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Abstract

A new approach to parameter identification problems from the point of view of symmetry
analysis theory is given. A mathematical model that arises in the design of car windshield
represented by a linear second order mixed type partial differential equation is considered.
Following a particular case of the direct method (due to Clarkson and Kruskal), we introduce
a method to study the group invariance between the parameter and the data. The equivalence
transformations associated with this inverse problem are also found. As a consequence, the
symmetry reductions relate the inverse and the direct problem and lead us to a reduced order
model.
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1 Introduction

Symmetry analysis theory links differential geometry to PDEs theory [18], symbolic computation
[9] and more recently to numerical analysis theory [3], [6]. Sophus Lie [14] introduced the notion
of continuous transformations groups and applied them to differential equations. Over the years,
Lie’s method has been proven to be a powerful tool for studying a remarkable number of PDEs
arising in mathematical physics (more details can be found e.g. in [2], [10] and [21]). In the
last years a variety of methods have been developed in order to find special classes of solutions
to PDEs, which cannot be determined by applying the classical Lie method. Olver and Rosenau
[20] showed that the common theme of all these methods has been the appearance of some form
of group invariance. On the other hand, parameter identification problems arising in the inverse
problems theory are concerned with the identification of physical parameters from observations of
the evolution of a system. The iterative approach of studying parameter identification problems
is a functional-analytic setup with a special emphasis on iterative regularization methods [8]. The
aim of this paper is to show how parameter identification problems can be analyzed with the tools
of group analysis theory. This is a new direction of research in the theory of inverse problems,
although the symmetry analysis theory is a common approach for studying PDEs. We restrict
ourselves to the case of a parameter identification problem modelled by a PDE of the form

F(z,w™ EM™) =0, (1)
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where the unknown function £ = E(x) is called parameter, and respectively, the arbitrary function
w = w(z) is called data, with z = (z1,..,2,) € © C RP a given domain.Here w("™ denote the
function w together with its partial derivatives up to order m. Assume that the parameters and
the data are analytical functions. The PDE (1) sometimes augmented with certain boundary
conditions is called the inverse problem associated to a direct problem. The direct problem is the
same equation but the unknown function is the data, for which certain boundary conditions are
required.

Sophus Lie’s method, known today as the classical Lie method, is based on the notion of
symmetry group related to a PDE. This is a (local) Lie group of transformations acting on the
space of the independent variables and the space of the dependent variables of the equation with
the property that it leaves the set of all analytical solutions invariant. Knowledge of these classical
symmetries allows us to reduce the order of the studied PDE, and to determine group-invariant
solutions (or similarity solutions) which are invariant under certain subgroups of the full symmetry
group (for more details see [18]). Bluman and Cole [1] introduced the nonclassical method that
allows one to find the conditional symmetries (also called nonclassical symmetries) associated
with a PDE. These are transformations that leave only a subset of the set of all analytical solutions
invariant. Note that any classical symmetry is a nonclassical symmetry but not conversely. Another
procedure for finding symmetry reductions is the direct method (due to Clarkson and Kruskal [5]).
The relation between these last two methods has been studied by Olver {19]. Moreover, for a PDE
with coefficients depending on an arbitrary function, Ovsiannikov [21] introduced the notion of
equivalence transformations, which are (local) Lie group of transformations acting on the space
of the independent variables, the space of the dependent variables and the space of the arbitrary
functions that leave the equation unchanged. Notice that these techniques based on group theory
do not take into account the boundary conditions attached to a PDE.

To find symmetry reductions associated with the parameter identification problem (1) one can
seek classical and nonclassical symmetries related to this equation. Two cases can occur when
applying the classical Lie method or the nonclassical method, depending if the data w is known or
not. From the symbolic computation point of view, the task of finding symmetry reductions for a
PDE depending on an arbitrary function might be a difficult one, due to the lack of the symbolic
manipulation programs that can handle this kind of equations. Another method to determine
symmetry reductions for (1) might be a particular case of the direct method, that has been applied
by Zhdanov |24) to certain multidimensional PDEs arising in mathematical physics. Based on this
method and taking into account that (1) depends on an arbitrary function, we introduce a procedure
to find the relation between the data and the parameter in terms of a similarity variables (see
Section 2). As a consequence, it follows that the equivalence transformations related to (1) must be
considered as well. These last symmetry reductions are found by using any symbolic manipulation
program designed to determine classical symmetries for a PDE system — now both the data and
the parameter are unknown functions in the equation (1). The equivalence transformations relate
the direct problem and the inverse problem. Moreover, one can find special classes of data and
parameters respectively, written in terms of the invariants of the group action; the order of the
studied PDE can be reduced at least by one, and analytical solutions to (1) can be found.

At the first step, the group approach of the free boundary problem related to (1) can be con-
sidered, and afterwards, the invariance of the boundary conditions under particular group actions
has to be analyzed (see [2]). In the case of parameter identification problems we sometimes have to
deal with two pair of boundary conditions, for data and the parameter too, or we might only know
the boundary conditions for the data, so that the problem of finding symmetry reductions for a
given data can be more complicated. At least, by finding the equivalence transformations related
to the problem, the invariants of the group actions can be used to establish suitable domains £ on



which the order of the model can be reduced.

In this paper we consider a mathematical model arising in the car windshield design. Let us
briefly explain the gravity sag bending process, one of the main industrial processes used in the
manufacture of car windshields. A piece of glass is placed over a rigid frame with the desired
edge curvature and heated from below. The glass becomes viscous due to the temperature rise
and sags under its own weight. The final shape depends on the viscosity distribution of the glass
obtained from varying the temperature. It has been shown that the sag bending process can also
be controlled (in a first approximation) in the terms of Young modulus E, a spatially varying glass
material parameter, and the displacement of the glass w can be described by the theory of a thin
linear elastic plate theory (see [11], [16] and [17] and references from there). The model is based
on the linear plate equation

: : , 12(1—-v?)f

(B (wee + vwyy)),, +2(1 —v) (bwry)xy + (& (wyy + Vw:r:r))yy T R on €, (2)
where w = w(z,y) represents the displacement of the glass sheet (the target shape) occupying a
domain 2 C R%, E = E(z,y) is the Young modulus, a positive function that can be influenced
by adjusting the temperature in the process of heating the glass, f is the gravitational force,
v E (O, %) is the glass Poisson ratio, and h is thickness of the plate. The direct problem (or the
forward problem) is the following: for a given Young modulus F, find the displacement w of a glass
sheet occupying a domain 2 before the heating process. Note that the PDE (2) is an elliptic fourth
order linear PDE for the function w. Since now, two problems related to (2) have been studied: the
clamped plate case and the simply supported plate case (more details can be found e.g. in [15]). In
this paper we consider the clamped case, in which the following boundary conditions are required:
the plate is placed over a rigid frame, i.e.,

w(z,y)loa =0, (3)
and respectively,
Oow
—loa =0 4
a0 =0, (@

that means the (outward) normal derivative of w must be zero, i.e., the sheet of glass is not allowed
to freely rotate around the tangent to 0€2. The associated inverse problem consists of finding the
Young modulus F for a given data w in (2). This is a linear second order PDE for the Young
modulus that can be written in the equivalent form

+ 2(Aw), By 4+ 2(Aw) By + (A%w)E =1, (5)

after a scaling transformations of the form w — fw or E — 1 E, with k = 12(1}:# In (5), A
denotes the Laplace operator. The main problem in the car windshield design is that the prescribed
target shape w is frequently such that the discriminant

D=(1- V)Qwiy — (Wgg + VWyy) (Wyy + VW)

of the equation (5) changes sign in the domain 2, so that we get a mixed type PDE. This is one
of the reason for which optical defects might occur during the process. Note that the equation (5)
would naturally call for boundaries conditions for E on 9€) in the purely elliptic case (when D < 0),
and Cauchy data on a suitable (non-characteristic part) I' C d€0 in the purely hyperbolic part (for



D > 0). There is a recent interest in studying this inverse problem (see e.g., [13]). It is known
[15] that a constant Young modulus corresponds to a data which satisfies the nonhomogeneous
biharmonic equation (33). A survey on this subject can be found in [23]. Salazar and Westbrook
[22] studied the case when the data and the parameter are given by radial functions, Kigler [12]
used a derivative free iterative regularization method for analyzing the problem on rectangular
frames, and a simplified model for the inverse problem on circular domains was considered by Engl
and Kiigler in their paper [7].

So far it is not obvious which shapes can be made by using this technique. Ience, we try to
answer this question by finding out the symmetry reductions related to the PDE (5) hidden by
the nonlinearity that occurs between the data and the parameter. In this sense, we determine (see
Section 3) the group of transformations that leave the equation unchanged, and so, its mixed type
form. Knowledge of the invariants of these group actions allows us to write the target shape and
the parameter in terms of them, and therefore, to reduce the order of the studied equation. We find
again the obvious result that a Young modulus constant corresponds to a data which is a solution
of an homogeneous biharmonic equation. The circular case problem considered by Salazar and
Westbrook is in fact, a particular case of our study, so we show that other target shapes which are
not radial functions can be considered. We prove that the equation (5) is invariant under scaling
transformations. It follows that target shapes modelled by homogeneous functions can be analyzed
as well. In particular, we are interested in target shapes modelled by homogeneous polynomials
defined on elliptical domains or square domains with rounded corners.

The paper is structured as follows. In Section 2 we propose a method to study the relation
between the data and the parameter that might occur in terms of a similarity variable that allows
one to reduce the order of the PDE (5). The equivalence transformations related to this equation
are given in Section 3. The symbolic manipulation program DESOLV, authors Carminati and Vu
[4] has been used for this purpose. Table 1 contains a complete classification of these symmetry
reductions. In the last section, we discuss the PDE (5) augmented with the boundary conditions
(3) and (4). Certain examples of data are given in order to show to relate the invariants of the
group action and suitable domains €2 on which the order of model can be reduced.

2 Conditional symmetries
The direct method approach to a second order partial differential equation
F(z,y, ) =0,
consists of seeking solutions written in the form
E(z,y) = ®(z,y, (2)), where z=2(z,y), (z,y)€ . (6)

In this case the function z is called similarity variable and its level sets {z = k} are named similarity
curves. After substituting (6) into the studied second order PDE, one requires that the result to
be an ODE for the arbitrary function I' = I'(z), and hence, certain conditions are imposed upon
the functions @, z and their partial derivatives. The particular case

E(z,y) = F(z(z,y)) (7)

consists of looking for solutions depending only on the similarity variable, so that, if z is an invariant
of the group action then the solutions of the form (7) are as well. Assume that the similarity variable

is such that ||Vz]] # 0 on Q.



In this section we apply this particular approach to the equation (5) in order to study if the
parameter and the data are functionally independent, that means if they can depend or not on the
same similarity variable. Assume that the Young modulus takes the form (7). In this case we get
the relation

F(2) [22(wgg + vwyy) + 2252y (1 — V)wgy + zs(wyy + Vewgg)|
+ F'(2) [Zo0 (Wan + vwyy) + 2(1 — 1) 20y Way + +2yy (Wyy + VWee)
+225 (Aw), + 22, (Aw),] + F(2)(A%w) =1, (8)

which must be an ODE for the unknown function F = F(z). This condition is satisfied if the
coeflicients of the partial derivatives of F are function of z only (note that these coeflicients are
also invariant under the same group action). Denote them by

Di(z) = 22(wae + vwyy) + 2252y (1 — V)way + 22 (wyy + vweg),
Do(2) = zga(wee + vwyy) + 2(1 — V) 2pyWay + 2yy (Wyy + vwzs) ()
+22; (Aw) g + 22y (Aw)y,
3(z) = A2w.
If these relations hold the PDE (5) is reduced to the second order linear ODE
U1 (2) " (2) + To(2) () + T3(2) [ (2) = 1. (10)

2.1 Data and parameter invariant under the same group

If the target shape is invariant under the same group action as the Young modulus then

w(z,y) = G(z(z,y)), (11)
where G = G(z) is an arbitrary function. Substituting (11) into the relations (9), these coefficients
take the form

1 = G"(22 +22)? + G' [(22 + vald)zee + 2(1 — v)2p2yzay + (22 + v22) 2],
Iy = 2G" (2% + z§)2 + " {[7z§ + (v + 2)25]23” +2(5 — v)zp2yZay
HIT22 + (0 + D22y} + G {(B2) + 21— 0)(22, — 220ty
12 (Do) + 2y (A2}
Iy = G"(22+422)* 4+ 2G" [(32% + 22) 200 + 4202y 22y + (25 + 322) 24y
+G" {3(A2)? + 422, — Zaazyy) T 4 2:(A2)5 + 2y(A2),]} + G'A?2.
Next we require that the coeflicients of the partial derivatives of the function G in the above
relations fo depend only on z. Denote

(12)

I = a'G" + a1 G,
Ty = 204G + asG" + (IgG’,
Pg — ()[4G”” + 2G4Gm + CZ5G” + (ZGG’,
where
a?(z) = zg + zg,

(2)
(2) = (22 +vad)zme +2(1 — v)2e2yzay + (2 + v23) 2y,

(2) = [725 4 (v +2)22] 220 + 2(5 — v)zguyzay + [T22 + (v + 2)22] 2y,

az(z) = (A2)?+2(1— u)(z:%y — Zgpzyy) + 2 [2:(A2) g + 2y (A2),y], (13)
(2) = (322+ zz)zm + Azpay 2y + (22 + BzZ)zyy,

(2) = 3(Az)?+ 4(zf,y — Zapyy) + 4 [20(A2) + 2y (Az)y]

(z) = A%z



Notice that the first relation in (13) which is a 2D eikonal equation implies

Zptzg + 22x2ytey + 2oy = & (2)d/(2),
2z = a(z)al (2) — z_zz:ry:

— / Z
2yy = 02)d (2) — = Zay-

(From the last two equations we get
z
ijm- — 22p 2y 2y + zgzyy = a3(z)a'(z) — a4(z) Y (14)
Assume that there is a function 8 = 3(z) such that

Zay = B(2) 222y (15)

Indeed, since the left hand side in (14) depends only on z, one can easily check that if z satisfies
both the 2D eikonal equation in (13) and (15), then all the functions a; = a;(2) defined by (13) are
written in terms of « and . Therefore, the problem of finding the similarity variable z is reduced
to that of integrating the 2D eikonal equation and the PDE system

Zgr = QO — ﬂzé

Zay = P2y (16)
Zyy = add — B22.

The compatibility condition of the above system is given by the ODE
OCOCH +a/2 - 360606, +Q(2 (ﬂZ *ﬂ/) — 0’

which can be written in the following equivalent form

p' =38y +2u (B° - 8') =0, (17)
where we set y = %az . On the other hand, writing the function 3 as
)\Il(z)
-\ 18
B(z) A%Z)’ ( )

where A is a non-constant function, the equation (15) becomes

(A(2))zy =0

and its general solution is given by

Az(z,y)) = alz) + bly), (19)

with a and b being arbitrary functions. Substituting 8 from (18) into the compatibility condi-
tion (17), and after integrating once, we get

N +2uN =k, (20)

where £ is an arbitrary constant.
Case 1. Tf k # 0 then after integrating (20) and substituting back y = %az, we get

o 2/{3)\(2) + Cl

o’ (2) = N2 02) (21)



The relation (19) implies X' (2)z, = ¢'(z), and X (2)z, = b'(y). We substitute these relations, (19),
and (21) into the 2D eikonal equation (see (13)). It follows that the functions a = a(z), and b = b(y)
are solutions to the ODEs

a*(z) — 2ka(z) = Cy, and b?(y) — 2kb(y) = Cs,

with Cy+Cs = C] (here C; are real constants). The above ODEs admit the non-constants solutions

a(z) = % [K*(z —C1)® = Cy]  and bly) = i [K*(y — C5)* = 3],
and so, (19) takes the form
Melay) = & (@~ €0 + (y - C9") — 2. (22)

Notice that kil/\ or A+ ko defines the same function § as the function A does. Moreover, since the
PDE (5) is invariant under translation in the (z,y)-space, we can consider

Mz(z,y)) = 2% + 9% (23)

—1
If v/X is a bijective function on a suitable interval, and if we denote by ® = (\/X) its inverse

function, then the similarity variable written in the polar coordinates (r,0) (where x = rcos(0),
y = rsin(#)) is given by

2(z,y) = ®(r). (24)
For simplicity, we consider ® = Id, and then
E="I(r) and w=G(r), where z(z,y)=r, (25)

and hence, the ODE (10) turns into

r2

(G”+ ZGI) F”+ <2GI”+ ]/+2GII_ iGI) FI
(A (A

2 1 1
4 (G//// + g — _QGII + _3G/) F=1, (26)
r T T

which can be reduced to the first order ODE [15]
1 1
(¢"+%6") Pt (G oG GG’) F=" (27)
T T T 2
Case 2. If k = 0, similarly we get

2(z,y) = ®(k1z + kay), (28)
where k; and ko are real constants such that k2 + &2 > 0. In this case, for ® = Id, the parameter
and the data are written as

E=F(z) and w=G(z), where z(z,y)=kz+ ko, (29)

and the ODE (10) turns into

1
(K +£3)””
with {z|G"(z) = 0} the associated set of singularities. Integrating the above ODE on the set
{#|G"(z) # 0} we obtain that the Young modulus is given by
(k1z + koy)? + Ci(k1z + kay) + Cs

2(k? + k2)2G" (k1z + kay)

G"(2)F"(z) + 2G"(2)F'(z) + G""(2)F(z) = (30)

E(z,y) =

where C; are arbitrary constants.



2.2 Data and parameter invariant under different groups

Consider two functionally independent functions on §, say z = z(x,y) and v = v(x,y), and let
w = H(v(z,y)), (31)

be the target shape, where H = H(z) is an arbitrary function. In this case, the data and the param-
eter do not share the same invariance. Similarly to above, substituting (31) into the relations (9)
we get

Iy = H" [(220z + 2yvy)% + (200 — 220y)]
T H' [22050 + 2252 Vay + 250y + 1 (220yy — 2222y Vgy + 2205z |
Ly = H"(02 4+ 02)(20s + 2y0y) + H” (02240 + 20505ty + U2y,

+v (vzum — 203Uy 2y + v%zyy) + 225V505¢ + 2(220y + 2yVg ) Vay + 224Uy Uyy (32)
(2503 + 2y ) (A0)] + H' (220055 + 220y Vay + 2yyUyy + ¥ (520Vyy — 22542y
+ayy Vo) + 20 (Av)g + 2y (Av)y]

Uy = H"'(v+v2)? 4+ 2H" [(302 + 02 gz + A0p0y0zy + (V2 + 302 )0y, ]
+H" [3vF, + MZ, + 302, + 20250y + 4vg(Av), + vy (Av), | + H'A%v.

Recall that [';’s are functions of z = z(x,y) only. Since each right hand side in the above relations
contains the function H = H(v) and its derivatives, we require that the coefficients of the derivatives
of H to be functions of v. It follows that I'; must be constant, and denote them by ;. Hence, the
last condition in (32) becomes

A2(w) = 73, (33)

which is the biharmonic equation. According to the above assumption, we seek solutions of (33)
that are functions of v only. Similarly to Subsection 2.1, we get

v(z,y) = ¥(r), or ov(z,y)=VY(kz+ky), (34)
and thus, for ¥ = Id, the target shape is written as
w(z,y) = H(r), or w(z,y) = H(kiz+ koy). (35)

Since z = z(z,y) and v = v(x,y) are functionally independent, we get

2(z,y) = kix + kay, v(z,y) = Va? +y? (36)
or
2z, y) = Va2 + %, viz,y) = kiz + koy. (37)

One can prove that if the coefficients «; are constant, and if z and v are given by (36) or (37)
respectively, then v = v2 = 0, and 3 # 0. One the other hand, the solutions of the biharmonic
equation (33) of the form (35), are the following

13

w(z,y) = 6—424 + C12° + Coln(2) + C322In(2) + Cy, for z= /22 + 42,

and respectively,

V3

4 3 2
mv + CI’U + CQ’U + Cg’l) + 04, for v= ]Cl.’lf + ]CQy.,

w(z,y) =



and these correspond to the constant Young modulus

E(z,y) = l (38)
V3
Notice that only particular solutions of the biharmonic equation are obtained in this case (i.e., so-
lutions invariant under rotations and translations). Since this PDE is also invariant under scaling
transformations acting on the data space, it is obvious to extend our study to group of transfor-
mations acting also on the data space.

3 Equivalence transformations

Consider a one-parameter Lie group of transformations acting on an open set D C 2 x W x &,
where W is the space of the data functions, and £ is the space of the parameter functions, given

by

z* = x+el(r,y,w, E)+ O(e?)
y* = Y + 677(:1:7 Yy, w, E) -+ (9(52) (39)
w* = w+edp(x,y,w E)+ O(?)
E* = E+ey(a,y,w E)+ O(),
where ¢ is the group parameter. Let
V = C(‘IE7 y7 w7 E)8:Z? + 77(377 y7 w7 E)ay + QS(ZL', 3/7 w? E)aw + ¢($a 3/7 w? E)aE (40)

be its associated general infinitesimal generator. The group of transformations (39) is called an
equivalence transformation associated to the PDE (5) if this leaves the equation invariant, i.e.,
the form of the equation in the new coordinates remains unchanged, and the set of the analytical
solutions is invariant under this transformation as well. The equivalence transformations are found
by applying the classical Lie method to the equation (5), with E' and w both considered as unknown
functions (for more details see [10] and [21]). Following this procedure we obtain

Cla,y,w, E) = ki + ksz — kgy

nz,y,w, E) = ko4 kyx+ ksy
olx,y,w, E) = ks~ krx+ key + (4ks — kg)w
Pz, y,w, E) = kgE

(41)

where k; are real constants. Since the vector field (40) can be written as V' = Zle k;V;, we have
the following result

Proposition. The equivalence transformations related to the PDE (5) are generated by the
following infinitesimal generators

Vl = 81‘5 VQ = 8% V3 = 8’11)5 V4 = —yafl? + .'L'ay, V5 = xaa? + yay + 4wa’wa

Ve = yaun Vi =x0y, Vs =—wiy, + Kog. <42)

It follows that the equation is invariant under translations in the x-space, y-space, w-space, rota-
tions in the space of the independent variables (x,y), scaling transformations in the (z,y,w)-space,
Galilean transformations in the (y,w) and (z,w) spaces, and scaling transformations in the (w, E)-
space, respectively.

Note that the conditional symmetries found in Section 2 are particular cases of these equivalence
transformations. Since each one-parameter group of transformations generated by V; is a symmetry



group, if w = G(z,y) and E = F(z,y) is a known solution of the equation (5), so are the following

W) =Gz —£1,y), EY = F(z - =1,)
w® = G(z,y — &), E® = F(z,y —e)
w® = G(z,y) + 3, E®) = I(z,y),
W) = G(,9), E® = F(z,7), )
w® = @G (6_551', e 65@/) , E®) = F (6_651', 6_551/)
w'® = Glz,y) + ey, E® = F(z,y).
W = Gz, y) + 7z, ET = F(z,y),
w® = e™G(z,y), B® = = I(z,y),
where & = x cos(eq) +ysin(es), § = —x sin(eq) + y cos(ea), and g; are real constants. Moreover, the

general solution of (5) constructed from a known one is given by
w(z,y) = *573G (e‘“(i — k1), e (j — 12:2)) e B gy et T B ey . et T8y

Blo,y) = e F (7@ — k). e ™ (5~ )

where k1 = 3 cos(eq) + e9sinfey), and ky = &3 sin(eq) — €9 cos(ey).

The equivalence transformations form a Lie group G with a 8-dimensional associated Lie algebra
A. Using the adjoint representation of G, one can find the optimal system of one-dimensional
subalgebras of A (more details can be found in [18], pp. 203-209). This optimal system is spanned
by the vector fields given in Table 1. Here denote 2z, I, and J the invariants related to the one-
parameter group of transformations generated by each vector field V;, I and G are arbitrary
functions, (r,#) are the polar coordinates, and a, b, ¢ are non-zero constants. To reduce the order
of the PDE (5) one can also integrates the first order PDE system

g(mv Yy, w, E)E:L’ + 77(377 Yy, w, E)Ey = Q/}(CE, Yy, w, E):

which are the characteristics of the vector field (40).

Infintesimal Generator | Invariants | w = w(z,y) | £ = E(z,y) | ODE
1. Wi z=y w = G(z) E = F(z) (45)
I=w
J=F
2. Va 2=z w=G(z) E = F(z) (45)
I=w
J=F
3. Vi z=r w=G(z) E=F(2) (26)
I=w
J=F

10



Infintesimal Generator

Invariants

w = w(z,y)

E = E(z,y)

ODE

Vs

z=4%
€z
I=z*w
J=F

w=z'G(2)

E = F(2)

(47)

cV3 + V4

w = cl + G(z)

I = F(z)

(26)

Vs 4+ Vs

w = z17°G(z)

E =z°F(

R
~—

(48)

Vi~ cVs

w=e"G(2)

E=e"F(z)

(49)

Vi+cVs

w=r'G(2)

(51)

Va+aXs + bVs

w= 7"47%G(z)

(52)

10.

Vi+cVs

2=y
I=w-—cry
J=F

w = cxy + G(z)

11.

Vo + cVy

z2=
I =w-—cxy
J=FE

w = cxy + G(z)

12.

Vi+cVs

z=y
I =e"w
J=e “FE

w=e “G(z)

E =e"F(z)

13.

Vo + cVs

=z
I =e%w
J=e YE

w=-¢e YG(z)

E =¢eYF(2)

Table 1

The reduced ODEs are determined by integrating the associated systems (44) obtained for each of
the vector fields given in Table 1. Thus, the invariance of the equation (5) under the translations
described by Vi, Vo and V] + Vi implies the following ODE

F"(2)G"(2) + 2F' (2)G" (2) + F(2)G" () = 1, (45)
with its general solution
22+ Crz + Oy

The invariance of the PDE (5) under the scaling transformation generated by the vector field Vs

11



vields the reduced ODE
[G” (22 +1)% = 62(22 + )G’ +12(2 + u)G] fal
+2 [(22 +1)° G = b2(2 + )G+ 3(422 + v+ )G — 122G] P
(24 1)7 6" — 4222 + )G + 4322 + 1)G" — 24267 + 24G| F = 1.
In the case 6, the reduced ODE is the following
[(zZ + 126"+ 2c— 3)2(2% + 1)G + (¢ — 3)(c — 4) (22 + u)G] P
+ {2 (22 +1)° 6" + 2(2c — 5)2(22 + 1)G" +2(c — 3)[22(c — 4) + v(c — 1) — 1]G"
(e 3)(c— 4)2Q) F' + {(z2 1) G" 4 2e — 2)2(22 + 1)G" + [(c — 3)(c — 4)22
—2(c —2) —ve(c— 1)]G" —2(c — 4)(c — 3)2G" + 2(c — 4)(c — 3)G} F = 1.

The case 7 yields the reduced equation

+2 et — 1 A1+ QV)G]
T

G”+ ZG"" I/_CZG ﬁv//_+_ 2GI”+ 14 G”+ G/_
r 72 r 2
ctv—1 -2 +1)
3

2 2 (v +1
+ I:GI/I/ + _G/II + 5 G/I + G/ + ( I )
T T T T

6| F -1

which turns into the first order ODE

w VvV, v , w1, cAv—1_, 1+cv r
(6" +26'+ 5G) F'+ (6" +-G"+ G — G)=r".
r 72 r 72 73 2

The change of the variable z = exp(¢) in the cases 8 and 9, yield the following ODEs

{(CQ L1267 + (% + c) (v +7) — 206 + G _ b) A1+ 30) — b

+c(v +3) —b|G} F" + {2(02 +1)2G" + <% + c) [e(v +19) — 4b]

([P

s 4 (v +13) — dbe(v 4 1) — 12%’ +v+ 29J G’

+ (4 —Cg) [2¢(v +7) + b(v — 5)]G} Fr+{(*+1)’G"

1 b
+2 (c + Z) (6¢ — b)G" + [7 + = (v —17) +20¢* — be(v +7) + vb? + 52} G"

C

Ry

o

4 <9 - C%) 16+ b(v — 5)]G" +2 (

C

4 %) [80+b(u—3)]}F: 1,

c <
and respectively,

{(E+DG"+(E+ D)W +DG +4[vBE+1) ++ 3]G} F”
+{2( + 1D*G" + (¢ + D)(v + 19)G" + (6v + 26)(* + NG’ +8(v + )G} F'
+{(+1)?G" +12(c* + 1)G" + 4(5¢* + 13)G" + 96G’ + 64G} F = 1.

12
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In the last two cases, we get the same ODE
(G" +vPG) F" +2(G" +vG) F' + (G"" + vPG") F =1, (53)
with the general solution given by

22+ Ciz + Oy
Fiz) = G"(z) + ve*G(z) (54)

where 'y and (5 are real arbitrary constants.

4 Conclusions

The target shapes and the Young modulus respectively can be expressed in terms of the invariants
z, I and J of the group action, as

I=G(z) and J=1I(z),

where the data w appears implicitly in 7, and the parameter F in J, respectively. So far the
technique of reducing the PDE (5) to an ODE has been applied only in the case of radial functions
(see for example [15] and [22]). Indeed, this is the case 3 in Table 1. Moreover, other target shapes
might be considered in the polar coordinates, see cases 5, 7, 8 and 9 in Table 1. If we cousider the
inverse problem on a circular domain, and we require the boundary conditions (3) and (4) to be
satisfied, then, for example, we might consider also the target shapes of the form

w(r,0) = e~ “G(r).

Scaling transformations (cases 4 and 6 in Table 1) are also interesting symmetry reductions of the
model. If in the rotational case the boundary conditions do not cause problems, in the second case,
the required boundary conditions are not all fulfilled, as we shall see in that follows. Remark that
the first two cases and the last four cases listed in Table 1 might not be of interest at the first sight,
but using (43) we can construct other data. However, when looking for examples of data, we have
to keep in mind that the function that models the target shape of the car windshield must obey
more properties, such as a positive curvature graph at least in the center of the cousidered domain.

Let us make the remark: if the domain €2 is such that 0Q = {(z,v)| z(z,y) = k} is the k-level set
of the function z (here k being a non-zero constant) and ||Vz|| > 0 on €2, then the normal unit vector
to 0 is given by n = Hg—zutag. Moreover, if the target shape is given by w(x,y) = a(x, y)G(z(z, y)),
where a(z,y) is a suitable function according to Table 1, it follows that the boundary conditions (3)
and (4) can be reduced to

Gk) =0, G'(k) =0, (55)

so that, the clamped plate problem is satisfied for those functions G = G(z) with at least two zeros
on 0f2. Note that the target shapes given by homogeneous functions, in particular homogeneous
polynomials, can be derived from the invariance of the equation with respect to scaling transfor-
mations. Even though they fulfil the boundary condition (3) ounly, these can be considered defined
on elliptical domains or on rounded corners frames.
LExample 1. Particular target shapes on rounded square domains. Consider the family of target
shapes of the form

w(z,y) = (2*" +y*™)" — 1, (56)

defined on the square domain with rounded corners Q = {(z,y)| #>® + 3?" < 1}, here m > 1
and n > 2 are natural numbers. The target shapes defined by (56) are invariant with respect the
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vector field Vs + ¢Vg + (4 — ¢)V3, where ¢ = 4 — 2mn. In this case, the equation (5) is elliptical
on © — {(0,0)} and parabolic in (0,0). Writing the functions (56) as follows

wle,y) = a?™G(E) 1, O() = (142", 2=,
x
for x > 0 or x < 0, it results that the associated Young modulus is given by

Ba,y) =™ 0(), 5 =L,
xz

Erample 2. Particular target shapes on elliptical domains. Consider the class of data

2 2\™ i
w(z,y) = 2tE) b (57)

on the elliptical domain Q = {(z,y)| i—; + z—j < 1}, where m > 1 is a natural number. The functions
(57) are obtained from the invariance of the equation (5) with respect to Vs +cVs + (4 —c¢) V3, where
¢ =4 —2m. The PDE (5) is elliptical on € — {(0,0)} and parabolic in the origin. To reduce the
equation to an ODE, we restrict ourselves to the case > 0 or z < 0, for which the functions (57)
are written as m
21, 1 22 Y
w(z,y) =z""G(z) -1, G@)=|5+5] , z=".
a b

In this case, we are looking for solutions to (5) of the form

B(z,y) =" 7" F(2), z=

8w

Remark. Suppose we have given a target shape w on a domain . In order to verify if w is
invariant with respect to one of the symmetry reductions given in Table 1, we can easily check if
that is a solution of the first equation of the system (44), with ¢, n and ¢ are given by (41). This is
equivalent to the existence of certain non-zero constants k; such that the resulting relations hold.
Afterwards, if this condition is satisfied, by integrating the second PDE in (44) we can determine
the form of the parameter. Next step is to write the associated reduced ODE.

The geometrical significance of the nonlinearity occurring between data and parameter in the
inverse problem (1) is reflected by the group analysis tools. Investigating special group of transfor-
mations connected to this equation, the order of the model can be reduced. The equation will be
then written in terms of the invariants of the group actions. Another advantage of this approach is
that of relating the direct and the inverse problems through these symmetry reductions. It might
be interesting for a future work to link these results to the common approach of the inverse prob-
lems theory, especially in finding new regularization methods based on the invariance of data under
certain symmetries. For other target shapes defined by functions which are not invariant under the
symmetry reductions presented in this paper, the classical theory of linear second order PDE can
be applied, but this might be quite difficult due to the form of the discriminant.
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