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Approaching the problem of imperative program verification from a
practical point of view has certain implications concerning [4]: the style of
specifications, the programming language which is used, the help provided
to the user for finding appropriate loop invariants, the theoretical frame
used for formal verification, the language used for expressing generated
verification theorems as well as the database of necessary mathematical
knowledge, and finally the proving power, style and language.

The Theorema system (www. theorema.org) [1] has certain capabil-
ities which make it appropriate for such a practical approach: the logic
language of the system is higher-order predicate logic expressed in natu-
ral style; the procedural language is simple and intuitive, yet sufficiently
expressive and fully integrated in the logical frame of the system; the
language and the style of the proofs are natural, similar to those used by
humans; and finally the proving power of Theorema is enhanced by using
specific provers for special domains, which are integrated with sophisti-
cated mathematical algorithms.

Our approach for imperative program verification in Theorema is
based on the so-called Hoare—Logic, which verification process is char-
acterized by (for a tutorial introduction see also [7, 8]):

e an imperative program

e and a logical specification
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e and (usually) some logical invariants
e are fed into a verification system,

e which generates a conjecture,

e which is fed into a prover,

e and one obtains the answer whether the program fulfills the speci-
fication.

The program is expressed in a programming language, the specification,
the invariants, and the conjecture are expressed in a logic language, and
the answer is Yes/Not or a proof [attempt] of the conjecture expressed in
the above logical language and some proof language.

Programs written in functional style can be expressed directly into this
language, thus the “compilation” step (and its possible errors) is avoided.
However, for the users which are more comfortable with the imperative
style, Theorema features a procedural language based on a practically
oriented version of the theoretical frame of Hoare-Logic, namely on the
Weakest Precondition Strategy ( [5] ), with readable arguments for the
correctness of programs, as well as with useful hints for debugging. This
procedural language, called Verification Condition Generator (VCG), is
composed of few simple and intuitive constructs:

e Program: for writing the source code of an imperative program. The
programs are considered as procedures, without return values and
with input, output and/or transient parameters (input parameters
are specified by T, output parameters by | and transient parameters

by 1);

e Specification: for writing the specification of a program;

o Frecute: for executing a program. Some parts of program might
have local variables which variables could appear is some other parts
of the program, in other context. The execution of such a program
should not be disturbed by previous values of the local variable,
the local variable should be treated properly in the specific context.
Also, previous usage of the output and input variables of a program
should not effect the execution.

VCG which takes an annotated program with pre— and postcondition
(i.e. specification) and produces as output a Theorema-Lemma with a col-
lection of formulas, i.e. the verification conditions. Thus, the verification



condition generator is a translator based on a list of inference rules. It
is recursive on the structure of the code and works back—to—front state-
ment by statement. Internally it repeatedly modifies the postcondition
using a predicate transformer such that at the end the result is a list of
verification conditions.

As a further development of our verification system, one of our cur-
rent goal is to develop a method based on recurrence equation solvers
that provides the possibility of proving automatically correctness of pro-
grams which have loops, without asking the user to give necessary annota-
tions(i.e. invariants, termination terms). For proving the correctness of a
While or For statement, one needs to have a logical invariant. Moreover,
for proving the termination of a While loop, one also needs a termination
term. It is generally agreed [3] that finding automatically such an invari-
ant or term is in general impractical — thus most systems will just ask
the user for the appropriate expression. However, in most of the practical
situations finding the expression — or at least giving some useful hints —
is quite feasible. For practical applications this may be very helpful to
the user.

A “hidden” problem in the theoretical treatment of the invariant is
the fact that in most practical situations it will also contain information
about other parts of the program, which is not related to the respective
loop. This may make the task of finding the invariant more difficult,
however it may be relatively easy to separate the specific information
from the non-specific one by an analysis of the free variables and other
characteristics which are easy to detect automatically. This could also
provide useful hints to the user.

In our current work, the idea of the generation of invariants is mostly
identical to the basic design idea. That is why programming is more
effective if one thinks about the invariant before coding a loop and also
gives heuristics for developing invariants.

Analyzing the code of loops, we can generate recursive equations that
contain those terms which occur in the condition of the loops.

Solving a given linear recurrence equation with polynomial coefficients
— extracted from a While or For loop — we could obtain the invariant for
the respective loop. To solve these recursive equations, we use the Gosper
Algorithm, which is a suitable solution for indefinite hypergeometric sum-
mation in closed form summation problems [6]. In our examples, we deal
with first order recursivity, therefor the problems that will occur could be
solved by the implementation of the Gosper Algorithm (and its extension,
namely the Zeilberger algorithm) in Mathematica. This implementation



is already embedded in the Theorema System (by Peter Paule and Markus
Schorn [9] ).

As future work, we would like to solve the treatment of transient
variables. Usually transient parameters lead to the following problem:
The postcondition has to relate to the initial values of the (modified)
transient parameters. A solution would be to ”copy” the initial values
of the transient parameters into some new constants (so called ghost
variables) which are not modified in the program code.

This solution could be applied for the execution of a problem which
contains also transient variables, hence during the execution we will deal
with two variables -an input and an output- generated for a transient
variable. Both generated variables will be initialized with the value of
the transient parameter and, at the end of the execution, the generated
output variable will contain the result.

Another future goal would be the generation of the termination term
of a While loop in order to be able to prove termination/non-termination
of the loop. The idea is similar as the generation of invariants, from the
obtained recursive equations, analyzing the condition of the loop, one
might be able to collect the necessary informations for establishing the
desired termination term.
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