
Verification Using Weakest Precondition Strategy

Extended Abstract

Nikolaj Popov*

Research Institute for Symbolic Computation,
4232 Hagenberg, Austria
popov@risc.uni−linz.ac.at

Abstract. We describe the weakest precondition strategy for verifying programs.
This is a method which takes a specification and an annotated program and
generates so|called verification conditions: mathematical lemmata which have to
be proved in order to obtain a formal correctness proof for the program with
respect to its specification. There are rules for generating the intermediate pre|
and post| conditions algorithmically. Based on these rules, we have developed a
package for generating verification conditions.

This work is supported by FWF (Austrian National Science Foundation) −
SFB project F1302.

1 Weakest Preconditions and Predicate Transformation

We have seen [Kovacs03] a verification method using inference rules of Hoare Logic.
However, there exists another strategy for program verification using the so|called
"weakest precondition predicate transformer" (wp) developed by E. W. Dijkstra
[Dijkstra76]. This approach is also based on Hoare Logic.

Let us assume we want to verify a program where we know the postcondition but
not the precondition:

{?}S{R}

In general, there could be arbitrarily many preconditions Q which are valid for the
program S and a postcondition R. However, there is precisely one precondition describ-
ing the maximal set of possible initial states such that the execution of S leads to a state
satisfying R. This Q is called the weakest precondition. (A condition Q is weaker than
P iff P Þ Q .)

2 How It Works

We are given a program s1 ; s2 ; ¼ ; sn with precondition 8P< and postcondition 8R< . We
want to verify this program by the weakest precondition strategy. Starting from sn and8R< , we produce (algorithmically) 8Pn-1 < and accumulate some lemmata, the so|called
verification conditions. Here 8Pn-1 < is the weakest precondition for the statement sn ,
and 8Pn-1 < now becomes the postcondition for sn-1 . Then we take sn-1 and 8Pn-1 < ,
and ¼ 8P< s1 ; s2 ; ¼ ; sn 8R<8P<8P0 <

s1 ;8P1 <
s2 ;
¼

sn-1 ;8Pn-1 <
sn8R<

Finally we produce 8P0 < , and we have accumulated a list of lemmata. What remains
is to prove the lemmata and also P Þ P0 . If we succeed to prove this, we can be sure
that the program s1 ; s2 ; ¼; sn meets its specification.

2.1 Simple Example

Given:

A program S: y := x * x
A postcondition R: y ³ 4

Find:

The weakest precondition Q.

Solution:

Q: Hx £ |2L Þ Hx ³ 2L .

The precondition x ³ 2 would also guarantee that R is valid after execution.
Even stronger preconditions like x ³ 3, x = 3, etc. would be valid precondi-
tions as well. However, the weakest precondition is Q: Hx £ |2L Þ Hx ³ 2L .

The weakest precondition of a program S and a postcondition R is denoted by

wpHS, R L
and is a predicate which describes the set of all initial states that will guarantee termina-
tion of S in a state satisfying R . This can also be expressed as a Hoare Triple:8wpHS, RL< S 8R<
So if one wants to verify 8Q< S 8R< using wp , one can first determine wpHS, RL and then
prove

Q Þ wpHS, RL .

For a fixed statement S , the function wp can be viewed as a function taking only a
predicate (the postcondition) and returning another predicate (the weakest precondi-
tion). Therefore wp is also called a predicate transformer. More on predicate transforma-
tion can be found in [Dijkstra76].

For certain statements (e.g. WHILE), one also needs to generate verification
conditions. These are mathematical lemmata, which have to be proved additionally.
Moreover, fully automatic verification of WHILE statements is very difficult in general
[Futschek89]. Therefore, in practice we need to supply a loop invariant and a termina-
tion term (see the example below).

2.2 While Example

Given:

A program S: WHILE[y£r,
r:=r−y; q:=q+1,
Invariant ® (x=r+y*q)
TerminationTerm ® (r−y)]

A postcondition R: 8x = r + y * q ß r < y<
Find:

The weakest precondition Q.

Solution:

Q: (x=r+y*q)
Accumulated Verification Conditions: Hx = r + y * qL ß Ø Hy £ rL Þ Hx = r + y * qL ß r < yHx = r + y * qL ß y £ r ß Hr = T1L ÞHx = Hr - yL + y * Hq + 1LL ß Hr - yL < T1Hx = r + y * qL ß y £ r Þ r - y ³ 0

One can see that the above formulae are provable in the theory of integers, under the
condition: y > 0.

3 What We Have Available

In our system Theorema, we have developed a package for generating verification
conditions [Kirchner99]. They are generated in such a way that they are syntactically
acceptable for the available provers.

The Extended Predicate Transformer EPT is a function which takes a statement and
a postcondition. It returns two "data structures": the precondition (the transformed
postcondition) and a list of verification conditions.

EPT : Xstat, post\ # Xpre, vcList\
The Verification Condition Generator VCG is a function which takes a program and its
specification and returns a list of verification conditions.

VCG : Xprogram, specification\ # 8lemmata<

The list of verification conditions is transformed into a Theorema formula list.
Parameter variables (from the interface definition) and local variables occur as free
variables in these formulae. In the last step of processing the formula list is turned into
a Theorema Lemma where these variables are universally quantified. This job is done
by a function called Verification Condition Generator VCG, which takes an annotated
program with pre| and postcondition and returns a list of verification conditions.

Annotated Program ®¾¾
EPT

Verification Conditions ®¾¾¾
VCG

Lemmata ®¾¾¾¾
Prover

Proof

References

[Dijkstra76] E.W Dijkstra. A Discipline of Programming. Prentice|Hall, 1976.

[Kirchner99] M. Kirchner. Program Verification with the Mathematical Software System
Theorema. Diploma Thesis, Fahhochschule Hagenberg, 1999.

[Futschek89] Gerald Futschek. Programmentwicklung und Verifikation. Springer Verlag Wien
New York, 1989.

[Kovacs03] L. Kovacs, Program Verification using Hoare Logic. Talk at CaVIS|2003, Timi-
soara, Romania, 2003.

