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Abstract

We report work in progress concerning the theoretical basis and
the implementation in the Theorema system of a methodology for
the generation of verification conditions for recursive procedures,
with the aim of practical verification of recursive programs. Prov-
ing total correctness is achieved by proving separately partial cor-
rectness and then termination. We develop a pattern for proving
partial correctness properties of programs which have simple func-
tional recursive definitions, and we discuss how this can be extended
to arbitrary procedural recursive programs. The method is based
on Scott’s Induction, from which we extract the essential features.
Furthermore we develop a pattern for proving termination of sim-
ple recursive functional programs, and we discuss its extension to
procedural programs.

While proving [partial] correctness of non-recursive procedural pro-
grams is quite well understood, for instance by using Hoare Logic [4], [6],
there are relatively few approaches to recursive procedures (see e.g. [7]
Chap. 2).

We discuss here a practical approach, based on a certain theory and
including implementation, to automatic generation of verification con-
ditions for recursive programs (both functional and procedural). The
implementation is part of the Theorema system, and complements the
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work on non-recursive procedures [5, 8]. Moreover, this work is comple-
mentary to the research performed in the Theorema group on verification
and synthesis of functional algorithms based on logic principles [1, 2].

The Theorema system (www.theorema.org, [11]) aims at realization
of a computer driven assistant for the working mathematicians and en-
gineers, which integrates automatic reasoning, algebraic computing, and
equational solving. The system provides an uniform environment in natu-
ral logico-mathematical language for defining, testing, and proving prop-
erties of algorithms, and in general for creating and investigating mathe-
matical models.

We consider the correctness problem expressed as in Hoare Logic:
given the program (by its source text) and its specification (by a precon-
dition on the input and a postcondition on the input and the output),
generate the verification conditions which are [minimally] sufficient for
the program to satisfy the specification. We approach the correctness
problem by splitting it into two parts: partial correctness (prove that the
program satisfies the specification provided it terminates), and termina-
tion (prove that the program always terminates).

Partial Correctness. For illustration we give here the formalization
corresponding to a simple recursive structure. Let be the program for a
function F":

F[X] = If Q[X] then S[X] else T[X, F[R[X]]], (1)

where S, Q, R, T are total functions, and let ®[X], U[X,Y] be the pre-

condition and the postcondition of the program specification. Partial
correctness means that for any input X which satisfies ®[X], if the pro-
gram terminates, then the result satisfies ¥[X, F[X]].

Using the technique known as “Scott induction” [10, 3, 9], one can
prove that a sufficient condition for partial correctness is the conjunction
of:

(VX : @[X] A Q[X]) ¥[X, S[XT]]) (2)
(VX @[X]A-Q[X]) ®[R[X]]) 3)
(VX @X]A-Q[X]) (VY) (Y[R[X],Y] = ¥[X,T[X,Y]]) (4)

If the function F is intented to be total, then the formulae are simpler
and (3) disappears, and if [some of]| the auxiliary functions Q,R,S,T
are not total (or have input preconditions), then the formulae are more

complicated, but the essence remains the same: formula (2) expresses the
correctness of the base case, formula (4) expresses the inductive step for



the correctness of the recursive expression T7...] under the assumption
that the reduced call F[R[X]] is correct, and formula (3) expresses the
appropriateness of applying F' to the reduced argument R[X].

Similar formulae can be constructed for more complex versions of (1),
e.g. with several cases in the conditional, with more arguments to T’
(several R-like functions), etc. However, the verification conditions for
partial correctness always express the same essence:

e Prove that the base cases are correct.
e Prove that the reduced arguments satisfy the input conditions.

e Prove that the recursive expressions are correct under the assump-
tion that the reduced calls are correct.

This principle in fact generalizes to arbitrary functional and proce-
dural programs, as it was noted elsewhere (e.g. [7]). The practical con-
sequence of this theoretical basis is that (somewhat surprisingly) partial
correctness of recursive procedural programs can be checked exactly in the
same way as for the non-recursive programs, we do not need to make any
difference between recursive and non-recursive routines. The difference
only occurs when proving termination.

Termination. It is known that proving termination of a program is
undecidable in general, however it is possible in many particular cases. In
fact, it should be always possible to prove termination of correct programs
written for practical purposes.

For programs having the structure given by (1), and provided (3)
holds, termination is equivalent to termination of the function:

F'[X] = If Q[X] then 0 else F'[R[X]], (5)

which only depends on Q and R. More exactly, in the total domain

D of F (specified by @), @ defines a “basis” sub-domain B , and the
function R must have the property that it transforms in a finite number
of steps any element from D into an element from B. This condition
can be expressed at object level in various ways, for instance by using a
second—level predicate “converges”:

CIX] = (QIX]V (-Q[X] A CIR[X]])), (6)
a general sufficient condition for termination is:

(VX : @[X]) C[X] (7)



The structure of the termination proof depends on R and ), which typi-
cally define a certain induction principle.

The generalization of this termination conditions to more complex
programming structures could be quite difficult in general, however in
practical situations the programming style itself should impose the usage
of such inductive domains which are simple and natural — and for these
the Theorema system offers various inductive provers (natural numbers
and tuples).

The extension of this principle to general procedural recursions is
based on the idea that one should look at the reduction operations which
are applied to the arguments of the main function in order to obtain the
arguments of the sub-calls, and the conditions under which these occur.
These define a system of conditional rewrite rules which have to converge
to the “basis domain”. Generating verification conditions and proofs
for such problems in general is nontrivial and could be highly creative,
therefore we are investigating various test cases in order to determine the
typical practical situations and the most reasonable possibilities to solve
them.

Implementation and experiments. Part of the methods described
here are implemented in the Theorema system and we are studying vari-
ous test cases in order to improve the power of our condition generator.
Moreover, the concrete proof problems are used as test cases for our
provers and for experimenting with the organization of the mathematical
knowledge.
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