Verification Using Weakest Precondition Strategy

Extended Abstract

Nikolaj Popov*

Research Institute for Symbolic Computation, 4232 Hagenberg, Austria popov@risc.uni-Jinz.ac.at

Abstract. We describe the *weakest precondition strategy* for verifying programs. This is a method which takes a specification and an annotated program and generates so-called *verification conditions*: mathematical lemmata which have to be proved in order to obtain a formal correctness proof for the program with respect to its specification. There are rules for generating the *intermediate* preand post- conditions algorithmically. Based on these rules, we have developed a package for generating *verification conditions*.

This work is supported by FWF (Austrian National Science Foundation) – SFB project F1302.

1 Weakest Preconditions and Predicate Transformation

We have seen [Kovacs03] a verification method using inference rules of Hoare Logic. However, there exists another strategy for program verification using the so-called "weakest precondition predicate transformer" (*wp*) developed by E. W. Dijkstra [Dijkstra76]. This approach is also based on Hoare Logic.

Let us assume we want to verify a program where we know the postcondition but *not* the precondition:

$\{?\}S\{R\}$

In general, there could be arbitrarily many preconditions Q which are valid for the program S and a postcondition R. However, there is precisely one precondition describing the *maximal* set of possible initial states such that the execution of S leads to a state satisfying R. This Q is called the *weakest precondition*. (A condition Q is *weaker* than P iff $P \Rightarrow Q$.)

2 How It Works

We are given a program $s_1; s_2; ...; s_n$ with precondition $\{P\}$ and postcondition $\{R\}$. We want to verify this program by the *weakest precondition strategy*. Starting from s_n and $\{R\}$, we produce (algorithmically) $\{P_{n-1}\}$ and accumulate some lemmata, the so-called *verification conditions*. Here $\{P_{n-1}\}$ is the *weakest precondition* for the statement s_n , and $\{P_{n-1}\}$ now becomes the *postcondition* for s_{n-1} . Then we take s_{n-1} and $\{P_{n-1}\}$, and ...

$$\begin{array}{c} \{P\} \, s_1; \, s_2; \, \dots; \, s_n \; \{R\} \\ \{P_0\} \\ s_1; \\ \{P_1\} \\ s_2; \\ \dots \\ s_{n-1}; \\ \{P_{n-1}\} \\ s_n \\ \{R\} \end{array}$$

Finally we produce $\{P_0\}$, and we have accumulated a list of lemmata. What remains is to prove the lemmata and also $P \Rightarrow P_0$. If we succeed to prove this, we can be sure that the program $s_1; s_2; ...; s_n$ meets its specification.

2.1 Simple Example

Given:

A program *S*: y := x * xA postcondition *R*: $y \ge 4$

Find:

The weakest precondition Q.

Solution:

 $Q: (x \leq -2) \lor (x \geq 2).$

The precondition $x \ge 2$ would also guarantee that R is valid after execution. Even stronger preconditions like $x \ge 3$, x = 3, etc. would be valid preconditions as well. However, the weakest precondition is Q: $(x \le -2) \lor (x \ge 2)$.

The weakest precondition of a program S and a postcondition R is denoted by

wp(S, R)

and is a predicate which describes the set of all initial states that will guarantee termination of S in a state satisfying R. This can also be expressed as a Hoare Triple:

 $\{wp(S, R)\} S \{R\}$

So if one wants to verify $\{Q\} S \{R\}$ using wp, one can first determine wp(S, R) and then prove

 $Q \Rightarrow wp(S, R)$.

For a fixed statement S, the function wp can be viewed as a function taking only a predicate (the postcondition) and returning another predicate (the weakest precondition). Therefore wp is also called a *predicate transformer*. More on predicate transformation can be found in [Dijkstra76].

For certain statements (e.g. *WHILE*), one also needs to generate *verification conditions*. These are mathematical lemmata, which have to be proved additionally. Moreover, fully automatic verification of *WHILE* statements is very difficult in general [Futschek89]. Therefore, in practice we need to supply a *loop invariant* and a *termination term* (see the example below).

2.2 While Example

Given:

A program S: WHILE[
$$y \le r$$
,
 $r:=r-y; q:=q+1$,
Invariant $\rightarrow (x=r+y*q)$
TerminationTerm $\rightarrow (r-y)$]
A postcondition R: { $x = r + y * q \land r < y$ }

Find:

The weakest precondition Q.

Solution:

Q: (*x*=*r*+*y***q*) Accumulated Verification Conditions:

```
\begin{aligned} &(x = r + y * q) \land \neg (y \le r) \Rightarrow (x = r + y * q) \land r < y \\ &(x = r + y * q) \land y \le r \land (r = T1) \Rightarrow \\ &(x = (r - y) + y * (q + 1)) \land (r - y) < T1 \\ &(x = r + y * q) \land y \le r \Rightarrow r - y \ge 0 \end{aligned}
```

One can see that the above formulae are provable in the theory of integers, under the condition: y > 0.

3 What We Have Available

In our system *Theorema*, we have developed a package for generating *verification conditions* [Kirchner99]. They are generated in such a way that they are syntactically acceptable for the available provers.

The Extended Predicate Transformer *EPT* is a function which takes a statement and a postcondition. It returns two "data structures": the precondition (the transformed postcondition) and a list of verification conditions.

```
EPT: \langle stat, post \rangle \mapsto \langle pre, vcList \rangle
```

The Verification Condition Generator *VCG* is a function which takes a program and its specification and returns a list of verification conditions.

VCG: $\langle program, specification \rangle \mapsto \{lemmata\}$

The list of verification conditions is transformed into a *Theorema* formula list. Parameter variables (from the interface definition) and local variables occur as free variables in these formulae. In the last step of processing the formula list is turned into a *Theorema* Lemma where these variables are universally quantified. This job is done by a function called Verification Condition Generator VCG, which takes an annotated program with pre- and postcondition and returns a list of verification conditions.

Annotated Program $\xrightarrow{\text{EPT}}$ Verification Conditions $\xrightarrow{\text{VCG}}$ Lemmata $\xrightarrow{\text{Prover}}$ Proof

References

[Dijkstra76] E.W Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[Kirchner99] M. Kirchner. *Program Verification with the Mathematical Software System Theorema*. Diploma Thesis, Fahhochschule Hagenberg, 1999.

[Futschek89] Gerald Futschek. *Programmentwicklung und Verifikation*. Springer Verlag Wien New York, 1989.

[Kovacs03] L. Kovacs, *Program Verification using Hoare Logic*. Talk at CaVIS-2003, Timisoara, Romania, 2003.