| — € for k — oo, (3.36)

where € is a nonnegative constant. The next step is to show that e is a Cauchy sequence.
For 7 > k, we choose [ with 7 > [ > k such that

|z —wl| < |z —ul, k<i<y. (3.37)
We will use
le; —exll < lle; — el + [ler — exl| (3.38)
and
lej —eall® = 2(er—ej,e) + |lesl” — [le|?,
ler —exl]” = 2(er — ex, &) + lexl|* — |le]|*. (3.39)

The last terms on each of the right-hand sides of (3.39) converge to 0 for k& — oo because
of (3.36). From (3.24) it follows

j—1

(e —eje)l = MY (z—un L(a)(@— )|

r=l
Because of (3.25), (2.17) and

A(gy)u, + Bu, = A(§)z+ Bz in Yy,
A(g-)ur + Bu, = A(q)u, + By, in Yy

one has
(z —ur, L(¢:)(q — @) = —(Ald—a)ur,z —uy)

= —(A(@— ¢ )ur, 2 — uy)
—(Algr — @)tr, 2 — uy)

= (A@)z — A[Qur, 2 — ur)

+(Bz — Bu,, z — u,)

—(Alg)w — Alq)ur, 2 — u,)
—(Bu; — Buy, z — u,). (3.40)



From this relation, (3.37) and (2.16) it follows that

j—1

A Z(z — Uy, L(Qr)((j - QZ))

r=l

j—1

Aaz Y llz = urll2llz = ] + |2 = wl)

r=l

j—1
< Bz )z —u’
r=I

IN

Hence, Proposition 3.1 yields
|(e1 —ej,er)| = 0

and analogously
|(€l — €, el)| — 0

as k tends to oo (j and [ depend on k). From (3.36) it now follows that
0< lim fle; — el < fim (2er — egrer) + e~ flerf) = 0

and
0 < lim |le; — ex||* < lim (2(e; — ex, e;) + |lex]|* — ||er]|?) = 0
k—o0 k—o0

Therefore the right-hand sides in (3.39) tend to zero for k& — oo, from which one concludes
with (3.38) that e and hence g are Cauchy sequences. Denoting the limit of g by g.
one observes that ¢, is a solution of (1.1) since the residues z — wuy converge to zero for
k — o0, see Proposition 3.1. U

Regarding noisy data, the next theorem shows that the discrepancy principle (1.5) makes
the derivative free Landweber iteration (3.24) a regularization method. In fact, this proof
now is independent of the iteration operator, and hence identical to that given in [10].

Theorem 3.2 (Regularization). Let (3.27) and Assumptions 1 and 2 hold. Further-
more, assume that (3.23) is solvable in B,2(qo) and 2° satisfies (1.3). Then

qi*((;) — q, 0—0,

if the iteration (3.24) is stopped at k.(0) according to the discrepancy principle (1.5),
(3.30).

Hence, focusing on the parameter identification problem (1.1), the use of an iteration op-
erator closely coupled to the direct problem allows to establish convergence of the iterates
towards a solution under so far minimal assumptions. Thereby, it is decisive to apply the
discrepancy principle and to measure the data error in the full Y-norm. In contrast, the
classical theory for Landweber iteration in [10] also applies to data errors measured in
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weaker norms - provided that the nonlinearity condition (1.9) on F' is also satisfied in the
weaker setting. However, the ideas presented above may serve as a basis for the develop-
ment of derivative free approaches capable of data only available in a weaker setup, see
[11] and [15] for preliminary results. Also the following lines can be understood as a first
extension of our theory in that direction.

The derivative free approach is not restricted to cases where the direct problem (2.14) is
described by a strictly monotone operator. For instance, consider

Example 3.

—V(q(u)Vu) = [ in Q,

u = 0 on 09,

with B =0,

(A(Qu,v) = / q(u)VuVo dz, (3.41)

Q

and

Q={qcH'(I)|1<q<7}. (3.42)

Here, the pde-operator C(q) does not satisfy the monotonicity condition (2.15) but can
only be shown to be quasi-monotone. Still, the direct problem (2.14) admits a unique
solution u, € Yy = Hj(Q) C Y = H(Q), see [23].

However, if we replace Assumption 1 by
arllv — wli < (Clg)v — Clgw, S(v —w)) v,w € Yy, (3.43)

(Clg)v = Cl@w, Sy) < as|v —wllyllylly v,w,y eV (3.44)

for all ¢ € @, where Y now is assumed to be a (not necessarily strict) subspace of the

Hilbert space Y, the basic monotonicity property for the iterates of
Ghr = dh + AL(62)"S(2° — ug) (3.45)

can be restored in combination with Assumption 2. Thereby, S denotes a linear operator
acting from Y to Yy. The convergence proof is once more not based on the modified
nonlinearity condition (1.12), instead all the desired results follow with

—(S(2° = w), L(g) (¢- — 4}))

(S(2° = un), Alge — @) us)

(S(2° — up), Alg)ur — A(q)2) + (S(2° — wy), Bug — 2)

—(S(z* — ), C(g.)2" = Clgur) + (S(2° — ux), Cg.) 2" — Clgu)2)

—au [z — wll§ + eall2’ — uxlls o,

IN
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compare to (3.35) (the discrepancy principle and the data error estimate now have only to
be considered with respect to the weaker ?—norm). Hence, the remaining question is if an
appropriate operator S in (3.43) and (3.44) can be found appropriate for C(q). In case of
Example 3, S = —A~! with homogeneous Dirichlet boundary conditions and YV = L3(2)
is the right choice, see [11]. Then, derivatives of the iterates with respect to the current
state are again not required for (3.45).

Before numerically testing the iterative algorithm, we briefly comment on the (so-called)
direct approach for solving the inverse problem (3.23): Given the solution z of the state
equation (2.14), one might consider the latter (in its classical formulation) as an equation
for the unknown parameter q. Considering Example 3, this would lead to

—q(2)Az = ¢'(2)|V2|* = f,

where it is for higher dimensions not clear how to proceed. But even if we restrict ourselves
to the identification of space dependent parameters, the direct approach is not necessarily
applicable, as it has been demonstrated by our introductory discussion of equation (1.2).

4 Numerical Experiments

For a first numerical test of (3.24) we return to our introductory parameter identifica-
tion problem and complement the fourth order state equation (1.2) for z with boundary
conditions on z, for instance,

ZlaQ = 0, Mn =0 on 0f. (446)

With M,, denoting the bending moment, (4.46) corresponds to the fastening of a simply
supported plate - in case of a rectangular frame, the second condition in (4.46) reads as

Zzp + V2 = 0 along the edges with y = constant

Zyy +V2ge = 0 along the edges with x = constant.

Now, given a desired target shape Z satisfying (4.46), the inverse problem is to determine
a corresponding positive ¢.. Since the operator formulation of the direct problem (1.2),
(4.46) is based on

U@ = |

1
o q {(Um: + uyy)(vm + Uyy) - 5(“%%@/ + UyyVea — zuwyvry) dzdy

with Y = H?(Q2) and

YE):{WGY"IU|8Q:0}, (4.47)
for which Assumptions 1 and 2 with @ as in (2.20) can be easily verified, see [18], the
iterative method (3.24) is suited for solving the inverse windshield problem.
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For a comparison of (3.24) to (1.7) we choose a simply supported target shape
2¢ = —(z — 22% + 2 (y — 20° + ), (4.48)
defined on 2 = [0, 1] x [0, 1], and a true parameter
¢ =1+z+2y. (4.49)
Then, the right-hand side f in the direct problem is chosen such that

Ug, = Zs

holds. The use of a non-physical right-hand side f, i.e., not representing the gravity force,
facilitates the construction of test examples for which the solution of the inverse problem
is analytically known. Though the convergence analysis of (3.24) - and also of (1.7) - ap-
plied to the windshield problem would require a parameter space satisfying X C L*°(Q),
compare to (2.20), we choose X = H*(Q) for the numerics. On the one hand, this allows
to keep the numerical efforts low (since the use of higher order elements for the parameter
is avoided), on the other hand it responds to the natural wish for keeping the regularity
that is sufficient for the solvability of the direct problem. All our tests have shown that
the iterates remain in the domain of the parameter-to-output map F' without the use of

a projection operator.

All computations were done in MATLAB, based on the PDE Toolbox which uses the
finite element method. For the representation of the parameter, we chose linear ansatz
functions, the solutions of the direct problem were represented by the discrete Kirchhoff
triangle, see [2]. For our test, we used a regular and uniform triangular mesh with 655
nodal points.

As initial guess and starting value for the iterations we use
0 = 4, (4.50)

which means a relative deviation from ¢, of approximately 80% measured with respect to
the norm in X. The respective scaling parameters A are co-ordinated such that the first
updates are of the same magnitude. The performance of both iterations is documented
in Figure 1, where the relative error

g — all

i (4.5)

is plotted vs. the iteration index k. Method (3.24) (blue line) shows a similar conver-
gence behaviour (also confirmed by other numerical tests) as Landweber iteration (red
line), which is known to be a slow but reliable algorithm. The difference is that (3.24)
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Figure 1: Landweber iteration vs.
method (3.24)

only required to solve a sequence of direct problems, while for Landweber iteration, in
addition solutions to the same number of auxiliary problems had to be computed.

The results obtained by the derivative free method (3.24) are shown in Figures 2 and
3. The simply supported target shape is approximated with a relative error smaller than

Figure 2: the identified parameter Figure 3: the corresponding out-
4450 put Ug,s,

2%. This is remarkable since the deviation from (4.48) is measured with respect to H%((2).

Hence, method (3.24) successfully passed our first test concerning the identification of
a space dependent parameter. We mention that the inverse windshield problem requires
special care since the unknown parameter ¢ appears with its second derivatives in (1.2),
then - in the direct approach - leading to a second order pde of mixed type in dependence
on the given target shape. For a thorough discussion of the influence of the mixed type
on the performance of the iterative algorithm (3.24) we refer to [12].
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4.1 Identification of a Nonlinearity

In this section we test our iterative parameter identification algorithm on a more tradi-
tional example. Given a sequence of perturbed solutions of the nonlinear direct problem
in Example 3, we observe the respective courses of the inverse iteration (3.45) as the noise
level tends to zero.

The Gauss-Newton-method is used in order to solve the nonlinear direct problem (2.14)
in an iterative way, where an improved approximation for the solution is sought by solving
a linearized problem. The exact data z for the inverse problem were generated by solving
the direct problem with a true parameter

1
(1) =2+ 1 cos(T) (4.52)
and a right-hand side
f=78+2zx—y (4.53)

on the unit circle. Thereby, we again used the Matlab environment with linear ansatz
functions for the solution of the direct problem. In order to avoid inverse crimes, see [4],
the solution u,, - which is illustrated in Figure 4 - was computed on a certain mesh and

Figure 4: the exact data z

then interpolated to a regular mesh of 2129 nodal points for the unit circle used for the
inverse iteration.

For the iterative method (3.45), we choose the real interval
I=10,1] (4.54)

as domain of the parameters ¢ and linear ansatz fnctions for its finite element represen-
tation. This interval covers the range of the exact data z but also that of the solution w,,
of the direct problem (2.14) for our initial guess

Qo = 2.25.
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Then, I is “hopefully” large enough in order to cover all temperatures u; appearing dur-
ing the course of the iteration. As opposed to the identification of a space dependent
parameter, the domain of a nonlinearity to be estimated is not a-priori known. For more
details on this crucial topic and numerical strategies we refer to [14], [11]. Note that the
parameter space X = H'(I) here is in perfect correspondence to Assumption 2 of the
convergence theory.

In order to accelerate (3.45), we now use a line search algorithm resulting in an itera-
tion index dependent “scaling” parameter \;. Figures 5 and 6 show the course of the

003
0.02F
001F

0 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Figure 5: (4.55) with 6 =0 vs. k Figure 6: (4.56) with 6 =0 vs. k

error
g — @l ey (4.55)

in the parameter and the error
12° — Ugs 220 (4.56)

in the output during the iteration (3.45) with exact data, i.e., 6 = 0. We recall that - as
opposed to an implementation of (1.7) - derivatives of the iterates g, with respect to the
current state now have not to be computed. After 100 steps of rather fast convergence
the iteration slows down. Nevertheless, the error in the parameter continues to decrease
significantly. The comparison of the computed parameter gjooo (blue line) with (4.52)
(red line) as illustrated in Figure 7 shows a result that is typical for the identification of
a nonlinearity. The parameter can be perfectly identified for temperature values - in our
example ranging from 0 to approximately 0.8 - on a ”sufficiently” large set covered by the
data z. For temperature values that are less or - due to an interval I chosen too large -
not at all covered by the data, the quality of the solution decreases and is more and more
influenced by the initial guess gy due to the lack of data.

Next, we consider a sequence of noisy data z° obtained by a random perturbation of
the exact data z and focus on their impact on the respective courses of the iteration.
In Figures 9 and 10, the errors (4.55) and (4.56) are plotted vs. the iteration index k
for noise levels 6 = 0.0362 (red line) and 6 = 0.072 (blue line), where the noise level is
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Figure 8: ¢, (red), ¢j_ (blue) and

Figure 7: g. (red) and gi000 (blue) ¢ o (green) with § — 0.072

Figure 9: (4.55) vs. k for § = Figure 10: (4.56) vs. k for § =
0.0362 (red line) and § = 0.072 0.0362 (red line) and § = 0.072
(blue line) (blue line)

measured with respect to L?*(€2). Though the error in the output is monotonically de-
creasing during the iteration, the error in the parameter increases after an initial decay.
Thereby, the data noise propagation starts earlier and is stronger for the higher noise
level. Hence, a stable approximation to the solution ¢, of the inverse problem can only be
obtained if the iteration is stopped at the right time. Applying the discrepancy principle
(1.5) (in the L?(2)-norm) with 7 = 1, the error in the output drops below the noise
level § = 0.072 after k.(0) = 119 steps. The corresponding approximate solution q,‘i* as
well as the parameter qJy,,, that is obtained if the stopping rule is ignored, are compared
to ¢, in Figure 8. Though the discrepancy principle yields a satisfactory result in the
presence of data noise for lower temperature values, the blue line in Figure 9 shows that
the iteration is still terminated at a too early step. Thereby, we have already chosen a
parameter 7 that is certainly smaller than required by the theory, see (3.30). On the other
hand, without the discrepancy principle (or any other stopping rule) a reliable approxi-
mation of the parameter g, cannot be obtained. The iterate ¢y, shows oscillations that
are purely caused by the data noise and would even get stronger as the iteration continues.
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The results obtained for a sequence of noisy data with a noise level § ranging from 0.0362
to 0.072 are summarized in Table 1. The last column indicates a convergence rate of order

0 |k |12 —ug | | Nk, — @l | D, — all/V0
0.0362 [ 268 |  0.0362 0.1274 0.6698
0.0402 || 224 | 0.0402 0.1374 0.6855
0.0452 | 188 |  0.0452 0.1477 0.6946
0.0517 [ 159 | 0.0517 0.1594 0.7014
0.0602 | 137 | 0.0602 0.1729 0.7047
0.0720 [ 119 | 0.0720 0.1888 0.7035

Table 1: a sequence of noisy data

\/S, i.e.,
lg2. — a.ll = O(V9). (4.57)

5 Conclusion and Outlook

Our numerical tests confirm that the derivative free Landweber iteration can be success-
fully applied to parameter identification in elliptic pdes from knowledge of the solution as
predicted by our theory. Dealing with direct problems described by a monotone operator,
the number of forward problems to be solved is cut in half compared to the classical
Landweber method, in case of a state dependent parameter, derivatives of the current
iterate with respect to the state have no longer to be computed.

Thereby, the theoretical fundament guaranteeing the convergence of the derivative free
iteration can be laid under natural and easily revisable assumptions for a wide class of
nonlinear elliptic state equations. Our ideas might also be extended to parameter iden-
tification in nonlinear pde systems, where the proof of the unique solvability again is
based on fixpoint arguments. The fact that the differentiability of the direct problem is
no longer required makes the method also a candidate for the identification of parameters
that appear in (non-differentiable) variational inequalities, see [11] for preliminary results.
Furthermore, the derivative free iteration allows an extension to a multi-level iteration,
where the forward operator has to be only roughly evaluated in the early steps of the
inverse iteration in order to reduce the global computational effort, again we refer to [11].
Note that the convergence of any iterative regularization method for inverse and ill-posed
problems may be arbitrarily slow, see [22]. Hence, convergence rate results as, e.g., (4.57),
can only be proven under additional strong assumptions, in general formulated in terms
of the derivative of F', see [8]. Facilitations in this context that can be achieved by the
derivative free Landweber method are subject of the forthcoming paper [13]. Finally, we
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mention that the ideas presented in this paper have meanwhile successfully been extended
to the identification of ¢ = ¢(|Vul) in (2.14) from only single boundary measurements,
see [16].
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