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Abstract

We describe a new technique for presenting proofs, in particular proofs generated by
automated theorem proving systems like THAOREMY. We call this technique "focus
windows" technique because with this technique, in each proof step, all the relevant
formulae are collected in one window (the "focus window") so that the reader can
focus on them. The sequence of focus windows alternates between "attention win-
dows" and "transformation windows". In an attention window, exactly those formu-
lae are displayed - and highlighted - that are relevant for the next proof step. In the
subsequent transformation window, in addition to the highlighted formulae, the
formulae are displayed that are added as a goal or additional knowledge. Also, a
standard natural language text is presented that briefly characterizes the proof
technique used. Although the paper presents the idea in terms of THAOREMY, the
presentation method is applicable to arbitrary automated theorem proving systems
that produce proofs as sequences of proof situations consisting of "goals" and
"available knowledge".



B. Buchberger

1 The Problem

THAOREMY is an automated proof generator. Given an initial "proof
situation”

P =(G, K)

consisting of a "goal" G (the formula to be proved) and a "knowledge base"
K (a list of formulae assumed, e.g. axioms, definitions, known properties,
temporary assumptions, etc.). The provers of THHOREMY produce proofs that
document how the initial proof situation can be reduced, successively, to
other proof situations until each remaining proof situation is trivial. A trivial
proof situation is either a proof situation whose goal is contained in the knowl
edge base or a proof situation for which the decision that the goal is a logical
consequence of the knowledge base can be made by calling one of the avail-
able black-box decision procedures. The trace of such a reduction is accumu-
lated in a "proof object". In a postprocessing step, THIOREMY produces a
human-readable proof from the proof object.

Although the proofs generated by the current post-processors of THA
OREMY include intermediate natural-language explanatory text and the
subproofs, subsubproofs, etc. of a given proof can be "clicked" open and
closed, studying such proofs (and also proofs produced by humans in math
textbooks) still faces the problem that, in each individual proof step, one has
to refer to a couple of formulae that may be quite distant from the current
location in the proof text. For example, a typical explanatory text may read as
follows:

"From (3), by Definition\ 2.1 and Lemma\ 3.2, we now obtain ..."

Even if the references to the labeled formulae are realized by hyperlinks
that produce the referenced formulae in an auxiliary window (as this is
done in the current version of THAOREMY) studying proofs is still strenu-
ous even when the proofs are technically correct and pedagogically well
presented.
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2 The Solution: Focus Windows

We develop here a new approach to solving the above problem. We call
this approach "Focus Windows Presentation". The main ideas of this
approach are:

1. We arrange the entire presentation in such a way that, in each proof
situation, all the relevant information fits into one window, the "focus win-
dow". Typically, this window should fit into the screen so that, for studying
the current proof situation, no scrolling is necessary. This is achieved by
displaying, in a given proof situation, only those formulae that are relevant
for the transformation of the current proof situation to the next proof situa-
tion. (In case the relevant formulae do not fit into one screen, still, some
scrolling or, alternatively, shrinking is necessary. However, we believe that if,
in a given prover, proof step needs more information than what fits into a
screen then something is wrong with the design of the prover.

2. The proof window can be viewed as the "top of the iceberg", where the
iceberg is the current proof situation (consisting of the current goal and all
the current knowledge) whereas the top consists only of those formulae of
the current proof situation that are relevant in the proof step that transforms
the current proof situation into the next one. Correspondingly, the focus
window alternates between two states: the state of being an "attention win-
dow" and the state of being a "transformation window". In the state "attention
window", the window contains - and highlights - those formulae of the cur-
rent proof situation that are relevant for the present proof step. In the state
"transformation window", the window contains, in addition to the highlighted
relevant formulae, the new goal and/or new knowledge generated in this
proof step.

3. Both in the attention state and in the transformation state, the proof
window shows all the formulae in full text rather than only referencing them
by labels.

4. In the transformation windows, a natural language text appears that
explains how the new goals and/or formulae in the knowledge base are
obtained from the highlighted formulae, i.e. which proof rule has been
applied.
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5. Besides the formulae, we display in concise form the entire proof tree so
that, in addition to being able to check the current proof step, the user can
also keep the overview on the global development of the proof. Each node in
the proof tree represents a proof situation. By clicking, one can navigate
through the tree of proof situations and thereby study the details of the
proofs. (Note that, here, we speak about displaying and studying proofs that
are already completely generated by THAOREMY or some other automated
theorem proving system. Hence, by clicking, the user only decides which part
of the proof he wants to see and study at a particular moment. Clicking is not
a user interaction necessary for generating the proofl)

Summarizing, the main point in this new proof presentation technique is
that, in a proof situation,

o instead of displaying the entire current knowledge base and
referring to the relevant formulae by labels

o we only display the relevant parts of the knowledge base but
display this part in full text.

Seen in a different way, our new technique adjusts to the psychological
fact that not more (or even less) than what fits into one screen can be realisti-
cally processed by the reader. We can consider the usual proofs generated by
TH3dOREMY (or presented in a textbook) as a long tape of paper and we can
view our proof window as a magic viewing glass (a "focusing glass") the
reader can move over the tape. In each moment, in the magic glass, not only
the formulae right under the glass are shown but also all formulae relevant
for the proof step under consideration.

Although quite some proof presentation techniques were proposed in the
literature on automatomated theorem proving, see for example (Siekmann
1998), our simple approach proposed in this paper seems to be new.
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3 A Proof Problem: Correctness of Sorting by Merging’

To exemplify the presentation style introduced in the paragraph above we
take a proof problem of realistic size, namely the correctness proof for the
merge-sort algorithm, solve (i.e. prove) it, and view the proof, first in the
"classical" Theorema style, and then using the focus windows presentation
style. We used this example also for illustrating the use of "logicographic
symbols", see (Buchberger 2000). In the present paper, we do not use logico-
graphic symbols because the technique of focus windows proof presentation
is independent of the style used for presenting formulae. However, it is clear
that the style of logicographic symbols would go particularly well with the
style of dynamic proof presentation.

In the following subsection, we present the proof problem by formulating
the goal and the knowledge base. In subsection 3.2, we will present the proof
in the ordinary "linear and static" style of textbooks, which basically is also
the style supported by the current version of THAHOREMY. In the last subsec-
tion, we will then present the same proof in the "focus windows proof presen-
tation" style.

3.1 Stating the Proof Problem

We first formulate the goal formula:

Theorem]["Correctness of Sorting by Merging", any[A],
istv[st[A], A] "stcorr"]
Readings|any[A, B],

istv[A, B]: 5 A"is a sorted version of" B]
st[A]: = "sorting" A "by merging"

Now we formulate the ingredients of a knowledge base that is sufficient for
proving the theorem. Naturally, the new notion of "sorting by merging", by a
definition, must be connected with notions (like "merged") that are assumed
to be known.

Algorithm["Sorting by Merging", any[A],

tA‘_{A e Al=1 e
SUAL:= | [ olstip1[AlL, Stp2[A]]] & otherwise ° |
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Readings|any[A, B,
mg[A, B]: 5 A"merged with" B
pl[A]: = "the first part of" A
P2[A] : = "the second part of"A]
|A]: = "the length of" A

Furthermore, the relation of the notion that describes the crucial property
of "sorting by merging", namely "is a sorted version of"' with the notions that
are assumed to be known should be "completely” known. The parts of this
relation that are actually sufficient for proving the above theorem are listed
in the following proposition:

Properties["Prerequisites", any[A, B, C, D],

(Al £ D)= (|Al > [p1[A]]) "lg1>"
(Al £ D)= (Al > [p2[A]]) "1g2>"
ipmv[pl[A] < p2[A], A] "pl=p2" ]
istv[A, A] "refl"
(istv[A, B] Aipmv[B, C])=istv[A, C] "trans"

(istv[A, B] Aistv[C, D])=istv[mg[A, C], B < D] "mgcorr"

Readings|any[A, B,
ipmv([A, B]: 5 A"is a permuted version of"B
A =B: 5 A'concatenated with" B ]

3.2 Static Proof Presentation

The call

Prove[
Theorem["Correctness of Sorting by Merging"],
using - (Algorithm["Sorting by Merging'"], Properties["Prerequisites"]),
by - course-of-value-induction-on-length]

in the current version of THHOREMY will (should), roughly, generate the
following proof:

Proof: We apply course-of-value induction on the length. Let A be arbi-
trary but fixed and assume

v istv[st[A], A]. (indhyp)

|Al<|A]
We have to show

istv[st[A], A]. (indgoa Al)
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Case |Al<1: In this case, by (st:), (indgoal) reduces to
istv[A, A], (indgoalA.1)

which is true by (refl).

Case |Al£1: In this case, by (st:), (indgoal) reduces to
istv[mg[st[p1[All, st[p2[Alll, A]. (indgoalA .2)
From the case assumption, by (1g1>) and (1g2>), we obtain

Ip1[A]l < |A], (1.1

IP2[A]l < |Al. (1.2)
From (1.1) and (1.2), by (indhyp), we obtain

istv[st[p1[A]], p1[A]], 2.1
istv{st[p2[A]], p2[A]], 2.2)
From (2.1) and (2.2), by (mgcorr), we obtain
istvimg[st[p1[A]], st[p2[All], p1[A] < p2[A]]. &)
Now, from (3), by (pl=<p2) and (trans), we obtain (indgoal A.2). O
Note that the proof is relatively short and easy to read because the knowl-
edge base was constructed in a careful way (according to the "complete explo-
ration" principle introduced in (Buchberger 1999)). Nevertheless, in the indi-

vidual proof steps, quite some jumping between formulae and memorizing
the exact text of formulae is still necessary. For example, in the step

"From (2.1) and (2.2), by (mgcorr), we obtain
istvimg[st[p1[A]], st[p2[A]]], p1[A] < p2[A]] 3",

although formulae (2.1) and (2.2) are next to the current proof text, we
have to jump to the position of formula (3) in order to inspect the structure of
this formula and to memorize it for being able to check that the substitution
of the constant 'A' for the variable 'A’' was done correctly.
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3.3 Proof Presentation Using Focus Windows

We explain the principle of dynamic proof presentation by displaying the
sequence of windows that should be produced in our example. Note that, in
this paper, the proof windows produced are displayed in a linear sequence of
sections. In the actual implementation, there will always be only one window
open on the screen. It is just this fact, that only one window has to be stud-
ied at a time and no reference to any other window is necessary, which
makes our approach new and hopefully better than all currently existing
approaches to proof presentation.

Each window has an area for the goal(s), an area for the knowledge, and
an area for displaying the current state of the proof tree. The nodes of the
proof tree are either @ (proof situation that is already processed), A (pending
proof situation in a vertical column of proof situations all of which must yield
true), or V (pending proof situation in a vertical column of proof situations at
least one of which must yield true). In fact, when presenting only the
"successful" branches of a proof, we will never encounter proof situations
marked by V. By clicking into a node, the corresponding proof situation is
displayed in the proof window. Typically, one will click into the node high-
lighted, e.g. A. This will produce a "natural" sequence of proof steps.

In an attention window, the formulae relevant for the next proof step are
highlighted, e.g.

A < |Al=1
X st[A] := {

mg[stpl[A]], stip2[A]]] & otherwise (st:)

In a transformation window, in addition to the (highlighted) formulae in
the preceding attention window, the (goal and knowledge) formulae produced
in this proof step are inserted. New goal(s) appear below the highlighted goal
whereas new knowledge appears above the highlighted knowledge so that the
new formulae are grouped together in the central part of the window.

In order to obtain a good understanding of what dynamical proof presenta-
tion means for the user, you should look at only one window at a time in the
sequence of windows below. The information in each of the windows should
be sufficient to understand what is going on in the corresponding proof step.
In fact, it would be sufficient to open and study only the transformation
windows because each transformation window completely contains the infor-
mation in the preceding attention window. However, in the sequel, we display
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the entire sequence of attention and transformation window in order to
convey the flavor of the behavior of the proposed system in which, in the
focus window, an attention window will be produced for "setting the stage"
and give the user the possibility to "think" about what proof step could be
applied in this situation. In the succeeding transformation window, the user
will see what proof step is applied in the proof generated by the system.

Initial Window

Goal:

X istv[st[A], A] (stcorr)

A

Attention Window 1

Goal:

X istv[st[A], A] (stcorr)

Algorithm Definition:

y tA,_{A e Al=1 .
X SUAI=\ L istip1[ATL stip2[A]l] « otherwise (sto)
Properties:
X (Al £ )= (Al > [p1[Al]]) aIgn)
X (Al £ 1)= (Al > [p2[A]]) (1g2)
A
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Transformation Window 1

As suggested by the structure of definition (st:) and properties (lg1), (Ilg2), we
apply course-of-value induction on the length. Let A be arbitrary but fixed:

Prove:

X istv[st[A], A] (stcorr)

Induction Goal:

istv[st[A], A] (indgoal A)

Induction Hypothesis:

X istv[st[A], A] (indhyp A)
|Al<lA]

Algorithm Definition:

y tA,_{A c Al=1 N
1 SUAL= glstip1 AL SUD2[A]]] « otherwise (st2)
Properties:
X (Al £ D)= (Al > [p1[Al]])
(gl)
X (Al £ D= (Al > |[p2[Al]) (1g2)

oA

10
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Attention Window 2

Goal:

istv[st[A], A]. (indgoal A)

Algorithm Definition:

A < |Al=1
X st[A] := {

mg[st[p1[A]], st{p2[A]l] < otherwise G

e A

Transformation Window 2

As suggested by the structure of definition (st:), we consider two cases:

Goal:

istv[st[A], A] (indgoal)

Algorithm Definition:

v tA'—{A < |Al=<1 .
X SUAI=\ olstip1 (AT, stip2[A]l] « otherwise (st2)
First Case:
Al=1 (cl)
oo A
A

11
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Attention Window 3

Goal:

istv[st[A], A] (indgoal)

Algorithm Definition:

y tA‘_{A e |Al=<1 0
X SUAI= | L lstip1[AlL stip2(A]l] « otherwise (st:)
Case Assumption:
Al <1 (cl)

o0 A

Transformation Window 3

By the case assumption and the algorithm definition (st:), the goal (indgoal A)
is reduced to a new aoal:

Induction Goal:

istv[st[A], A] (indgoal A)
New Goal:
istvlA, A] (indgoalA.1)

Algorithm Definition:

" tA._{A e A1 N

X SUAI=\ gistip1 (AL stip2(All] « otherwise (st:)
Case Assumption:

Al < 1. (cl)

o0 o )

12
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Attention Window 4

Goal:
istvA, A] (indgoalA.1)
Property:
X istv[A, A] (refl)
oo o /
A

Transformation Window 4

By property (refl), the goal is proved.

Goal:
istvlA, A] (indgoalA.1)
Property:
X istv[A, A] (refl)
oo 0 0O
A

13
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Attention Window 5 (Backup to Attention Window 2)

Goal:

istv[st[A], A] (indgoal A)

Algorithm Definition:

A < |Al=1
X st[A] := {

mg[stpl[A]], stip2[Al]]l « otherwise (st2)

o0 0 °
A

Transformation Window 5

As suggested by the structure of definition (st:), we consider two cases.

Goal:

istv[st[A], A] (indgoal A)

Algorithm Definition:

v tA-—{A < |Al=1 .

X A=\ lstip (AL stip2[A]l] « otherwise (st3)
Second Case:

Al £ 1 (c2)

o0 0 O
[ I
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Attention Window 6

Goal:

istv[st[A], A] (indgoal A)

Algorithm Definition:

y tA‘_{A e Al=1 .
X SUAI= | L lstip1[AlL stip2(A]l] « otherwise (st2)
Case Assumption:
|Al £ 1 (c2)

o0 0 O
o AN

Transformation Window 6

By the case assumption and the algorithm definition the goal (indgoal A) is
reduced to a new goal:

Goal:

istv[st[A], A] (indgoal A)
New Goal:

istvmg[st[p1[A]]. st[p2[A]]]. A] (indgoal A .2)

Algorithm Definition:

v tA'—{A & |Al<1 ‘.

X SUAL= | lstip Al StP2IAT] « otherwise (st2)
Case Assumption:

|Al £ 1 (c2)

o000
o0 A

15
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Attention Window 7

Goal:

istv[mg[st[p1[A]], st[p2[Alll, A] (indgoal A .2)

Case Assumption:

Al £ 1 (c2)
Properties:
Y (A2 H=(Al>Ip1[AlD agl)
Y (Al D)= (Al> [p2[AlD (1g2)
eo oo
o0 A

Transformation Window 7

From the case assumption and properties (lgl), (lg2), we obtain new
knowledge:

Goal:

istvimg[st[p1[Al]], stip2[Al]l. Al (indgoal A.2)
New Knowledge:

|A] > [p1[A]| (1.1)

|Al > [p2[A]] (1.2)

Case Assumption:

|Al £ 1 (c2)
Properties
¥ (Al £ )= (Al > [p1lAl) dgh
¥ (Al £ Y= (Al > [p2[AlD) 1g2)
oo oo
oo o/

16
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Attention Window 8

Goal:

istv[mg[st[p1[A]], st[p2[Alll, A] (indgoal A .2)
Knowledge:

|A| > [p1[A]| (1.1)

IA| > [p2[A]| (1.2)

Induction Hypothesis:

X istv[st[A], A] (indhyp A)
|Al<|A|

e 000
e 00 A

Transformation Window 8

From (1.1) and (1.2), by the induction hypothesis (indhyp A), we obtain new
knowledge:

Goal:

istv[mg[st[p1[A]], st[p2[A]]], A] (indgoal A .2)
New Knowledge:

istv{st[p1[A]], p1[A]] 2.1

istv[st[p2[A]], p2[A]] (2.2)
Knowledge:

IA| > [p1[A]| (1.1)

|A| > [p2[A]| (1.2)

Induction Hypothesis:

X istv[st[A], A] (indhyp A)
|Al<|A|

000
o000 )

17
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Attention Window 9

Goal:

istv[mg[st[p1[A]], st[p2[A]]], A]

(indgoal A .2)

Knowledge:

istv[st[p1[All, p1[A]]
istv[st[p2[A]], p2[A]]

Property:

V _ (istv[A, B] Aistv[C, D])=sistv[mg[A, C], B < D]

A,B,C.D

(2.1)
(2.2)

(mgcorr)

e 00
o000 /)

Transformation Window 9

From (2.1) and (2.2), by (mgcorr), we obtain new knowledge:

Goal:

istv[mg[st[p1[Al]]. st[p2[A]l]. A]

(indgoal A .2)

New Knowledge:
istvimg[st[p1[A]], st[p2[A]]], p1[A] < p2[A]]
Knowledge:

istv[st[p1[A]], p1[Al]
istv[st[p2[A]], p2[A]]

Property:

\/ (istv[A, B] Aistv[C, D])= istv[mg[A, C], B < D]
AB,CD

3

2.1)
(2.2)

(mgcorr)

o000
0000 /)
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Attention Window 10

Goal:

istv[mg[st[p1[Al]l, st[p2[A]l], A]
(indgoal A .2)

Knowledge:
istvimg[st[p1[A]l, st[p2[A]l]], p1[A] = p2[A]]
Property:

v ipmvp1[A] = p2(Al Al

N \é’ c (istv[A, B] Aipmv[B, C])=istv[A, C]

3

(pl < p2)

(trans)

0o 00
o000 0 /)

Transformation Window 10

From (3), by (p1=xp2) and (trans), we obtain the goal:

Goal:

istv[mg[st[p1[A]], st[p2[A]]], A]
(indgoal A .2)

Knowledge:
istvimg[st[p1[A]], st[p2[A]]], p1[A] = p2[A]]
Property:

¥ ipmv[p1[A] = p2(Al. Al

Y (stvIA, B Aipmv[B, C))=>istv(A, C]

3)

(Pl =<p2)
(trans)

19
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