Verification Using Weakest Precondition Strategy

Extended Abstract
Nikolaj Popov*
Research Institute for Symbolic Computation,
4232 Hagenberg, Austria
popov@risc.uni-linz.ac.at

Abstract. We describe the weakest precondition strategy for verifying programs. This is a method which takes a specification and an annotated program and generates so-called verification conditions: mathematical lemmata which have to be proved in order to obtain a formal correctness proof for the program with respect to its specification. There are rules for generating the intermediate pre- and post-conditions algorithmically. Based on these rules, we have developed a package for generating verification conditions.

This work is supported by FWF (Austrian National Science Foundation) – SFB project F1302.

1 Weakest Preconditions and Predicate Transformation

We have seen [Kovacs03] a verification method using inference rules of Hoare Logic. However, there exists another strategy for program verification using the so-called "weakest precondition predicate transformer" (wp) developed by E. W. Dijkstra [Dijkstra76]. This approach is also based on Hoare Logic.

Let us assume we want to verify a program where we know the postcondition but not the precondition:

\[\{?\}S\{R\} \]

In general, there could be arbitrarily many preconditions \(Q \) which are valid for the program \(S \) and a postcondition \(R \). However, there is precisely one precondition describing the maximal set of possible initial states such that the execution of \(S \) leads to a state satisfying \(R \). This \(Q \) is called the weakest precondition. (A condition \(Q \) is weaker than \(P \) iff \(P \Rightarrow Q \).)
2 How It Works

We are given a program \(s_1; s_2; \ldots; s_n \) with precondition \([P]\) and postcondition \([R]\). We want to verify this program by the weakest precondition strategy. Starting from \(s_n \) and \([R]\), we produce (algorithmically) \([P_{n-1}]\) and accumulate some lemmata, the so-called verification conditions. Here \([P_{n-1}]\) is the weakest precondition for the statement \(s_n \), and \([P_{n-1}]\) now becomes the postcondition for \(s_{n-1} \). Then we take \(s_{n-1} \) and \([P_{n-1}]\), and ...

\[
\begin{align*}
[P] & s_1; s_2; \ldots; s_n [R] \\
[P] & s_1 \\
[P_0] & s_2 \\
[P_1] & s_3 \\
& \ldots \\
[P_{n-1}] & s_n \\
[R] &
\end{align*}
\]

Finally we produce \([P_0]\), and we have accumulated a list of lemmata. What remains is to prove the lemmata and also \(P \Rightarrow P_0 \). If we succeed to prove this, we can be sure that the program \(s_1; s_2; \ldots; s_n \) meets its specification.

2.1 Simple Example

Given:

\[
\begin{align*}
& \text{A program } S: y := x \star x \\
& \text{A postcondition } R: y \geq 4
\end{align*}
\]

Find:

The weakest precondition \(Q \).

Solution:

\[
Q: (x \leq -2) \lor (x \geq 2).
\]

The precondition \(x \geq 2 \) would also guarantee that \(R \) is valid after execution. Even stronger preconditions like \(x \geq 3 \), \(x = 3 \), etc. would be valid preconditions as well. However, the weakest precondition is \(Q: (x \leq -2) \lor (x \geq 2) \).

The weakest precondition of a program \(S \) and a postcondition \(R \) is denoted by
and is a predicate which describes the set of all initial states that will guarantee termination of S in a state satisfying R. This can also be expressed as a Hoare Triple:

$$\{wp(S, R)\} S \{R\}$$

So if one wants to verify $\{Q\} S \{R\}$ using wp, one can first determine $wp(S, R)$ and then prove

$$Q \Rightarrow wp(S, R).$$

For a fixed statement S, the function wp can be viewed as a function taking only a predicate (the postcondition) and returning another predicate (the weakest precondition). Therefore wp is also called a predicate transformer. More on predicate transformation can be found in [Dijkstra76].

For certain statements (e.g. $WHILE$), one also needs to generate verification conditions. These are mathematical lemmata, which have to be proved additionally. Moreover, fully automatic verification of $WHILE$ statements is very difficult in general [Futschek89]. Therefore, in practice we need to supply a loop invariant and a termination term (see the example below).

2.2 While Example

Given:

A program S: $WHILE\ y \leq r$,

$$r := r - y; q := q + 1,$$

Invariant $\Rightarrow (x = r + y \cdot q)$

Termination Term $\Rightarrow (r - y) < 0$

A postcondition R: $\{ x = r + y \cdot q \land r < y \}$

Find:

The weakest precondition Q.

Solution:

Q: $(x = r + y \cdot q)$

Accumulated Verification Conditions:

$$\begin{align*}
(x = r + y \cdot q) \land \neg (y \leq r) & \Rightarrow (x = r + y \cdot q) \land r < y \\
(x = r + y \cdot q) \land y \leq r \land (r = T1) & \Rightarrow \\
(x = (r - y) + y \cdot (q + 1)) \land (r - y) < T1 & \\
(x = r + y \cdot q) \land y \leq r & \Rightarrow r - y \geq 0
\end{align*}$$
One can see that the above formulae are provable in the theory of integers, under the condition: $y > 0$.

3 What We Have Available

In our system *Theorema*, we have developed a package for generating verification conditions [Kirchner99]. They are generated in such a way that they are syntactically acceptable for the available provers.

The Extended Predicate Transformer EPT is a function which takes a statement and a postcondition. It returns two "data structures": the precondition (the transformed postcondition) and a list of verification conditions.

$$EPT : (\text{stat, post}) \mapsto (\text{pre, vcList})$$

The Verification Condition Generator VCG is a function which takes a program and its specification and returns a list of verification conditions.

$$VCG : (\text{program, specification}) \mapsto \{\text{lemmata}\}$$

The list of verification conditions is transformed into a *Theorema* formula list. Parameter variables (from the interface definition) and local variables occur as free variables in these formulae. In the last step of processing the formula list is turned into a *Theorema* Lemma where these variables are universally quantified. This job is done by a function called Verification Condition Generator VCG, which takes an annotated program with pre- and postcondition and returns a list of verification conditions.

Annotated Program $\xrightarrow{\text{EPT}}$ Verification Conditions $\xrightarrow{\text{VCG}}$ Lemmata $\xrightarrow{\text{Prover}}$ Proof

References

