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Abstract

Program Verification is a systematic approach to proving the correct-
ness of programs. Correctness means that the programs enjoy certain
desirable properties. The aim of this paper is to provide a systematic ex-
position of one of the most common approaches to program verification,
namely program verification using Hoare Logic, which is based on an ax-
iomatic approach involving assertions for the verification of correctness
properties of a correctness formula {P} S {Q}, where S is the program
(sequence of statements), P is the precondition and Q is the postcondition
of the program. We present a proof system in a syntax-directed manner,
by induction on the program syntax, giving the verification rules for state-
ments and sequence of statements. At the end we present an example,
showing how the verification rules are generated using the presented ver-
ification rules from Hoare Logic.

Computer programs are becoming more and more part of systems that we
use or rely in our daily lives. Therefore they should work correctly, mean-
ing that they should satisfy their requierments. A challenge for computer
science is to develop methods that ensure program correctness.

The approach presented here is usually called Hoare Logic [1] where pro-
gram correctness is expressed by so-called correctness formulas. These
are the so-called Hoare triples from the Hoare axiom systems, and they
are of the form: {P} S {Q} where S is a program and P and Q are as-
sertions. The assertion P is the precondition of the program and Q is
the postcondition. The precondition describes the set of initial states in
which the program S is started and the postcondition describes the set
of desirable final or output states. The program S is a finite sequence

*The program verification project is supported by BMBWK (Austrian Ministry of Educa-
tion, Science, and Culture), BMWA (Austrian Ministry of Economy and Work) and by MEC
(Romanian Ministry of Education and Research) in the frame of the e-Austria Timisoara
project. The Theorema system is supported by FWF (Austrian National Science Foundation)

SFB project P1302.



of statements. A statement denotes single commands (like assignments,
conditional, loops, etc.) of programming languages and we consider a pro-
gram as a procedure (with output parameters, without return values). In
our consideration, there is at most one instruction to be executed ”next”
(i.e. the program is deterministic), so that form a given initial state (form
precondition P) only one execution sequence is generated. Also, we do
not deal with recursivity.

Informally a (deterministic) program is correct if it satisfies the intended
input/output relation. More precisely, we are interested in two interpre-
tations of correctness [1],[4]

e a correctness formula {P} S {Q} is true in the sense of partial cor-
rectness if every terminating computation of S that starts in a state
satisfying P terminates in a state satisfying Q.

e a correctness formula {P} S {Q} is true in the sense of total cor-
rectness if every computation of S that starts in a state satisfying P
terminates and its final state satisfies Q.

Thus, in the case of partial correctness diverging computations of S are
not taken into account.

Our main interest is to verify program correctness, namely we want to
prove the consistency between specification and program for every possible
input. To this end we investigate the correctness formulas. We present a
verification system in a syntax-directed manner [3],[2],[1], and we study
the partial and the total correctness. The difference between the proof
systems of partial and total correctness appears -in our consideration-
only:

e in the case of While loops: verification of termination is based on a
specific termination term;

e in the case when the program has also procedure or function call
(which may not terminate): termination of the subroutines has to
be proven separately.

Corresponding to the formally specified program, we generate predicate
logic formulae, called verification conditions, such that the proof of these
verification conditions insures the correctness of a program. In the proof
of the verification conditions we also rely on the auxiliary rule for weaker
specifications (or consequence rule), namely: for any program S, having:
P=P’, Q=Q’ and {P’} S {Q’} we also have: {P} S {Q}.

First we give the verification rule for a sequence of statements. The pro-
gram specification {P} S; s {Q} where S is a program and s is one state-
ment is correct if {P} S {R} and {R} s {Q}. Furthermore, we define the
verification rules for one statement, namely we define the verification rules
for each type of statement: empty statement, assignment, conditionals,
for loops, while loops (with and without termination) and procedure calls.
In practice, program verification using the inference rules of Hoare Logic
can be complicated, because intermediate assertions are needed between
the statements. Therefore, one uses verification rules based on Weakest
Precondition [4].



Example:

This is a sorting program expressed in the Theorema imperative language
[4], together with its specifications and the verification assertions obtained
with the help of the Theorema system.

Speci fication[” SortMax”, SortMax[] a], Pre — (|a|] > 2),
Post — (Vi=1,._ja|—1(ak > ars1))

Program[’SortMax”, SortMax[] a], [Fla1 < a2, m := az;az := a1;a1 := m];
FOR[;,2, (Ja| - 1), pos := i; FORj,i + 1, |a],

IFa; > apos, pos := j|, (xIFx)

Imvariant — (szg,___,i(ak_l > ax) /\Vz:i,___,j_1(apos > al))]; (xFORx)
IF[apos > a3, M := Apos; Apos ‘= G4 a3 ‘= M),

Invariant — (Vi=2,....i(ark—1 > ax)) [(xFORx),

Speci fication — Speci fication[” SortMaz”])

The verification rules -given by VCG-are:
Lemma (SortMax):

for any: a

(FOR.Inv1)

(Vk:2,...,i(ak71 > a) /\vl:i,...,jfl(apos > al)) /\(Z +1<jnj<a) =

((_‘(aj > Gpos)) = Vi—2,...i(ak_1 > ax) /\Vl:i,...,(j+1)71(apos > al))
(FOR.Inv2)
(Vk:2,...,i(ak—1 > ag) /\vl:i,...,(\a\+1)71(apos > az)) =

Qpos > Qi k=2,...i+1((a||pos « ai||||7 <= apos||)x—1 = (a||pos < ai||||7 < apos]||)x
(apos > ai = Vi=2,...i+1((a] I pos|)e—1 > (afl Il pos)K)) /\

((=(apos > ai)) = Vi=2,..i+1(ar—1 > ax))

(FOR.Inv1)
Vio, i(an— > ar) \2<ini< (o] —1)) =
Vi—2,...,i(Gk—1 > ak) /\vl:i,...,(iJrl)—l(ai > ap)
(FOR.Inv2)
Vi—2,....(lal-1)+1(@k—1 > ar) =
Vi=1,...,Jal-1(ak > ary1)
(Init)

lal > 2 = (a1 < a2 = Viea,..2((@ll2 = ar[[lli = azl)i-1 > (all2 = ar|lll1 = a2l)x)) A\

((—(a1 < a2)) = Vi=a,...2(ak—1 > ax))
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