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Abstract.  We describe the weakest precondition strategy for verifying programs.
This  is  a  method  which  takes  a  specification  and  an  annotated  program  and
generates so|called verification conditions:  mathematical lemmata which have to
be  proved  in  order  to  obtain  a  formal  correctness  proof  for  the  program  with
respect  to  its  specification.  There  are  rules  for  generating  the  intermediate  pre|
and post|  conditions algorithmically. Based on these rules,  we have developed a
package for generating verification conditions.

This  work  is  supported by  FWF (Austrian National Science Foundation) −
SFB project F1302.

1 Weakest Preconditions and Predicate Transformation

We have seen [Kovacs03] a verification method using inference rules of Hoare Logic.
However,  there  exists  another  strategy  for  program  verification  using  the  so|called
"weakest  precondition  predicate  transformer"  (wp)  developed  by  E.  W.  Dijkstra
[Dijkstra76]. This approach is also based on Hoare Logic.

Let us  assume we want to verify a  program where we know the postcondition but
not the precondition:

{?}S{R}

In general, there could be arbitrarily many preconditions Q which are valid for the
program S and a postcondition R. However, there is precisely one precondition describ-
ing the maximal set of possible initial states such that the execution of S leads to a state
satisfying R. This Q  is called the weakest precondition. (A condition Q  is weaker than
P  iff P Þ Q .) 



2 How It Works

We are given a program s1 ; s2 ; ¼ ; sn  with precondition 8P<  and postcondition 8R< . We
want to verify this program by the weakest precondition strategy. Starting from sn  and8R< ,  we produce (algorithmically) 8Pn-1 <  and accumulate some lemmata, the so|called
verification  conditions.  Here  8Pn-1 <  is  the  weakest  precondition  for  the  statement  sn ,
and  8Pn-1 <  now becomes the postcondition  for  sn-1 .  Then we take  sn-1  and 8Pn-1 < ,
and ¼ 8P< s1 ; s2 ; ¼ ; sn  8R<8P<8P0 <

s1 ;8P1 <
s2 ;
¼

sn-1 ;8Pn-1 <
sn8R<

Finally we produce 8P0 < , and we have accumulated a list of lemmata. What remains
is to prove the lemmata and also P Þ P0 .  If we succeed to prove this, we can be sure
that the program s1 ; s2 ; ¼; sn  meets its specification.

2.1 Simple Example

Given:

A program S: y := x * x
A postcondition R: y ³ 4

Find: 

The weakest precondition Q.

Solution: 

Q: Hx £ |2L Þ Hx ³ 2L .

The precondition x ³ 2  would also guarantee that R is valid after  execution.
Even stronger preconditions like  x ³ 3,  x = 3, etc. would be valid precondi-
tions as well. However, the weakest precondition is Q:  Hx £ |2L Þ Hx ³ 2L .

The weakest precondition of a program S and a postcondition R is denoted by



wpHS, R L
and is a predicate which describes the set of all initial states that will guarantee termina-
tion of S  in a state satisfying R . This can also be expressed as a Hoare Triple:8wpHS, RL< S 8R<
So if one wants to verify 8Q< S 8R<  using wp , one can first determine wpHS, RL  and then
prove

Q Þ wpHS, RL .

For a fixed statement S , the function wp  can be viewed as a function taking only a
predicate  (the  postcondition)  and  returning  another  predicate  (the  weakest  precondi-
tion). Therefore wp is also called a predicate transformer. More on predicate transforma-
tion can be found in [Dijkstra76 ].

For  certain  statements  (e.g.  WHILE),  one  also  needs  to  generate  verification
conditions.  These  are  mathematical  lemmata,  which  have  to  be  proved  additionally.
Moreover, fully automatic verification of WHILE statements is very difficult in general
[Futschek89]. Therefore, in practice we need to supply a loop invariant and a termina-
tion term (see the example below).

2.2 While Example

Given:

A program S: WHILE[ y£r, 
r:=r−y;  q:=q+1, 
Invariant ® (x=r+y*q) 
TerminationTerm ® (r−y)]

A postcondition R: 8x = r + y * q ß r < y<
Find: 

The weakest precondition Q.

Solution: 

Q: (x=r+y*q) 
Accumulated Verification Conditions: Hx = r + y * qL ß Ø Hy £ rL Þ Hx = r + y * qL ß r < yHx = r + y * qL ß y £ r ß Hr = T1L ÞHx = Hr - yL + y * Hq + 1LL ß Hr - yL < T1Hx = r + y * qL ß y £ r Þ r - y ³ 0



One can see  that  the  above formulae are  provable  in  the  theory of  integers,  under  the
condition: y > 0.

3 What We Have Available

In  our  system  Theorema,  we  have  developed  a  package  for  generating  verification
conditions  [Kirchner99].  They  are  generated  in  such  a  way  that  they  are  syntactically
acceptable for the available provers. 

The Extended Predicate Transformer EPT is a function which takes a statement and
a  postcondition.  It  returns  two  "data  structures":  the  precondition  (the  transformed
postcondition) and a list of verification conditions.

EPT : Xstat, post\ # Xpre, vcList\
The Verification Condition Generator VCG is a function which takes a program and its
specification and returns a list of verification conditions. 

VCG : Xprogram, specification\ # 8lemmata< 

The  list  of  verification  conditions  is  transformed  into  a  Theorema  formula  list.
Parameter  variables  (from  the  interface  definition)  and  local  variables  occur  as  free
variables in these formulae. In the last step of processing the formula list is turned into
a Theorema  Lemma  where these variables are  universally quantified. This job is done
by a function called Verification Condition Generator VCG, which takes an annotated
program with pre| and postcondition and returns a list of verification conditions.

Annotated Program ®¾¾
EPT

Verification Conditions ®¾¾¾
VCG

Lemmata ®¾¾¾¾
Prover

Proof
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