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Abstract

We study the identification of a parameter in a fourth-order elliptic partial differ-
ential equation which models the optimal design of car windshields to be manufac-
tured by the sagging process. Considered as second-order equation for the unknown
parameter the problem is of mixed type, i.e., changing between elliptic and hyper-
bolic. Numerical routines for directly solving this equation are not available. In
this paper we both theoretically and numerically show that the inverse problem can
instead be solved in a stable way by means of a (derivative free) iterative regular-
ization method. Thereby, the course of the iteration nevertheless depends markedly
on the mixed type of the second-order equation.

1 Introduction

Forming automotive glass from a flat sheet to a bended car windshield is a challenging
field of industrial and academic research. The resulting change in the glass surface area
leads to glass deformations that may cause optical distortions of unacceptable refractive
and reflective quality. A related problem the manufacturer faces is the limited formability
of the glass. Hence, not every shape designed at the drawing table of the car producer
can be (immediately) realized in practice such that costly shape corrections may become
necessary.

One industrial method favored for the manufacture of car windshields is the sag bending
process: A sheet of glass is put over a rigid frame with the desired edge curvature and
heated from above. The glass gets viscous and sags under its own weight. The final shape
of the glass depends on the viscosity distribution of the glass obtained from varying the
temperature. Hence, given a desired target shape, the task is to find the appropriate
temperature distribution in order to achieve that goal, see, e.g., [11].

Though the sag bending process operates in the viscous regime, the viscous-elastic analogy
allows to consider the Young’s modulus F, a spatially varying glass material parameter,
to be proportional to the viscosity, see [12]. Then, since the latter is a function of the
temperature, see [8], the sag bending process can in a first approximation also be con-
trolled in terms of E, where the bending of the glass sheet is described by means of the
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linear elastic plate theory. Hence, our inverse problem is to identify the parameter E for
a given target shape w, where its solution can finally be used in order to compute the
appropriate temperature distribution.

In Section 2, we discuss the fourth order elliptic direct bending problem for which we shall
consider two types of boundary conditions concerning the fastening of the glass sheet. In
Section 3 we show that the inverse parameter identification problem can be solved by
a (recently developed derivative free) iterative regularization method whose convergence
can be established under rather natural assumptions. We also discuss the so-called direct
approach which leads to a second order partial differential equation of mixed type for the
unknown parameter E. Due to the changes between elliptic and hyperbolic regions in
dependence on the desired target shape w, it is an open problem how to directly solve
this parameter pde. However, both the convergence rate analysis of the derivative free
iterative method and the numerical tests in Section 4 show that this mixed pde-type is
reflected in the iterative algorithm. Taking care of this special feature is of independent
mathematical interest but also might help to improve existing routines for the control of
the sag bending process.

2 The Direct Problem of Bending of a Plate

In a first model based on the viscous-elastic analogy and the linearized elasticity theory,
see, e.g., [12], [2] and [8], the sag bending process can be controlled in terms of the
Young’s modulus F, a spatially varying and positive glass material parameter. Then,
the displacements w of the glass sheet are described by the fourth order elliptic partial
differential equation
t3
m {(E(woz + vwyy))zz + (E(wyy + vWez) )yy
+2(1 — v)(Bwgy)w} = f in Q, (2.1)

where t denotes the thickness of the glass plate, ! C R? represents its midplane,
v € (0,0.5) is the glass Poisson ratio and f denotes gravity. As boundary conditions
on w we consider either

ow
=0, — =0 2.2
w‘(’)ﬂ ) on ( )
for a clamped plate, or
wlogn =0, M, =0 on 00 (2.3)

for a simply supported plate, i.e., the moment M,, vanishes such that the plate is allowed
to freely rotate around the tangent to 0. In case of a rectangular frame, the second
condition in (2.3) simplifies to

Weg + VWy, = 0 along the edges with y = constant

Wyy + VW, = 0 along the edges with x = constant 2.5



due to the positivity of E, see [9]. Already with respect to the inverse problem, where a
Hilbert space setup is of advantage for its theoretical and numerical treatment, we next
turn to the weak formulation of (2.1). Denoting by Y; a closed subspace of the Hilbert
space Y = H?(2) and considering f as an element of the dual space Y, the displacement
w € Yy can be sought as the solution of the operator equation

A(E)w = f in Y, (2.6)

where A(FE) : Yy — Y is defined via the symmetric bilinear form

(AE0) = [ s (e )00 + )
—(1 = V) (WygUyy + Wyy Vg — 2W4yVgy )] dzdy (2.7)

on Yy x Yy. The space Y, is determined by the boundary conditions on w under consid-
eration, where

Yo ={w € Y| wlsgn =0} (2.8)
corresponds to (2.3) and
Yo=dwey wha=0nr2% =0 (2.9)
=3 w wlan = — = :
0 oe on

represents (2.2). The next theorem shows that, given an appropriate parameter F, prob-
lem (2.6) is uniquely solvable.

Theorem 2.1. For any Young’s modulus E belonging to the set
Q={EeH(Q)|y<E<7}, (2.10)
where 7,7 are positive constants, the direct problem (2.6) admits a unique solution in Y;.

Proof. Simple manipulations of the bilinear form (2.7) yield that the operator A(FE) is
continuous in the sense

(A(E)w,v)| < ao||w|||]v]], w,veY, EeqQ, (2.11)

with a positive constant s = (7). Furthermore, since v € Y (both for (2.8) and (2.9))
with v a polynomial of degree one implies v = 0, we can apply the theorem on equivalent
norms in order to obtain the ellipticity

(A(E)w,w) > ay||w|®>, w,veY,, E€Q (2.12)

with a positive constant oy = a1(7). For details we refer to [10]. Hence, by virtue of the
Lax-Milgram lemma, see for instance [17], problem (2.6) admits a unique solution in Yj
for any F € Q. O

In the following we denote the unique solution of (2.6) by wg in order to emphasize its
dependence on the parameter E.



3 The Inverse Problem

Having introduced the direct problem (2.1), (2.6) as a first model for describing the bend-
ing of the glass sheet resulting from the sag bending process, we now discuss the associated
inverse windshield problem: Given a target shape w that satisfies either the boundary
condition (2.2) or (2.3), we want to find a positive Young‘s modulus E = E(z,y) such
that the corresponding direct problem admits @ as its solution.

In this section, we first introduce and analyze a derivative free iterative regularization
method, then in fact allowing to numerically solve the inverse windshield problem in a
stable way. This strategy is based on minimizing the deviation between a computed for-
ward solution of the partial differential equation and the desired target shape. We also
focus on the direct approach where the idea is to consider the state equation as a second
order (partial differential) equation for the unknown parameter. Since this equation then
is of mixed type, numerical concepts for its solution are missing. Nevertheless, this ap-
proach demands special attention since the mixed type is also reflected in the iterative
method.

3.1 The Iterative Approach

Introducing the set of admissible parameters
Q={EcX|y<E<r), (.13
where X is a Hilbert space, and the parameter-to-output map
F:Q—>Y E— wg,

where wg denotes the solution of the direct problem (2.6), the inverse windshield problem
can be formulated as the nonlinear operator equation

F(E) = . (3.14)

In the following, we assume that the eract data W € Y, are attainable by a parameter
E, € Q, i.e., that the windshield is manufacturable. Note that this does not imply that
the solution F, of (3.14) has to be unique. Already translated to the underlying real
world problem, several solutions may even be of advantage since they give more freedom
in choosing the strategy for heating the glass. Target shapes that would be accepted as
well as @ by the car producer are taken into account as perturbed data w® € Yy, where &
in

| — w’|| < 6 (3.15)

has to be understood as a level of tolerance for the outcome of the bending process.



Parameter identification problems as (3.14) are typically ill-posed in the sense that their
solution does not depend continuously on the data. Hence, data but also round-off er-
rors may be amplified by an arbitrarily large error if one applies methods to (3.14) that
are only suited for well-posed problems, see [3]. In order to overcome these instabilities
one has to use regularization methods. Iterative techniques - especially advantageous
for nonlinear problems - are mostly based on a successive minimization of the output
least-squares functional

A
E = SIF(E) - w'l], (3.16)

where ) is a scaling parameter, see the survey given in [5]. Though the initial guess Fj is
always supposed to lie in a neighborhood of E,, i.e.,

E. € B,y (Eo), (3.17)

where p is chosen such that B,(Ep) C @ is satisfied, stability can only be enforced, i.e.,
a reliable approximation to the solution of (3.14) can only be obtained, if the iteration is
stopped at the right time depending on §. Denoting the iterates by E?, the discrepancy
principle, see for instance [3] or [7], suggests to determine the stopping index k. () by

|w’ — F(B)|| < 76 < ||[w’ — F(ED|l, 0<k<k,, (3.18)

for some sufficiently large 7 > 0. The (final) residual w® — F(E{ ) then is of the order of
the tolerance level, which is the best we should ask for.

All the classical iterative regularization methods for solving (3.14), (3.15) in a stable
way like the Landweber method

By, = B¢ + AF'(E})*(w’ — F(EY)), (3.19)

see [7], that allow a comprehensive analysis of their convergence behaviour, require the
existence of the Fréchet derivative of F' and further conditions on F’, see [5]. Usually, those
are hard to verify for parameter identification problems in higher dimensions. Instead,
we apply the derivative free Landweber method

E} 1 = Ef + AL(E})* (0’ — wy), (3.20)
introduced in [9], where L(E)* denotes the Hilbert space adjoint of the linear operator
L(E): X =Yy, h— —JA(h)wg (3.21)

for E € Q. Thereby, wy, is used as an abbreviation for F(E}), A(h) is defined by (2.7)
and J : Yy — Y} represents the duality map. For the windshield problem it is of interest
to approximate the given target shape also in terms of its second derivatives, since the
related curvatures finally characterize the optical quality of the windshield. Hence, it is
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appropriate to use the full Y-topology in building the adjoint operator of (3.21) (as well
as in (3.15)).

In the following, we choose the Hilbert space X = H*(Q2) with s > d/2 such that
X C L*®(Q) is satisfied. Obviously, we have @ C @Q such that (2.11) and (2.12) es-
pecially hold for () and the forward operator F' in fact is well defined. Furthermore,
definition (2.7) yields

A(u € L(X,Yy) (3.22)

because of
(A(h)v, w) < c||b||||v||[|w]], k€ X,v,w €Y, (3.23)

where ¢ denotes the embedding constant. Together with (2.6) and (2.7) this also implies
that the iteration operator is locally bounded, i.e.,

LB < L, E € B,(E) (3.24)

with L = ¢||f||/ .

In establishing convergence of the iterates of (3.20) we follow the basic concept of [7].
Since we do not resort to strong conditions on the Fréchet derivative of F', we still have
to proceed in a different manner. The first result shows that the error in the parameter
is monotonically decreasing as long as the discrepancy principle is obeyed.

Proposition 3.1. Assume that E, is a solution of (3.14) in B,/2(Ey) and let X and T be
chosen such that o X
2 (a1 - —2) “A\2>D (3.25)
T
holds, where D is a fized positive constant. In case of perturbed data w® satisfying (3.15),
we denote by k, the stopping index of the iteration according to the discrepancy principle

(3.18) with 7 satisfying (3.25). Then, we have

|E. — Bpull < B — B, 0<k <k, (3.26)
and
ko1 2
[ 2
;Hw —wil® < 5. (3.27)

For 6 =0 (with 7 = oo in (3.25)), we have

o 2

. p
>l — wi)* < D (3.28)
k=0



Proof. Given ||Ey — E.|| < p/2, we assume
IE} — E.|| < p/2

for k < k.(6) and argue by induction. Then, the iteration step (3.20) is well-defined,
yielding
1B — Byl = 1B — E5||2
= —2\(L(E})(E. — By),w’ — wy) + N*[|L(B)" (w’ — w)||*. (3.29)

The following considerations play the decisive role in our analysis and are only possible
for the special iteration operator (3.21). Because of its definition, (3.22) and

A(E)w = A(E)wy in Y,
we get

—(w’ = wy, L(E})(Ex — EY))

(w® — wy, A(E, — E)wy)

(W — wy, A(E,)wy — A(E,))

—(w® — wg, A(B)w® — A(E)wg) + (w’ — wg, A(E,)w® — A(E,)w)

< —arljw’ — wil|* + agllw’ — we|[lw’ — @], (3.30)

where the inequality holds because of (2.12) and (2.11). Using (3.30) in (3.29), we obtain
1By = B |l? — || B — E|?
< lw® = wil]A (2a25 — 0 [|wd — wy|| + AL2[|w’ — wk||) .
Following the discrepancy principle (3.18), we get from (3.25) that
1B: = B al® + AD|jw’ — wyl® < || B, - E}|?

for k < k. = k.(6). This implies assertion (3.26) and Ej., € B,(E.) C B,(Ej).
Furthermore, we can conclude that

ko—1 ko—1
AD Y lw® —will® < Y (1B = B’ — | By — Bl
k=0 k=0

holds, which leads to the inequality

k«—1

2
k26 < Z l[w® — wy? < 2

and finally to assertion (3.28). O



Hence, the monotonicity of the iterates, which is the fundament for the forthcoming con-
vergence results, can be guaranteed under natural assumptions already associated to the
solvability of the direct problem. Regarding condition (3.25) we see that it can always be
satisfied by choosing the A sufficiently small and 7 sufficiently large. Note that - in case
of perturbed data - the use of a "large” 7 in the discrepancy principle (3.18) might cause
a too early termination of the iteration, a problem that is also present when using other
iterative methods as, e.g., (3.19). However, our choice of 7 in (3.25) no longer involves
(in practical situations) unknown constants that are linked to conditions on F', compare
to [7].

The estimation (3.28) shows that in the absence of data noise the residual norms of
the iterates tend to zero for k — oo, hence - if the iteration converges - the limit certainly
is a solution of the inverse windshield problem. In the case of perturbed data, (3.27)
yields the existence of a unique stopping index k, such that |w’ — wy|| > 74 holds for all
k < k,, but is violated at k = k,.

The next theorem shows that for precise data, the iterates Fj in fact converge to a
solution of the inverse windshield problem. Furthermore, in the presence of data pertur-
bations, the discrepancy principle (3.18) renders the derivative free Landweber iteration
(3.20) a regularization method, i.e., we have Eg*((s) — E, as 6 = 0.

Theorem 3.1 (Convergence). Let § = 0 in (3.15). If (3.14) is solvable in B,/s(Ep),
then Ej converges to a solution E, € B,j5(Ey) of (3.14), i.e,

Ey, — E.,, k— o (3.31)

In case of perturbed data w’ satisfying (3.15), let the iteration (3.20) be stopped at k. (6),
according to the discrepancy principle (3.18), (3.25). Then

E}. 5 — Bx, 00, (3.32)

Proof. Again we can follow [7], but once more only require the properties of the pde-
operator A(FE). For exact data, the basic idea is to verify that Fj is a Cauchy sequence.
If E denotes any solution of (3.14) in B,s(Ey), i.e., wg = w, the crucial ingredient for
the proof is

(UA} — Wy, L(Er)(E - El)) = _<A(



which holds because of (3.21), (3.22) and

A(E)w, = A(E)w in Y,
A(E)w, = A(E)w, in Yj.

Given (3.33), one can show as in [7] that E, — E and hence Ej, are Cauchy sequences.
Denoting the limit of Ey by E, we obtain that E, is a solution of (3.14) since the residues
w — wy, converge to zero for k — oo, see Proposition 3.1.

In case of perturbed data, the proof given in [7] is independent of the iteration oper-
ator and therefore also applies to (3.20). O

Hence, the derivative free iteration (3.20) in combination with (3.18) provides a numer-
ically stable algorithm for solving the inverse windshield problem. In order to make it
more transparent, we build the inner product in X of both sides with a test function
h € X. Using (3.21) and rearranging the terms then yields

t3
(Elg-f—l - E]g: h) = _)‘72 / h(wkxw(w[s - wk)acac + wkyy(w(s - wk)yy)dxdy
12(1 - 2) g
+/ V(W (W — W) yy + Whyy (W — Wk )ae)dzdy
0
+/ 2(1 — v) hwp gy (w® — wk)mydxdy} : (3.34)
0

As opposed to (3.19), where F'(E?)* also requires to solve (2.6) with f replaced by the
current residual w® — F(E?), (3.20) only calls for the computation of wy. In that sense,
the total number of “direct problems” to be solved is cut into halves by (3.20).

3.2 The Direct Approach

Given a target shape w, one also might look for a solution of the inverse problem by
considering (2.1) as a partial differential equation for F, i.e.,

12(1 — 12)

((Dzs + Vidyy) E) sz + 2(1 — V) (Way E) oy + (Wyy + vi32) E)yy = £3

f in Q. (3.35)
Usually, parameter identification problems are, when regarded as equations for the un-
known parameter, of first order, i.e., the parameter appears at most up to its first deriva-
tives. However, we now face an inverse problem that is of second order in the parameter.
The type of equation (3.35) depends on the sign of

A = (gg + vidyy) - (Wyy + Vidgg) — (1 — v)*d2, : (3.36)



equation (3.35) is elliptic where A > 0 and hyperbolic where A < 0. Note that the type
depends in fact on the given target shape w. The discriminant A can also be written as

w.fL‘iL‘ —"_ wyy

A = 4y( 5

)2+ (1 — v)? (Wypthyy — uvgy), (3.37)

where

A A ~9
Ca = Wgzlyy — W,

is the Gaussian curvature and
1 . .
Cpm = §(www + yy)
is the mean curvature of the shape.

Concentrating on rectangular frames - practice exposes them as the most problematic
ones for the sag bending process - we next follow [16] in order to demonstrate that the
direct approach for the inverse windshield problem leads to partial differential equations
that are always of mixed type. Furthermore, we will see that there is a significant differ-
ence in the type between shapes satisfying (2.2) and those fulfilling (2.3).

In the simply supported case (2.3), (2.4), (2.5) and the positivity of E imply that the
product of (W, + viy,) and (dy, + viby,) in (3.36) is zero on any simply supported edge.
Hence, A < 0 holds on the edges and equation (3.35) gets hyperbolic or parabolic there.

On the other hand, windshields usually have a positive Gaussian curvature Cg in their
interior, i.e., choosing an interior point, its neighbourhood only lies on one side of the
tangential plane. Then, (3.37) shows that A > 0 such that the parameter equation (3.35)
is elliptic in these regions. As a consequence, the equation type changes from hyperbolic
near to the edges to elliptic near to the centre of the region. Furthermore, It is shown
in [16] that there is only one parabolic curve, i.e., a line defined by the points satisfying
A =0, and that it intersects each of the four sides of the squared frame at a single point.
Hence, equation (3.35) is elliptic in the centre and hyperbolic next to the corners of the
frame. This typical behaviour is illustrated in Figure 1.

Also in the clamped case (2.2), the equation for F will be elliptic in the centre region
according to the positive Gaussian curvature Cg of the target shape. However, along
the edges of the frame, the situation is significantly different. For a rectangular frame,
the zero gradient condition on the boundary turns to w, = 0 and w, = 0 on the edges
x = const. and y = const., respectively. Concentrating on a single edge, e.g., x = const.,
and differentiating w, = 0 as well as the zero deflection condition w = 0 with respect to
y, we obtain that also w,, w,, and w,, vanish along that edge. But then, the discriminant

A, see (3.37), there reduces to
2

Aac:const. = VWy,,
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Figure 1: The simply supported case: an elliptic centre
area with adjacent hyperbolic corners

such that equation (3.35) cannot be hyperbolic along that edge. In fact, since w,, van-
ishes only at the ends of the edge © = const., the equation is elliptic along the edge
and parabolic only at the very corners. Nevertheless, it is shown in [16] that the elliptic
regions near to the frame and in the centre are divided by a hyperbolic ring. Opposed to
the simply supported case, there now exist two distinct parabolic lines, where the outer
one does not touch the edges of the domain €2 at all. A typical formation of the elliptic
and hyperbolic regions is shown in Figure 2.
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Figure 2: The clamped case: a hyperbolic ring between
two elliptic areas

Facing a second order partial differential equation of mixed type, questions concerning
existence, uniqueness and stability of a solution to (3.35) arise. Naturally, one would call
for boundary conditions for E on 9 in case of a purely elliptic equation (A > 0 on Q)
and for Cauchy data on a suitable (non-characteristic) part I' C 0 in a purely hyperbolic
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case (A < 0 on ). But for the present problem (3.35) with @ satisfying (2.2) or (2.3),
it is not at all obvious how to proceed. The study in [16] of the characteristics of (3.35),
where the two characteristic directions are given by

dy (1= v)iyy & \/(1 — V)23, — (Dgg + vidyy) + (yy + Vihas)

dx Wy + Vlyy

I

see [13], gave some additional insight - for instance, though equation (3.35) is hyperbolic
near to the corners of the frame in the simply supported case, one cannot prescribe Cauchy
data due to the fact that the edges are characteristics. However, it is not even clear if
side conditions on E should be prescribed at all.

So far, results about existence, uniqueness or stability with respect to the data w of
a solution to problem (3.35) are only available for special symmetric cases, see [14]. Since
especially numerical techniques for solving the equation of mixed type are missing, the
direct approach (at the moment) is not suited for solving the inverse windshield problem.
Nevertheless, returning to our iterative approach (3.20), we shall see that the features of
the direct one must not be neglected.

3.3 A First Theoretical Link

In general, the convergence in (3.31), (3.32) for iterative regularization methods may be
arbitrarily slow, see [15]. Rate estimates can only be obtained under additional assump-
tions on the quality of the initial guess Ej, that are often difficult to comprehend, see [5].
Enhancing (3.20) by an additionally stabilizing term, i.e., considering

B = B} + L(EY)* (v’ — wy) — Be(E} — Eo)
with a certain non-negative sequence of decaying parameters (3, the convergence rates
|Ex — E|| = O/ B) (for exact data), and

1B} ) — Bl = O(\/ Br.(s))

could be proven in [9] under the so-called weak source condition
JueYy, E.-Ey=L(E,)". (3.38)

In order to gain more insight into (3.38), we use the definition of L(FE,) and multiply both
sides by an arbitrary element h € X. Then, condition (3.38) assumes the existence of a
source function u € Y such that

12(1 — 2
%(E* —Eoh) = - /Q Wty + Wy tyy ) dady
Q
—2/(1 — V) hilyy Uy AT
Q
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holds. If E, — Ej is sufficiently smooth and if the boundary values of the initial guess Ej
coincide with those of F,, we obtain

(E, — Eg,h) = / N3 Nx(E, — Eo) - h dx, (3.39)
Q

where Nx denotes the linear operator that generates the norm in X, e.g,
NiNx = (I — A — A?) for X = H?*(Q). Hence, the weak source condition can be
understood as a solvability condition for the second order differential equation
12(1 —v?) . .
_%NXNX (By — Eo) = (WgplUae + Wyylyy)
U (Wyztyy + WyyUgy)
+2(1 — v)Wyyyy

for the unknown function u € Y;. Rearranging the terms on the right-hand side, we end
up with

12(1 — v?
—QN}NX (Ex — Ep) = (Wgg + Vilyy)Ugy + (Wyy + Vigy)Uyy

13
+2(1 — v)WyyUgy- (3.40)

Now, building the discriminant of (3.40) shows that the type of equation (3.40) is identical
to that of the second order partial differential equation (3.35) for E.

Though we assume the attainability of the target shape w, which can in fact be un-
derstood as a solvability assumption for the parameter equation (3.35), this does not
automatically imply the solvability of (3.40), since lower order terms in the unknown
function are missing in the latter. We also mention that the boundary conditions for a
possible solution of (3.40) are already determined by the space Yj. Since both (2.2) and
(2.3) are natural boundary conditions for a fourth order equation, they might be inap-
propriate for (3.40).

Nevertheless, (3.40) gives a first theoretical coupling between the direct and the itera-
tive approach to solve the inverse windshield problem. The next section shows that the
inverse problem can be practically solved by our iterative method (3.20), but also numeri-
cally confirms the influence of the mixed type of (3.35) on the course of the iteration. We
emphasize that the relation between the parameter pde and the iterative regularization
method is neither specific to the windshield problem nor to method (3.20). We refer to [4],
where the classical Landweber iteration (3.19) was applied to a second order parameter
identification problem with a type ranging from purely hyperbolic to purely elliptic in
dependence on the given target.
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4 Numerical Experiments

4.1 Preliminaries

Though the windshield problem only yields strictly mixed type equations (3.35), still the
significant difference between the simply supported and the hyperbolic situation allows to
both test the iterative method and to numerically investigate the influence of the equation
type on its outcome. For that purpose, neither the thickness ¢ of the plate, the right-hand
side f, the Poisson ratio v nor the scaling of the parameter E are of relevance. With
v = 0.5, the direct problem (2.6) then turns into

/QE ((Wgg + Wyy) (Vg + Vyy) (4.41)
1 -
—i(wmvyy + Wy Uy — 2wzvay)} drdy = / fvdxdy v €Y,
Q

with the solution space either given by (2.8) or (2.9). The use of a non-physical right-hand
side f, i.e., not representing the gravity force, facilitates the construction of test examples
for which the solution of the inverse problem is analytically known.

Though the convergence analysis of (3.20) - and of the methods discussed in [5] - ap-
plied to the windshield problem would require a parameter space satisfying X C L*®(),
see (3.13), we choose X = H'(Q) for the numerics. On the one hand, this allows to
keep the numerical efforts low (since the use of higher order elements for the parameter
is avoided), on the other hand it responds to the natural wish for keeping the regularity
that is sufficient for the direct problem, compare to (2.10). All our tests have shown that
the iterates remain in the domain Q of the parameter-to-output map F without the use
of a projection operator.

As a last small deviation from the theoretical fundament, we shall use a line search
algorithm, see [6], in order to accelerate (3.20). This results in an iteration index depen-
dent “scaling” parameter \; (compared to a constant A\ as required by the theory, this
has no other influence on the course of the iteration than speeding it up, see [9]), i.e., the
iterations finally reads as

B = B} + MEg, (4.42)
where the update Ej, satisfies
(B, h) = _/ h {(wkm(wd — Wk oo + wkyy(w5 — Wk)yy) (4.43)
Q
1 s s
+§(wkww(w — Wk)yy + Whyy (W — Wk)zz)

‘HUchy(w& - wk)my} dzdy,
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compare to (3.34). Due to the choice X = H'(), equation (4.43) can be considered as
the weak formulation of

Ek - AEk = - {(wkm(w‘s - wk)ww + wkyy(w‘s — wk)yy) (444)

1
+§(wkzw(w6 - wk)yy + wkyy(wa - wk)zz)

+wkwy(w6 - wk)wy} in Q:
OFE
8—nk = 0 on 0N (4.45)

Hence, one iteration step in order to solve the inverse windshield problem consists of:
1. Given E?, calculate the solution wy, of the direct problem.
2. Build the residual w’ — wy, and solve problem (4.44), (4.45) for the update Ej.
3. Then, the new iterate Ej_, is given by (4.42).

We emphasize that the second order partial differential equation (4.44) for Ej, is purely
elliptic, hence the iterative algorithm never requires to solve the second order equation
(3.35) for the parameter such that there is no obvious connection to the mixed type result-
ing from the direct approach. The boundary condition (4.45) shows that the boundary
flux % of the initial guess Ej is maintained during the whole iteration.

All computations to be presented in the following are based on the PDE Toolbox of
MATLARB, using the finite element method. For the parameter we chose the built-in lin-
ear ansatz functions, while the solutions of the direct problem were represented by means
of the discrete Kirchhoff triangle, see [1]. Furthermore, a regular and uniform triangular
mesh with 665 nodes was used for Q = [0, 1] x [0, 1].

4.2 Simply Supported vs. Clamped Target Shape
For the numerical test we consider a clamped target shape
We = —25(x% — 223 + o) (v? — 2¢° + y), (4.46)
a simply supported target shape
g = —(z — 22° + %) (y — 2y° + y*) (4.47)

and a true parameter
E.,=1+z+4+2y (4.48)

on the unit square. The right-hand side f in (4.41) is chosen such that F(E,) = ¢ or
F(E,) = wg holds, respectively. Though we treat in fact two different direct problems,
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one for the simply supported and one for the clamped plate, this is no barrier for testing
our algorithm and for comparing the respective inverse problems with respect to the pa-
rameter pde structure. The elliptic and hyperbolic regions of (3.35) corresponding to wg
and w¢ are those shown in Figures 1 and 2.

Ignoring data perturbations for the moment, we choose
Ey=14 (4.49)

as initial guess, meaning a relative deviation from F, of approximately 80% measured
with respect to the norm in X. The course of the iterations is documented in Figures 3
and 4, where the relative error

Figure 3: (4.50) vs. k Figure 4: (4.51) vs. k
|1E. — Ei||
—_— (4.50)
(2]
in the parameter, but also the relative error in the output, i.e.,
I = w (4.51)
Il

is plotted vs. the iteration index (the relative error in the L?(€2)-norm is approx. tenth
part of that shown). The simply supported case is represented by the red line, the clamped
case by the blue one. Figure 4 shows that the simply supported and the clamped target
shape are approximated with nearly the same quality by our method. The relative error
is smaller than 2%, which is remarkable since the deviation in (4.51) is measured with re-
spect to H?(2). Regarding the relative error in the parameter, we observe a first difference
between the simply supported and the clamped situation. Starting both computations
from (4.49), it is an open question why the “clamped” error is significantly lower than
the “simply supported” one.

Figures 5 and 6 confirm the quality of the computed outputs, while the corresponding
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Figure 5: computed output wasg, Figure 6: computed output wasg,
simply supported clamped

Figure 7: Ej59, simply supported

example Figure 8: Ey450, clamped example

parameters Ej 50 are shown in Figures 7 and 8. In fact, the total L?(2)-deviations between
E, and E,5 are nearly identical, while the total deviations in the gradient are higher in
the simply supported case than in the clamped one. The oscillations along the boundary
0f) in both cases are caused by the pursuit of satisfying the boundary condition
0E}
on
due to the initial guess (4.49), compare to (4.45).

=0

Not knowing the boundary values of the solution F, (as in the previous example) one
might think of an iteration procedure that ignores them at all. For that purpose we could
only use the L?(Q)-inner product in the left-hand side of (4.43), then resulting in the
update rule

Ek = - {(wkww(wd - wk)ﬂ:z‘ + wkyy(w6 - wk)yy) (452)
1

+§(wka:a:(w5 — W) yy + wkyy(w5 — W) zz)

FWhay (W — wi)zy} in Q.

17



Algorithm (4.52) can be related to the abstract formulation (3.20) by building the adjoint
of the iteration operator L(E?) only with respect to the rougher space L?(f2). As opposed
to (4.44), (4.52) does not describe a boundary value problem for the update Ej. Though
the parameters are still considered as elements belonging to H'(f2), boundary traces of
the initial guess are no more maintained during the iteration (at least not in an obvious
way). Figures 9 and 10 show the performance of the iteration when using only the update

Figure 9: (4.53) vs. k, simply Figure 10: (4.50) vs. k, simply
supported vs. clamped supported vs. clamped

rule (4.52), where the relative error

| By — B2
| Bl L2(0)

(4.53)

vs. k is plotted in Figure 9, while the error (4.50) with respect to H'(Q) is recorded
in Figure 10. Concerning the outputs wy, the error behaviour is similar to that shown
in Figure 4, hence we only concentrate on the parameters Ey. The L?(Q)-error in the
simply supported situation (red line) now lies below its clamped counterpart (blue line)
- a ranking opposed to that shown in Figure 3. Regarding the H'(Q2)-norm, the iteration
shows a divergent behaviour, i.e., the error increases from the very beginning, leading to
highly oscillating parameters as illustrated in Figures 11 and 12. Thereby, dark green
means small errors while light green represents large deviations from the true parameter.
Regarding the computed solutions from the top, see Figures 13 and 14, a comparison to
the elliptic and hyperbolic regions, see Figures 1 and 2, in the respective parameter pde
shows that its mixed type is reflected in the error structure of the iterative solutions. The
parabolic line in Figure 1 is clearly observable in Figure 13, but also the two parabolic
lines bordering the hyperbolic ring in Figure 2 are indicated in Figure 14. Especially the
parabolic points lying on 0f2 are highlighted: while in the simply supported example the
iterates stay with the initial value of Fy at the parabolic midpoints of each side of the
frame and exactly reach the solution at the very corners, the parameters are left com-
pletely unchanged at the parabolic corners in the clamped case.
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Figure 11: Egg, simply supported
example

Figure 13: FEgg, top view, simply Figure 14: Egg, top view,
supported clamped

From the discussion of the direct approach in Section 3 we know that the second deriva-
tives of any solution of the direct problem, i.e., especially wggy, Wy, and wy,,, vanish at
the parabolic boundary points - both in the simply supported and the clamped situation.
Hence, the right-hand side in (4.52) is zero at these points such that the initial guess FEj
cannot change there, explaining the behaviour shown in Figures 11 and 12 along 0f2. For
that reason, these results cannot be improved by choosing a finer grid when staying with
(4.52), on the contrary the peaks would even get sharper. Concerning the interior of €,
the parabolic lines for wy are not fixed but tend during the iteration towards those of the
target w as shown in Figures 1 and 2. Hence, their influence on (4.52) is not as strong as
that of the non-changing parabolic boundary points, which is also reflected in Figures 11
and 12.

We summarize our observations by
Ek ~0e A= 0,

where A is the discriminant of the parameter pde (3.35), finally suggesting that the pa-
rameter cannot be identified along the parabolic lines determined by A = 0. This lack of
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identifiability does also exist during the iteration based on update (4.44), (4.45) but then
is blurred out due to the smoothing effect of the pde for Fj.

Considering the direct approach for solving the inverse problem via the second order pde
(3.35), the question if or what kind of boundary conditions on E should be prescribed
is unanswered. This automatically translates into an uncertainty about ”the right inner
product” for the left-hand side in (4.43). However, as opposed to the direct approach,
the iterative process allows at least to test several choices. So far, we considered two
possibilities, namely the neglect of boundary conditions via (4.52) and the prescription of
Neumann data via (4.45). Aiming at a smooth approximation of the parameter - regard-
ing the motivating sag bending process only then suitable for a translation into a heating
procedure -, the latter variant is certainly to prefer. If the boundary values of the solution
(or the desired) E, are given, we could use this information by a further manipulation
of the iterative process (4.42). Restricting the test functions A in (4.43) from the space
H'(Q) to Hy(Q), we again can interpret (4.43) as the weak formulation of the elliptic pde
(4.44) for the update Ej but now with

E, =0 on 99 (4.54)
as boundary condition. Then, the Dirichlet trace of the initial guess E, are maintained
during the iteration. In terms of formulation (3.20), (4.44) in combination with (4.54)
can be understood as building the adjoint of the iteration operator with respect to Hg ().
The course of the iteration using (4.54) with an initial guess

3
E,=E,.+ 2 sin(7z) sin(7y)

is recorded in Figures 15 and 16. The relative errors in the parameter and the output

o 5 10 15 20 25 3 3 40 45 50 55 o 5 10 15 20 25 3 35 40 45 50 55

Figure 15: (4.50) vs. k Figure 16: (4.51) vs. k

now are nearly identical in the simply supported (red line) and the clamped situation
(blue line), furthermore they are (of course) below their counterparts from Figures 3 and
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4. Nevertheless, the difference between the simply supported and the clamped example
becomes apparent when regarding the absolute error between FE, and the respectively
computed parameters Es3 from the top as illustrated in Figures 17 and 18. Once again,

Figure 17: E, — Es3, simply sup- Figure 18: E, — E53, clamped, top
ported, top view view

the structure of the mixed type parameter pde (3.35) is reflected in the results obtained
by the iterative parameter identification method.

Finally, we briefly comment on the influence of data perturbations on the inverse wind-
shield problem. Staying with the update rule (4.54), which led to the best results in the
noise free situation, we now consider random perturbations w¢, and w of the exact data
(4.46) and (4.47). The respective relative data errors are given in Table 1. Though the

5 [|w? —d]| ||w6*w||H1(g) ||w5*“7||L2(Q)
] [ ol 2
w=wg || 0.292 | 0.293 0.012 0.001
w=we || 0417 | 0.29 0.02 0.002

Table 1: the data error

errors are about 29% when measured with respect to the full H*(Q)-norm, they are less
than half a percent if the perturbations are considered only in L?(f2). The numbers of
the table also confirm our earlier request for approximating the given target shield (no
matter if exact or perturbed) in the full H?(Q2)-norm. Only then, errors in the second
order derivatives and the related curvature terms can be minimized, which is essential for
the optical quality of the windshield. Figures 19 and 20 now show the behaviour that is
typical for any iterative parameter identification method in the presence of data noise.
While the relative error (4.51) (with @ replaced by w?’) in the output is monotonically
decreasing, the error in the parameter shows a semi-convergent behaviour (even though
the true boundary values were fixed). Hence, a reliable approximation of E, can only be
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Figure 19: (4.50) vs. k Figure 20: (4.51) vs. k

obtained by stopping the iteration at the right time, for instance according to the discrep-
ancy principle (3.18). Furthermore, Figure 19 indicates that the iteration for the clamped
case (blue line) is more sensitive to data perturbations than for the simply supported one
(red line).

The theoretical and numerical results presented in this paper clearly demonstrate that
the inverse windshield problem (3.14) can be solved in a stable way by the derivative free
iteration method (3.20) under natural assumptions and minimal effort. Furthermore, we
have seen that the direct approach, though methodologically different and (so far) not ad-
mitting a numerical implementation, is coupled to the iteration. A better understanding
of its mixed type structure is of own mathematical interest but might also help to further
improve the performance of the iterative algorithm.

Acknowledgement: I'd like to express my gratitude to Prof Heinz W Engl and the
group of J R Ockendon for bringing the windshield problem to my attention, and for
fruitful discussions about the two approaches.
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