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Abstract

Considering the identification of a temperature dependent conductivity in a
quasilinear elliptic heat equation from single boundary measurements, we proof
uniqueness in dimensions n > 2. Taking noisy data into account we apply Tikhonov
regularization in order to overcome the instabilities. By using a problem-adapted
adjoint, we give convergence rates under substantially weaker and more realistic con-
ditions than required by the general theory. Our theory is supported by numerical
tests.

1 Introduction

The issue of parameter identification is to determine unknown parameters, appearing,
e.g., in state equations, from indirect measurements related to the physical state. This
inverse problem can be considered as a (mostly) nonlinear operator equation

F(q) = z,

where the forward operator F' maps the parameter ¢ onto the output z. As the physical
state often cannot be observed exactly, one finds oneself in the situation of given noisy
data 2° instead of z. Now, as parameter identification problems are frequently ill-posed,
the estimation of the parameter can be strongly influenced in a negative way by even only
small data noise. Hence, for their stable numerical solution some type of regularization
is required. Regularization techniques replace the ill-posed problem by a family of neigh-
bouring well-posed problems, leading to a stable approximation of ¢, called the regularized
solution. The probably most frequently used approach is Tikhonov regularization where
the regularized solutions are sought as the minimizers of

¢ F(q) = 211" + Bllal”,

with some regularization parameter f3.
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A careful mathematical analysis of the regularization method is needed in order to give
useful guidance, under which conditions it will perform well, and confidence in its numer-
ical results. Since for ill-posed problems, convergence of any numerical algorithm can be
arbitrarily slow [21], conditions for convergence rates are of special theoretical interest.
They are also practically relevant as they tell us for which problems fast convergence
of numerical algorithms can be expected. But according to the general theory [4] such
convergence rates can only be obtained under strong source conditions of the type

Jw q¢—q* = F'(q)"w, (1.1)

where ¢* is an apriori guess for ¢, and F'(¢q)* is the adjoint of the Fréchet-derivative of F'
evaluated at ¢. This general theory has been applied to various inverse problems includ-
ing parameter identification, see [14], [4] for elliptic problems and integral equations, and
[19] for a parabolic equation. All these applications are for one-dimensional problems,
since only there, the source condition (1.1) has a rather immediate explicit interpretation
(usually requiring some additional smoothness and prescribed boundary behaviour for
q" — ¢*). In [16], condition (1.1) was weakened based on ideas from [8] and then fully
interpreted for the identification of a nonlinearity ¢(u) from distributed measurements of
u in arbitrary dimensions.

But before taking data perturbations and convergence rates into account, one has to
consider if the given data z at all contain enough information in order to identify the
parameter ¢, i.e. if the mapping F' from ¢ onto z is injective. Often, a limit to the amount
of available data is given by the setup of the experiment. Frequently (for example, in
non-destructive testing) measurements cannot be done within the material 2 but only on
(parts of) the boundary 052, leading to data containing less information.

Considering the inverse conductivity problem, one is interested in finding the conduc-
tivity ¢(z) in
-V -(¢(z)Vu) = 0 in Q (1.2)
v = g on 0,
given the additional boundary data

q(x)g—z =h on T,

with I' C 0. For this case of single boundary measurements, the unique identifiability
is widely investigated for parameters

q:1+X(D)’ DCQ;

where x is the characteristic function of a unknown domain. Several partial results are
given (see, e.g., [1], [10] and [13]), nonetheless a general uniqueness result is still missing.
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Turning to inverse problems for nonlinear elliptic equations
—Au+q(u) =0 in Q,

only local uniqueness results for (small) g are available, if in addition to the Dirichlet data
g, Neumann data as well are prescribed on 0f2. See [12] and the references given there.

In order to enhance the chances of identifiability one often resorts to many boundary
measurements: For any Dirichlet data g in (1.2) one is given Neumann data h, in other
words, the results of all possible boundary measurements are known. Then, the informa-
tion to identify the parameter is contained in the so-called Dirichlet to Neumann map

A:g—h.

Based on these multiple boundary measurements, the aim of impedance tomography is
the reconstruction of the conductivity ¢(z) or ¢(z,u) in (1.2) within the human body or
some material. For the linear case, i.e., ¢ = ¢(x), global uniqueness was proven in [24] for
dimensions n > 3 and in [18] for two dimensions. The uniqueness result for the quasilinear
case ¢ = ¢(z,u) can be found in [23] for dimensions n > 2. There, also the anisotropic
case, i.e., ¢ is a matrix, is investigated.

We now specify the inverse problem we are looking at in this paper. Our goal is to
identify the temperature dependent heat conductivity ¢ in

—V - (¢(u)Vu)=f in Q (1.3)

from only single boundary measurements of the temperature u. Note that not only the
inverse but also the forward problem is nonlinear. We show that the parameter is uniquely
identifiable on the temperature range as a function of one variable. Besides, further de-
velopments of our Tikhonov regularization analysis from [16] allow us to provide a fully
interpretable weak source condition for the convergence rate of the regularized solutions.

In Section 2 we briefly discuss the nonlinear direct problem (1.3) with mixed boundary
conditions for u. For a positive parameter ¢ of H'-regularity, we guarantee the existence
of a unique weak solution v € H'(2). Furthermore, we give an estimate of the temper-
ature range governed by w in €2, which is equivalent to the one dimensional domain the
parameter ¢ lives on. Together with the temperature data on the boundary, the a-priori
unknown interval, on which the the parameter can be recovered, can then be estimated.

In Sections 3 and 4 we investigate the inverse problem. First we show that the parameter
is uniquely determined by single boundary temperature measurements. From [23], the
uniqueness only follows for the case of multiple measurements. Afterwards, we give a
stability analysis for Tikhonov regularization and prove convergence rates under much
weaker assumptions than required in the general theory by taking advantage of a special



adjoint approach. This kind of approach was first introduced in [8] for the identification
of a space-dependent heat conductivity ¢(x) from distributed temperature measurements.

Section 5 contains a detailed interpretation of the source condition needed for the con-
vergence rate proof both in two and three dimensions. This is different to [8] where a full
interpretation could only be given in the one dimensional case.

Section 6 sketches variants in the setup for the inverse problem. In Section 7 we present
results of numerical tests which support our theory.

2 The Direct Problem

In many applications modelled by the heat equation, for example in the context of steel
production (see [11], [6], [7]), the heat conductivity ¢ does not vary spatially but rather
depends on the temperature u itself. Considering the stationary case, the heat distribution
is described by the nonlinear elliptic equation

-V (¢(u)Vu) = f in Q (2.1)
with, e.g., the boundary conditions

0
q(u)a—z =h on I' (2.2)

and
u(z) =¢ on Iy. (2.3)

Here, 2 is an open bounded connected domain in R*, n > 2, with boundary Q2 € C?%. We
assume Iy C 09 to be connected and to have positive measure and set I'y = 0Q\I'y. f is
a given heat source density, A is a given temperature flux and g is a prescribed (boundary)
temperature.

We set
V={ve H(Q) | v|r, =0}
and assume - already with respect to the inverse problem - that
g is constant, h € C(I'y) and f € C().

By the trace theorem we then get a § € H'(Q) such that g|r, = g. Now, by integration
by parts we derive the variational formulation for problem (2.1)-(2.3):

Find u € H'(Q) such that



and
/ q(u)Vu - Vo dx = / f(z)v dx +/ hv dly forall veV (2.4)
Q Q '

hold. Under the assumption
g€ H'R) and 0< oy < q < ay,

there exists a unique solution to the variational problem (2.4) in H'(Q). The proof - based
on the continuous embedding H*(R) C C(R) and the theory of quasi-monotone operators
- can for example be found in [22] (see Proposition 5.1 and the subsequent relaxation to
quasimonotone operators). Furthermore, there is an a-priori estimate for the solution, i.e.
there is a constant C' > 0 depending only on as, h, f and g, such that

|ugll a1y < C, (2.5)
where, in order to emphasize the fact that the solution u depends on the parameter q, we

use the notation ug, or u,(x).

Note that u, can also be considered as the weak solution of the linear equation

—V-(§(z)Vu) = f in Q
., 0
q(x)% = h on [y
u(r) = g on Ty,

with §(z) = q(u,(z)). Already with respect to the inverse problem we cite [3] for the weak
maximum principle: If we choose f and h such that

/f(x)vdx+/ hv dl'y <0
Q I

holds for all essentially non-negative v € V', we get

ess. sup u, < ess. sup max {ug, 0} (2.6)
€N €l

(or u, is a positive constant). Hence, the upper bound of the temperature range covered
by u, in € is given by the maximum temperature on I'; (or by 0, if the latter is negative).

3 The Inverse Problem

Given a single boundary observation of the solution of the direct problem, the inverse prob-
lem is to recover the physical parameter ¢ on the real interval covered by the temperature
using the observation data. In order to overcome the ill-posedness of this identification
problem, we choose Tikhonov regularization for its stabilization.



3.1 The Interval of Identifiability

Identifying the nonlinearity g(u) is theoretically and numerically challenging, since the
interval, on which the parameter can be recovered, is a-priori not known. Obviously, the
parameter, as a function of one variable, cannot be reconstructed on the whole of R, but
at the most on the interval [Umin, Umax], Where ty;, and um.x denote the extremal values
of the temperature distributed over Q. Outside this interval, no physical information is
available, making the identification impossible in advance.

In the case that only boundary temperature measurements are given, the data need not
necessarily cover all of [Umin, Umax]- If one still wants to recover the parameter on the
whole interval, the following experimental setup for indirect measurements volunteers.
Assume that the heat conductivity ¢ is known up to a temperature value uy from maybe
direct measurements, but inaccessible at temperatures above. Then, we set

g = ug (constant) (3.1)

in (2.3). By tuning f and A in (2.1) and (2.2), we drive the temperature on the boundary
I'; to values higher than uy. Finally, we measure the temperature trace along I'y, whose
maximum value we call u;.

We know from the maximum principle (2.6) that
Umax = U1

holds (for f and h chosen appropriately). Unfortunately, we cannot guarantee umi, = g
but only have wuni, < wug. Nevertheless, since we assume to know ¢ up to wug, we can
consider the identification of ¢ on the interval

[umina umax] .

3.2 Output Least Squares Formulation

Denoting by z(z) the measured temperature trace along I'y, we want to identify the true
thermal conductivity ¢' out of a set of admissible parameters, satisfying

where v denotes the trace operator

v:HY Q) — L))

u = ulp,,

and u,+ is the solution of the direct problem (2.1) - (2.3) with ¢ = ¢'. We always assume
the existence of a true parameter gf, i.e., that the exact data z are attainable. Of course,



the measured (noisy) data need not be attainable.

We already mentioned in the previous section that ¢' can at most be identified on the
range of u,+. Nevertheless, during the numerical solution of the inverse problem tempera-
ture values corresponding to other parameters than ¢' may occur. Hence, the parameters
have to be defined on an even larger range than that of u,+. This crucial numerical point
is discussed in [15] and [16] for the case of distributed temperature measurements.

For defining the set of admissible parameters, we choose positive constants a; and ay
such that the temperatures u,, and u,, (obtained by solving the direct problem) contain
(at least) the minimal and maximal values of the data, i.e., the measured temperature
trace on I'y, respectively. Since a; and ap are constant, and hence regular parameters,
regularity results, see for instance [17], yield that u,, and u,, are continuous on €2, i.e.,
there are constants I; and I, such that

Il S Ug, S IQ:
I < ug, < I
Then, we can use the finite interval
I = [11,]2], Il,lg eR (33)

in order to define the set of admissible parameters as
K={¢geH'[R) |y <q(r) <asfor7 €I andqis fixed on R\I} . (3.4)
Here, the attribute fixed has to be understood as
¢1(T) —q2(7) =0 on R\J (3.5)

for any ¢, go € K. The only requirement for the behaviour of ¢ on R\ is that ¢ € H'(R)
is not violated. Then, any ¢ € K is continuous and bounded due to the continuous em-
bedding H'(R) C Cy(R). Of course, we can only identify ¢' on a subdomain of I where
we have information about the system from the data z. Outside this domain, we have no
information, so that an identification is impossible in advance. In this sense we should
look in (3.3) for an interval I of minimal length. Again, we refer to [16] for a possible
numerical approach.

As we shall see below, this construction of K is mainly needed for technical reasons.
Things would simplify, if one assumes the existence (but not the exact knowledge) of a
finite interval I that covers all temperatures u, for ¢ belonging to

K={qe H ()| a1 <q(r) <apfor €I}



with «q, ap appropriately chosen. This assumption may be supported by the finiteness of
physical temperatures.

For later use, we introduce the set of the indefinite integrals of the parameters ¢ € K

S = {Q € H*(R) | % € K and Q(g) = 0} : (3.6)

where g € I is the constant from (2.3), (3.1). Because of (3.4), we have a common
Lipschitz constant, namely s, for the functions @ € S:

Q(11) = Q)| S a[m —nf, 1, 2 €R (3.7)
forall Q € S.

In applications, the exact data z(x) are not known precisely due to measurement errors.
Hence, the actual data are available in the form

2°(z) = z(z) + noise,
where one needs some information
|2 — 2|12,y < 6 (3.8)

about the noise level. Due to the data noise, the ill-posedness of the inverse problem
requires some type of regularization in order to determine ¢' in (3.2) in a stable way.
Choosing Tikhonov regularization, we consider the following output-least-squares prob-
lem:

Let the set K of admissible parameters and noisy data 2° be given as in (3.4) and (3.8).
Assume that the exact data z is attainable from a parameter ¢t € K. Then, for 8 > 0,
find a parameter qg € K that minimizes

Tola) = | Trua - 22d0y + Bllg = " (|7 ) (3.9)
1

over K for an appropriate choice of 8 and ¢* € K. The selection of ¢* is crucial for the
results about the convergence rate in Section 4. Available a-priori information about the
true parameter ¢' should be used for the choice of ¢*, i.e., ¢* should be interpreted as some
kind of a-priori guess for ¢f. Because of (3.5), the H!(R)-norm can be replaced by the
H'(I)-norm, which in the following is denoted by || - ||; (other penalty terms are possible,
see Section 6). Note that ¢* also determines the ”identified” parameter ¢' outside the
domain of information in the case of I chosen too large.

Before discussing aspects of stability and convergence of the regularized solutions qg
towards ¢, we make sure that the given boundary data are sufficient to identify the
parameter uniquely.



3.3 Identifiability

Investigating the identifiability of ¢ we are interested in the injectivity of the parameter-
to-output map
q — Yuq-

We show that the temperature trace on I'y determines the parameter uniquely on that
range.

Theorem 3.1. Let uy, and ug, € H'(Q) be the solutions of the direct problem correspond-
ing to parameters g1 and go € K. Then yuy, = yuq, tmplies ¢ = g2 on the range of ug,
onIy.

Proof. For i = 1,2 we define w; = Q;(u,,) where Q; € S is the anti-derivative to ¢;. Then,
w; satisfies w;|r, = 0 and the linear equation

/Vwi -Vudz = / f(z)vdx +/ hvdl'y for all v e V.
Q Q I

Hence, the difference w = w; — wy fulfills
/Vw-Vvdx:O forall v eV,
Q

which gives w = 0 according to the unique solvability of the homogeneous problem. Hence,
we have Q1(ugy) = Q2(ug,) in . From the trace theorem we get YQ1(ug) = 7Q2(uy,),
the continuity of Q; yields Q1 (vuq,) = Q2(Yuy,). From the assumption yu, = yu,, we
then can conclude that Q1(7) = Q2(7), and hence ¢;(7) = g2(7) for 7 out of the range of
ug, on I'y. O

3.4 Existence, Stability and Convergence of the Regularized So-
lutions

Returning to problem (3.9), we have to make sure that
e a minimizer ¢} exists for any data 2 € L?(T';) (existence)

e for a fixed regularization parameter 5 the minimizers of (3.9) depend continuously
on the data 2’ (stability)

e the regularized solutions ¢} converge towards the true parameter ¢' as both the
noise level 0 and the regularization parameter 3 (chosen by an apriori rule) tend to
zero (convergence)

The proof of the desired properties is standard (see [4], [5], [16] or [14]), once the weak
closedness of the mapping ¢ — yu, is provided:



Proposition 3.1 (weak closedness). For g, — q € K in H'(R) and yu,, — y in
L3(T'y), we have

Yuqg = Y-

Proof. From (2.5) we know that the sequence {u,,} is bounded in H'(f2). Therefore,
there exists a subsequence {uan} such that

Uy, — U’ In H'(Q) (3.10)
with u*|p, = g. As the embedding of H'(Q) into L?*(f2) is compact, we also have
Ug, —u* in L*(). (3.11)

First, we prove that u,, — u,in H'(Q), for which we have to show that u* = u,.

By the help of the the triangle inequality we get

/ ny (Un, )V, - Vodz — / q(u*)Vu* - Vodz
Q Q

< ‘/Q {gn, (Un,)Vtn, — q(u")Vuy,, } - Vodzx (3.12)

. (3.13)

/Q (g Vi, — g(u) V') - Vods

Defining a linear functional 1 on H'(Q) by

l(u) = / q(u*) Vv - Vudz,
Q
we obtain from the weak convergence (3.10) that (3.13) vanishes for £ — oo.

Applying once more the triangle inequality to (3.12) yields

/ {an (unk)vunk - Q(U*)V’Unk} - Vudzx
Q

(3.14)

< ‘ [ At 0) = 4000} Vi, - Vi

+ (3.15)

/Q{(J(Unk) —q(u")} Vu, - Vudz

Because of (3.5) and the Cauchy-Schwarz inequality we get

| / (G (1) — @(ting)) Vit - Vo]

||‘an - q”C(I)||unk||H1(Q)”U||H1(Q)
Clign, — dllew) (3.16)
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for a constant C not depending on ny; because of (2.5). Since the embedding of H'(I)
into C(I) is compact due to the finiteness of I, (3.14) tends to zero for £ — oo.

Because of the boundedness of ¢, we also can apply the Cauchy Schwarz inequality to
(3.15) and obtain

‘/Q {q(un,) — q(u*)} Vuy, - Vvdz
< Cllg(un,) Vv = q(u*) V|| L2(q) (3.17)

by means of (2.5). Furthermore, the continuity of ¢ and (3.11) yield limy_, 0 q(un, (z)) =
q(u4(z)) for almost every z € Q. Because of dv/dx; € L?(2) and the boundedness of ¢,
the dominated convergence theorem, see [9], shows that (3.17) vanishes for £ — oo.

Summarizing these results we obtain for £ — oo that

/q(u*)Vu* -Vudzr = / f(z)vdz —I—/ hvdl'y forall veV
Q Q I

with u* — g € V. Hence, u* is the weak solution of (2.1) - (2.3) for the parameters ¢, f,
g and h. As the weak solution is unique, we conclude that u* = u,. Finally, as Ug,, — Uq
holds for any subsequence uy, , we get

Uu,, — u, in H'(Q). (3.18)
According to our assumption, we have yu, — y in L?*(T), because of (3.18) and the
continuity of the trace operator v we also know ~yu,, — yu, in L?*(I';). The uniqueness
of the weak limit yields yu, = y. O

Hence, existence, stability and convergence of the regularized solutions are guaranteed.
The special construction of the set K was only needed in order to derive estimate (3.16).
Furthermore, the proof shows that Proposition 3.1 also holds if one considers K as set of
admissible parameters.

4 Convergence Rates

Opposed to the general theory [4], we introduce a weak source condition for the conver-
gence rate, which allows a full interpretation in Section 5. Though based on concepts from
[16], both the formulation and the proof of the convergence rate theorem are different to
[16], since we now have to deal with boundary terms.

Theorem 4.1. Assume that there exists a function

weV (4.1)

11



such that
ow

(0 —0'0), = [ W) Godrs Vo € H(D) (4.2

holds, where ¥ is the antiderivative to v, fixed by
¥(g) = 0. (4.3)
Furthermore, assume that 3% € L*(I'y) with
Aw =0 1in Q. (4.4)

Then, with B ~ §, we have
[vtgs = 2° | c2ryy = O(0)

and

g} — 4'll; = O(V5),

where g is the minimizer of (3.9).

Proof. For the sake of simplicity, we now omit the explicit notation of . Then, as qg, is
a minimizer of (3.9), we get Jg(q}) < Js(¢"). This implies

llugs — 2l Tawy) + Bllgs — ¢*1I7 < 8+ Bllg" - |17,
from which we obtain

lugs = 2°IZ2(r,) + Blla" = a5ll7
8+ Bllat — a*l7 + B{lld" — &lIF — llag — ¢*II7}
& +28(d"—qd" —qf),. (4.5)

IN

As integration by parts yields

/ ‘I’(uqf)g—wdS—/\Il(uqf)Awdx:/w(un)quwadm,
89 n Q Q

(4.3) and (4.4) give
o)
/ \Il(uqf)a—:dFl :/w(uqf)Vu(ﬂdeac
Iy Q

for the right-hand side of the source condition (4.2). Hence, choosing 1 = ¢ — qg in the
source condition (4.2) leads to

(¢"—¢"d"—ap), = / (q' (ugt) = q3(ugt)) Vg Vwds. (4.6)
Q

12



Using the direct problem formulation (see (2.4)) for Ugs and ugt, we see by taking the

difference that
/ <q2(“qg)vqu - qT(UqT)Vu,ﬁ) -Vwdz =0
Q

holds. Multiplying (4.6) by 5 and adding zero in the form of (4.7), it follows that
Ba"—ad" —a3), = B/ (4" (ugt) — @} (ugt)) Vg Vwds
Q
+ 5/ qg(qu)qug - Vwdzx
Q
- B/ q' (ugt) Vgt - Vwdz.
Q

We simplify the right hand side of (4.8) to
I = /3/ (qg(qu)qug - qg(uqf)Vu(ﬂ) - Vwdz.
Q

Using the antiderivative Q% € S (see (3.6)) of ¢}, we obtain

L=8 /Q (vczg(qu) - VQg(un)) - Vwdz.

Integration by parts leads to

9
Lo=5/ (Qg(qu)—Qg(un))a—:ds

_5/ (@) — Q3(ugt)) Aw o
Q
Because of qu\pz = Ugt|r, = g and (4.4), we finally obtain

I = ﬁ/rl (Qg(qu) — Q%(uqf)) g—: dr,

Next, we estimate I; by (3.7) and the Cauchy-Schwarz inequality in order to get
ow

11| < Bonllug — ugllzawll 7 llzary-
Applying the triangle inequality and Young’s inequality
b2

b < ea®+ —
a-b<ea +4€,

13
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for any £ > 0, we obtain

| < 5042||qu— 5||L2r1)|| ||L2(r1
5 (9
+Bag|2” — Uqf||L2(F1 ||%||L2(r1)
< eazd’? _” ||L2(r1

+€a2||qu —Z ||L2(F1)'
Using this estimate for |I;|, we get from (4.5) that

g — 2 2aqeny + Bllah — a1l <
<62 4+ 2a§€||u 5= z‘5||%2(p1)+
2 ow
+203¢6” + || —IlZaeay,
which is equivalent to
s
{1-2a3¢} ||qu —z ||%2(1“1)+
+0lla5 — q'[I7 < 0% + 2c050%+
B? Ow
+— - || ||L2(r1)

With ¢ < # we finally obtain that
2
g, — ey = O6)
(hence, by (3.8), also ||qu — 2|2y = O(9)) and

g = q'llr = O(V6)

(4.9)

(4.10)

hold. The constants in the O-terms in (4.9) and (4.10) can be derived from the proof. O

Now, the theoretical analysis of our identification problem is complete. We have shown
stability, convergence and given conditions on the rate of convergence. In the next section,
we give sufficient conditions for the existence of a source function w that satisfies (4.1)-
(4.4), which allows the interpretation of the source condition (4.2). Again, we modify the

approach of [16] appropriately.
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5 Discussion of the Source Condition

Opposed to the general theory (compare with (1.1)), where Fréchet-differentiability of
the forward operator F and Lipschitz continuity of F'(q) already require a more regular
parameter, the formulation of (4.2) itself does not impose any more regularity on ¢* and
on ¢' than they being in H'(I). Furthermore, in the general theory the adjoint of F’(q")
is needed which makes the source condition usually very difficult to interpret. The new
approach only uses the parameter-to-solution map u, itself, which has a direct physical
meaning, not its linearization.

Usually, source conditions as (1.1) mean severe restrictions on the parameter, and are
readily interpretable only in the one-dimensional case. We next construct a source func-
tion w for (4.2)- even for the higher dimensional case - under quite natural conditions.
The interpretation is based on our work in [16], but now for single boundary measure-
ments.

If we denote the range of the true temperature u, on I'y (and hence on £, see Section
3.1) by the interval It = [ﬁ It ] pe.

min’ ~max

IT

min

=minu,: and IT == maxu,t
z€l a max z€l @

we have
Itcr.

If we can assume to know the true parameter ¢' outside the range I already from ¢*, i.e.,
for p := ¢ — ¢* we have
p=0 for 7€ I\I', (5.1)

the source condition (4.2) turns to
ow 1
(06)sr = | Wty 240, v € HY(1).
I n

This is a very natural assumption as outside of It the parameter is of no use for the
physical system. Also, from the inverse point of view we only can expect to identify the
parameter on the range of the true temperature as outside of It no information is avail-
able. Hence, on I\I' ¢ is already determined by the choice of ¢*.

We now assume that
¢"—¢* € H'(I) (5.2)

and require the trace of the true temperature u, to satisfy

yug : Ty — I' is Lipschitz. (5.3)

15



Then - because of the compact embedding H*(I') ¢ C3(I') - our assumptions on the a
priori knowledge about p = ¢' — ¢* (see (5.1)) result in

Pt ) = pW(If y=0 for j=0,1,2,3. (5.4)

min max

Because of assumption (5.3) the change of variables formula (see [9], [16]) can be applied
with the transformation ¢ = yu,t, whose level-sets are isotherms on I';. This gives

/ s(:v)J’yuqf(x)dflz/ / sdH"?
T It ’yuq_,rl{r}

for any L™ !-summable function s : R*"! — R, where Jyu, denotes the Jacobian of
Yug,+ and H™ 2 is the (n — 2)-dimensional Hausdorff measure. Next, we have to find a
suitable function s in (5.5) for our purpose. First, we define m to be the (n-2)-dimensional
Hausdorff-measure of the level sets of yu, i.e.

m(T) =/ dH™™? for 7 € I,
Tt~ {r)

dr (5.5)

and assume the trace of u, on I'; to behave such that

(0" (yugt) — p' (yugt)) - - Jyug € L*(Ty). (5.6)

m(yugt)
The only term that might cause a violation of (5.6) is m In two dimensions (n = 2),
q

the H" 2-measure is the counting measure. Then, we have m(7) # 0 on It as every 7 € I'
is at least attained once by u,t for € I'y (by definition). This is distinct from [16] where
even in two dimensions condition (5.6) cannot be guaranteed a-priori. In three dimensions
(5.6) is certainly fulfilled, if m(yu,t) is bounded away from 0, i.e., if all temperatures in
It are assumed on sets of non-vanishing H'-measure, and if these measures depend in a
reasonable way on the temperatures. This is a (weak) regularity condition on the mea-
sures of the isotherms, and it is reasonable, since one cannot expect identifiability of ¢' for
temperatures which are assumed only on a ”small” set (of H'-measure zero). But even
such ”small isotherms” are not excluded by (5.6): The only temperature values possibly
attained by yu,+ at a set of H'-measure zero are Il or It . This is a consequence of
the continuity of the trace of u,+ on I'y and the intermediate value theorem. But both
the first term in the product (see (5.4)) and Jyu, (necessary condition for an extremum)
vanish in the respective critical situation. Now if the product of these two expressions
tends faster to zero than m(yu,), the L2-boundedness in (5.6) is maintained, even then.

Now we again omit the explicit notation of v and look at the Poisson equation

Aw = 0 in Q (5.7)

aw /1! / 1

on (0" (ugt) — p'(ugt)) m(ugr) Jugr on T (5.8)
w = 0 on Isy. (5.9)
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for which the existence of a unique (weak) solution w € V is guaranteed because of (5.6).
Similar as in [16], one can show that the solution w of (5.7)-(5.9) satisfies the source
condition (4.2). Note that the conditions (4.1) and (4.4) of the convergence rate theorem
are automatically fulfilled by this approach. The essential assumptions needed for the
proof are:

e sufficient smoothness of ¢' — ¢* as required in (5.2)
e sufficient smoothness of the trace of u,+ on I';: (5.3)

e sufficient knowledge about ¢' on the boundary of the temperature interval where
measurements are available: (5.4)

e condition (5.6) (only needed for n = 3), which essentially says that the isotherms of
ugt on I'y depend in a sufficiently regular way on the temperature level, where this
regularity is rather weak.

Since under these conditions the source condition can be verified, the convergence rates
from Theorem 4.1 are valid.

In any dimension, the heat-dependent conductivity is identified as a function of one vari-
able. Hence, it is remarkable that the interpretation edges down more in two dimensions,
where the boundary temperature represents only a one dimensional data manifold, than
in three, where a two dimensional data manifold is available.

6 Variants

In Section 2 we introduced a nonlinear mixed boundary problem for which we considered
in Section 4 a constant boundary temperature uy on I's for technical reasons. From the
practical (with respect to industry) point of view, the pure Neumann type problem

-V - (¢(uw)Vu) = f(x) in Q (6.1)
q(u)g—z = h on 02 (6.2)

could be more realistic, where (6.2) then describes, e.g., the cooling of a steel strand (see
[11]). If we choose the space of test functions V' as

V={veH1(Q)|/Qud:c=0}
/Qfdx+/mhdszo,

17
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the existence of a unique weak solution u, in V' to (6.1) - (6.2) can be guaranteed by [22].
Then the theory developed in Sections 3 and 4 remains valid if we replace I'; by 0€2. This
means that the measurements are now done on all of 02 and the Tikhonov functional is

Js() = / Jug - 1S+ Ala— q'I

The source condition

ow
(¢ —q"\0), = / W) 5odS Vo € HA(1), (6.3)
o0 n
which yields the rates

lugs — 2 ll20m) = O()

and

gy — q'[l; = O(V6),

can be interpreted as in Section 5. Note that in order to show the existence of a unique
(weak) solution to problem (5.7) - (5.9) in V' (with I'; = 9Q, I’y = (), we now in addition

have to check 5
w
—dS = 0. 6.4
aa On (64)

But this follows from applying the coarea formula (5.5) with

/11 _ A u,i(x 1
8(a) = (0" 1 (0) = g (@) s
which gives
aw n / Lm Ndr
| Geas = [ 6"0) = #)sm(n)d
— ; (,0”, _ p’)dT
= 0, (6.5)

where the last equality holds because of (5.4).

Finally, we change the settings of the direct problem to the pure Dirichlet case:

-V - (q(u)Vu) = f(z) in Q (6.6)

u = g on ON. (6.7)

The existence of a unique solution in H'() is given by the theory quoted in Section 2.
As now the temperature flux g(u)2% is measured on (all of) the boundary 99, we need

a higher regularity of the solution u, than in our previous discussions, if we still want to
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measure our data in the L2-setting, i.e., consider that the measurements are in L2. If we
choose the set of admissible parameters

A d
K:{qEHQ(I)|a1§q(T)§a2 forrel A ||d—7q_||Loo(I)SOO}
and require

g € H*?(09),

then, for ¢ € K, the existence of a unique solution u, even in H?(Q) can be shown (see
[2]). Now, the continuous embedding H%(R) C C!(R) and the trace theorem yield

ou
q(uq)a—nf] € H'/2(09).

Hence, the Tikhonov functional
@) = [ o =7 PdS + Blla = 'l

with

v, H*(Q) — L*(09)

u — (u)a—u
M on
is meaningful. Under the source condition
t o x w 1
(6" —a"v), = [ o) Srds v e H'(D (69
a0 n

(g now is no longer needed to be constant) the rates
lgg — 4'llr = O(V9)
and
17g5ttgs — 2°llz2(00) = O(6)

can be shown. Note, that (6.8) does now not even depend explicitly on the unknown
temperature u,+, which is a major difference to the theory of convergence rate developed
so far. Once more, the source function w € H'(€) can be found as the solution of

Aw = 01in Q

ow 1

s — /11 _ / . . Q
o (0" (ugt) = p'(ugt)) ) Jug on 9,

for the proof of the convergence rate the variational formulation

/q(u)Vu-Vvdx:/h(x)vdx+/ q(u)a_uvds
Q Q 90 on
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with test functions v € H'(Q) is needed. The advantage of considering pure Dirichlet
data for the direct problem is that the condition

Vgt 2 02 — I t s Lipschitz
can now be automatically satisfied by choosing the problem input g regular enough be-
cause of
Vgt = g. (6.9)
Furthermore, we now can drive the interval IT on which we want to identify the parameter
in a straightforward way by the choice of g.

Finally we mention, that in all our optimization problems, the H!'-regularization term
can be replaced by a L2-term, i.e. we can consider

min J(g) := {L2-norm of residual}’ + 3 /(q — ¢*)%dr. (6.10)
T

Results for stability, convergence and rate of convergence can be proven in a completely
analogous way, where the H'-scalar product (¢" — ¢*,%); in (4.2) is replaced by the L2-
scalar product [ I(qJr — ¢*)dr. A solution to the source condition can be constructed as
in Section 5 under even weaker regularity assumptions on g.

The existence of minimizers of (6.10) cannot be guaranteed by Theorem 3.1, but this
difficulty can be resolved by incorporating a tolerance n into the minimization, i.e., re-
placing minimizers of (6.10) by elements qgm such that

J(q},,) <infJ(q) + 1.

As long as n = O(6?), all proofs carry over (see [5]). This can of course also be done for
(3.9).

7 Numerical Experiments

In order to test the identification of the heat conductivity by Tikhonov regularization, we
carry out numerical simulations using the temperature trace u|r, as data. Considering a
rectangular domain Q = [0, 0.5] x [0, 2] with boundaries I'y = {0} x [0,2]U[0,0.5] x {2} U
{0.5} x [0,2] and 'y = [0,0.5] x {0}, and a temperature field

)

Ugqt ($, y) = 5

we want to recover the nonlinearity in
-V - ((2+cos(2ru))Vu) = = -sin(ry) in
ou
2 2 — =0 r
(2 + cos( wu))an on I'y

v = 0 on Iy
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from “observations” of
’LL|I‘1.

While we already know the true data u,t|r, by construction, a sequence of noisy data

2% is generated by artificially perturbing ugt|p, with high frequency noise. Then, the

regularized solutions qgi are defined as the minimizers of

Js(q) = /F Iyug — 2% 2dTy + Bllg — ¢*||3- (7.11)
1

Though the true data u,t|r, (and hence the temperature distribution u,t) only cover the
range IT = [0, 1], we choose a larger interval

I=1[-02,1.2]

in (7.11), as both noisy data and computed forward solutions during the minimization
procedure may exceed IT. Of course, we only can expect to recover the heat conductivity
on I, outside it will be determined by the initial guess ¢*. With

we then have (see Figure 1)

Hr) = 2+ cos(2rr) for Telf
ay 3 for 7€ I\l

Since we know the exact parameter ¢' we can compute the error ||gf — qgf |e1(r), allowing

Figure 1: ¢ and ¢*

us to investigate the behaviour of Tikhonov regularization with respect to stability and
rate of convergence. Note that we at least satisfy condition (5.4) for j = 1,2 by the choice
of ¢* and in addition conditions (5.3) and (5.6) by the construction of our example.

For the minimization of (7.11) we use a quasi-Newton method, approximating the Hessian
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matrix of Jg by a BEGS-update formula in each iteration step k. Given a search direction
pr by that rule, the parameter ¢ is updated by

k11 = Qk + QP

until a minimum is reached. In order to raise the convergence speed of the optimization
procedure we also use a line search algorithm for the determination of the stepsize ay. A
more detailed discussion can be found in [15].

The first computations were done for 8 = 0, i.e. the approach to identify the param-
eter by simply minimizing the output least squares term

Iyug — 29 2dT;.
I't

For the case of exact data z = ut Ir,, the result ¢uonoise is shown in Figure 2. As predicted

Figure 2: ¢uonoise identified from exact data

by our theory, the parameter is identifiable from observations of the temperature trace on
the boundary, but of course only on the interval I, where the data is available. Outside,
the solution is given by the initial guess ¢*. Figures 3 and 4 illustrate the ill-posedness of
the identification problem. Perturbed data z°7 with 4.61% noise already have a dramatic
impact on the recovery process. On the left hand side the relative error % is plotted
vs. the iteration index k£ in the optimization routine, the right hand sides records the
result Gnoreq after 80 steps. While the error in the residual ||yug, — 2°||z2(r,) (not shown) is
monotonically decreasing with k, the error in the parameter starts to increase after some
20 steps, leading to a solution that differs from ¢' by more than 60% measured in the
H'(I)-norm. Only by introducing the penalty term

Bllg — ¢*|I?

(or alternatively stopping the iteration at “the right time”, see [4] for an introduction
to iterative regularization methods) these high numerical instabilities can be overcome.
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i
% vs. k Figure 4: solution gy after 80 steps

Figure 3:

Though there are sophisticated methods for choosing the regularization parameter 5 from
the knowledge of the noise level § and the data z° (see [20]) itself, we content ourselves
with the a-priori choice

Bi=4-10""*-4;

for the sequence of perturbed data 2%. This relation was found by trial and error, which is
sufficient for our purposes. In order to test the rate of convergence behaviour of Tikhonov
regularization predicted by Theorem 4.1, we only need to meet the requirement 3 ~ .
Figure 5 shows the error |l¢' — ¢J || plotted vs. the noise level 6; = |[yugt — 2% 2(r,).-

lla'-fl|

Figure 5: convergence rate . . . 5
v Figure 6: regularized solutions ¢z
la" = g5 ll: = O(V&) & & 9.

The solid line indicates that the convergence speed ||qf — qgiH 1 = O(v/4;) from Theorem
4.1 is obeyed, even though not all conditions of Section 5 are satisfied by our example.
This gives hope that a source function w in Theorem 4.1 can be found under even weaker
assumptions than in made in Section 5. Finally, Figure 6 shows the regularized solutions
qgi for 61 = 0.0132, 64 = 0.0239 and 7 = 0.0529.
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