Matching in Flat Theories*

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University, A-4040, Linz, Austria
kutsia@risc.uni-linz.ac.at

Abstract. Flat theory with sequence variables and flexible arity sym-
bols has a decidable infinitary matching and unification. We briefly de-
scribe a minimal complete flat matching procedure and discuss its rela-
tions with the flat matching implemented in the MATHEMATICA system.

1 Preliminaries

Sequence variables can be instantiated with a finite, possible empty, sequence
of terms. We use 7,7, ... to denote them. We build terms over individual and
sequence variables, and fixed and flexible arity function symbols in the usual
way, with the only restriction that sequence variables are not allowed to be direct
arguments of fixed arity symbols. Similarly, in equalities over terms, sequence
variables can not be the direct arguments of the equality symbol. For instance,
for a binary g and flexible arity f, f(Z,g(z,y)) ~ f(¥) is an equation, while
f(@,9(z, 7)) = f(y) and T ~ g(z,y) are not.

Let Frix be a set of fixed arity function symbols and Frex be a set of flexible
arity function symbols. We write T (Frix U Friex, Vind U Vseq) for the set of terms
over the signature Frix U Friex, & set Ving of individual variables, and a set Vseq
of sequence variables.

We assume that the reader is familiar with the standard notions of unifi-
cation theory [2]. Here we mention only non-straightforward generalizations for
sequence variables and flexible arity symbols.

Definition 1. A binding is either a pair ¢ < s where £ € Ving and s € T (FrixU
Frlex; VindUVseq) \ ({2} UVseq), 0T an ezpression T < s1,. .., Sy where T € Vseq
and s1,-..,5, 15 a (possibly empty) sequence of terms such that s1 # T if n = 1.

A substitution is a finite set of bindings {x1 < s1,...,Zn Sp,T1
tlyevesthysee s Bm < B0 00 Y with @1, .., &n, T, .. ., Ty distinct variables.

Greek letters denote substitutions, with ¢ for the empty substitution. The
instance of a term T w.r.t. a substitution 6, 6, is the sequence si,..., sy, if
T « §1,...,8n € 0, and T otherwise. The notion of instance for terms other than
sequence variables is defined in the usual way.

* Supported by the Austrian Science Foundation (FWF) under Project SFB F1302.

Definition 2. A substitution 6 is more general than o on a finite set of variables
V modulo a theory E (6 <Y o) iff there exists a substitution X such that

— for all' T € V, the binding T < does not belong to \; there exist terms

t1,-..ytn,81,...,8n, n >0, such that To = t1,...,tn, TOX = 51,...,5n, and
for each 1 < i < n, either t; and s; are the same sequence variables, or
ti ~g Si;

— forallx €V, xo ~g z6A.

Ezample 1. {T « g} jéf,y} {T « a,b, T < a,b}, but not {T + 7} jéi,y}
{ZT+,7+ }.

Flat theory, or shortly F-theory, is defined as E = { (%, f(¥),Z) ~ f(T,Y,2)};
f € Friex is called a flat flexible arity symbol. It should be noted that although
(free or flat) unification with sequence variables and flexible arity symbols looks
similar to A-unification, there are essential differences illustrated by the following
example (even without sequence variables). Let f(z, f(y,2)) = f(f(a,b),c) be
a unification problem, where x,y, z are individual variables, and a, b, ¢ are con-
stants. For associative f the minimal complete set of solutions is the singleton
{{z + a,y < b,z + c}}; for free flexible arity symbol f the problem has no so-
lution; and for flat flexible arity f there are 23 substitutions in the minimal com-
plete set of solutions: {{z + f(),y + f(),z + f(a,b,0)}, {z + f(),y + a,z «
Fa,b,0)}, {o « f0,y « f(a),z « f(a,b,0}, {a « 0,y + f(a,b),2 « c},
{z « f0,y < [(@,b),z & O} (& + [0,y « f@be),z + fO}, {z «
ay « f0,2 « f0,0}, {z « f(@)y « f0,z « f(bc
bz ¢ ch {z — a,y f(B),2 « ¢}, {z a,y « bz + f(O)}, {o « ay
f0),2 « F@} {z « f(a)y « bz « ¢}, {z « f(a)y « [(),z « c},
{2 fl@),y « bz« f(Oh {o « f(@)y «),z « f(O)}, {& « a,y
f(bac)az — f()}a {.’L’ A f(a)ay « f(bac);z — f()}a {.CL' A f(aab)ay « f(),Z «—
ch {z « f(ad)y « F0,2 « O} {o « flab)y « ez « fO} {o «
F(@,b),y £(0)2 — FO, {o « Flab,0)y « £0,2 < FO}}.

Below we consider general F-unification and F-matching, i.e., besides flat
flexible arity symbols we have also free fixed and free flexible arity symbols.

) {r & ay «

2 Unification and Matching

General flat unification is decidable. It can be proved using the Baader-Schulz
method [1], reducing a flat unification solvability problem to a combination of
solvability problems of word equations (with certain additional restrictions) and
syntactic unification. For the details we refer to [4].

Flat unification is infinitary. Unification procedure is designed as a tree gen-
eration process, in the breadth-first manner. Each node of the tree is labeled
either with a unification problem (kept in flattened form), with T, or with L.
The root node is labeled with the unification problem to be solved. T and L are
terminal nodes. Before expanding a non-terminal node, we first check whether
the problem attached to the node is solvable. Children of the root are obtained

by projection (elimination of all possible subsets of the set of sequence variables
on the root note). Children of other non-terminal nodes are obtained by trans-
formation rules. Due to a lack of space we do not describe those rules here,
neither more details about the procedure. They can be found in [4]. Unifiers
are constructed by composing substitutions on the edges of branches with the
terminal node T. The procedure enumerates minimal complete set of unifiers.

We give a bit more details about general F-matching, since it has some inter-
esting properties and applications. Decidability and the existence of a minimal
set of matchers for a general F-matching problem follows from the corresponding
properties of general F-unification. Interestingly, it turns out that F-matching
is infinitary, as the following simple example illustrates:

Example 2. The minimal complete set of solutions for the F-matching prob-
lem f(z)<%f(a) with flat f is {{T < a}, {T « f(@)}, {T < a,f0}, {ZT «
f(a), FO} AT « fO,a}, {T < F(, fa)}, {T < f(,a, FO}, .-}

F-matching procedure is designed like the one for F-unification — as a tree
generation process. It enumerates the minimal complete set of matchers®. Trans-
formation rules for F-matching are given in Appendix. Each of them has one
of the following forms: 9T ~» L or M ~ ((M1,01),...{My,,0,)), where I is
a matching problem, each of the successors IM; is either T or a new matching
problem, and each o; is a substitution used to generate IM; from .

The rules involving f() in the substitutions are the reason why F-matching
is infinitary. However, they are indispensable for completeness, as the following
examples illustrate:

Ezample 3. The unique solution {z + f()} of f(z,a) <% f(a) with flat f can
not be computed unless the transformation substitution {z «+ f()} is allowed.

Ezample 4. The transformation rule {Z < f(),Z} is crucial for computing a
unifier {Z + f(),a} of f(7,9(Z)) <% f(a,9(f(),a)), where f is flat and g is
free. The derivation is shown on Fig. 1. Composing substitutions top-down on
the edges gives the solution.

3 Flat Matching in MATHEMATICA

MATHEMATICA system [6] implements matching modulo flatness. The algorithm
itself, to our knowledge, is nowhere described, but is briefly explained on exam-
ples in [6]2. However, it is not hard to observe that the algorithm is not com-
plete. It does not match, for instance, f(x,a) to f(a), f(z,g(x)) to f(a,g(a)),
or f(z,9(T)) to f(a,g(f(a))), where f is flat and g is free.

! To ensure minimality, during the tree generation process an additional effort is
needed each time when a new solution appears: to delete from the already computed
(finite) set of solutions those substitutions which violate minimality condition.

2 In fact, this is the case not only with this particular algorithm, but, in general, with
the evaluation semantics of the programming language of MATHEMATICA. See [3] for
more discussion on this topic

) <& fla, 9(£(),))

l {z < f0,7}

F(@ 9(f0),®) <F fla,9(f(),a))
l {T < a}

f0

f(@,g9()

f(a, ,a)) <& f(a,9(f(),a))

T
Fig. 1. Computing a solution for f(Z, g(Z)) <= f(a,g(f(),a)).

The main difference between the F-matching procedure and the MATHE-
MATICA flat matching is that the latter does not consider transformation rules
involving f(). It makes MATHEMATICA flat matching finitary.

Ezample 5. Let f(T <% f() be a matching problem, where f is flat. The F-
matching procedure enumerates the infinite minimal complete set of matchers
Hz « 1L{ZT « fOL{Z « fO,f0},--.}- MATHEMATICA flat matching algo-
rithm returns a single solution {Z + }}.

Another difference is in the case where an individual variable z matches a
single argument s; in a term with a flat head f. The F-matching procedure
returns four substitutions as it is shown in the third case of Eliminate on Fig. 2,
while the MATHEMATICA matching algorithm chooses only the last two of those
four. If in the same situation we have a sequence variable z, the F-matching
procedure tries 9 different ways to resolve the case (the fourth rule of Eliminate
on Fig. 2), while MATHEMATICA would choose only the second and sixth.

On the other hand, MATHEMATICA can verify that each solution computed
by the F-matching procedure is correct, e.g., it sees f(z,g(z)){z + a} and
f(a,g(a)) as identical expressions, although, as it was already mentioned, the
MATHEMATICA matching algorithm can not compute the substitution {z < a}
that matches f(z,g(z)) to f(a,g(a)).

To summarize the similarities and differences between the F-matching and
flat matching in Mathematica, on Fig. 4 we give rules that can simulate the
behavior of MATHEMATICA flat matching. Note that in the tree generation pro-
cess we do not need to check solvability at the nodes anymore. For a given
matching problem, the output of the procedure involving the rules on Fig. 4
would be identical to the set of all possible matchers Mathematica matching al-
gorithm computes (One can see all the Mathematica matchers using the function
Replacelist, for instance.).

However, when MATHEMATICA tries to match patterns in the left hand side of
its assignments or rules to some expression, from all possible matchers it selects
the first one it finds®>. We can simulate also this behavior, imposing an order
of choosing successors in the EliminateM step and in the projection phase, and
stopping the development of the tree whenever the first solution appears.

4 Conclusion

We considered flat theories with sequence variables and flexible arity symbols.
The interesting feature of such a theory is that it has decidable infinitary general
matching and unification. We gave a sketch of a procedure that enumerates
a minimal complete set of solutions and discussed a relation of the matching
procedure with the pattern matching algorithm of MATHEMATICA.

5 Acknowledgements

I am grateful to Prof. Bruno Buchberger who supervised this work, and to Mircea
Marin with whom I had useful discussions.

References

1. F. Baader and K. U. Schulz. Unification in the union of disjoint equational theories:
Combining decision procedures. Journal of Symbolic Computation, 21(2):211-244,
1996.

2. F. Baader and W. Snyder. Unification theory. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, volume I, chapter 8, pages 445-532.
Elsevier Science, 2001.

3. B. Buchberger. Mathematica as a rewrite language. In T. Ida, A. Ohori, and
M. Takeichi, editors, Proceedings of the Second Fuji International Workshop on
Functional and Logic Programming, pages 1-13, Shonan Village Center, Japan, 1-4
November 1996. World Scientific.

4. T. Kutsia. Solving and proving in equational theories with sequence variables and
flexible arity symbols. Technical Report 02-09, RISC, Linz, Austria, 2002.

5. M. Marin. Introducing sequentica, 2002. http://www.score.is.tsukuba.ac.jp/
“mmarin/Sequentica/.

6. S. Wolfram. The Mathematica Book. Cambridge University Press and Wolfram
Research, Inc., fourth edition, 1999.

The Sequentica package [5] allows the user to gain more control on the selection of
matchers.

A Transformation Rules

Success:

Failure:

Split:

Eliminate:

tgt ~ (T, €)).
et~ (T, {z +t})).

FOpf(tr,E) ~ L.
Ft,H<L ()~ L
f(t1,t)<<;;~f(81, §) ~ —L:
C1<<?F62 ~ 1

1 (£) < pha(3) ~ L,
h()<<ph(t1,) > J_
h(t,)<<Fh()

h(tla)<<Fh(sla ~) ~ J—:

hi(t1, t)<<F}~l1(S1, §) ~
((hl (7'1, t01)~<<;7h1 (ql, §), Ul)a
B (hl(’l"k, tUk)<<}h1 (Qk, g)a O'k))

F@,H<KEF() ~ (fEo)<Ff(),0)),

F@D<EF() ~ (fEo1) <L f(),01)),

({f(@,to2)<E£(), 02)),

if ¢4 ¢ Vind U Vseq.
if t1<<;-‘31 ~ 1
lf C1 7& C2.

if h1 # ha.

if t1<<3;sl ~s]

if ¢4 ¢ Ving U VSeq and

h<ps1 ~ (M eqr, o1),
Tk, Ok))-
where o = {z + f()}
where o1 = {Z «+ f()},
02 = {f — f():f}

(@,)< f(s1,8) ~ ((f(fo1)<F f(s1,3), o1), where o1 = {z + f()},

(o)< £(3), 2),
(i) < (3), o),
(f(x,ta4)<<pf(§), U4>:

o2 = {z + s1},
o3 ={z « f(s1)},
o4 ={z + f(s1,2)}.

f(fv £)<<}77f(31: ‘§) ~ ((f(fo’l)<<'}‘f(31: 5)1 0'1): where 01 = {E <« f()}:

(i) <5 F(3), 02)
((is) <), o),
(f(Ez t~0'4)<<Ff(S), U4)7
(f(fa €U5)<<Ff(511)a)
(f(@,106)<p f(5), o),
(f(@,t07)<F£(3), o7),
(f(f7 EGS)<<Ff(S)a 08)7
(F(Z,t09) <5 £(5), 09)),

o2 = {f — 81},

o3 ={T < f(s1)},
os ={T < f(s1,7)},
os ={z + f(), D)},
06 = {f — sl,f},

o7 = {T « s1, f(T)},
g8 = {f A f(Sl),E},

o9 = {T « f(s1), f(@)}

Fig. 2. F-matching. Transformation rules. f and 3 are sequences of terms. h € Frix U
Frlex 1S free. hi, ha € Frix U Friex can be free or flat. f € Friex is flat.

Eliminate (cont.): f(t,5)<5 f(t,5) ~ ({(f(E)<FF(3), €)).
h(t17£)<<?Fh(31:§) ~ ((g(Ea)<<7Fg('§)a U)): if t1<<?F31 ~ ((T: J))

h(z, t~)<<%h(sl,§) ~ {{g(fo1) K rg(3), o1), where oy = {T + s1},
(9(%, t02)<Fg(3), 02)), o2 = {T < s1,T}.

Fig. 3. F-matching. Transformation rules (cont.). f and § are sequences of terms. h €
Frix U Friex is free. g € Friex is a new free symbol if h € Frix in the same rule,
otherwise g = h. f € Friex is flat.

SuccessM: t<gt ~ ((T, €)).
et~ (T, {z < t})).

FailureM: fO)<Ff(t1,) ~ L.
Ft, D<K F() ~ L

f(t11£)<<?Ff(317 §) ~ 1, if t1<<?F31 ~ L.
c1<hey ~ L, if ¢1 # co.
hi()<5ha(3) ~ L, if hy # ho.

h()<Eh(t1,E) ~ L.
h(t1,£)<ph() ~ L.

h(t1, £)<K5h(s1,5) ~ L, if tyghsy ~ L.
SplitM: hi(t1, f)<<}h1 (51,8) ~ if t1 ¢ Vina U Vseq and
((h1(r1,t01)<ph1(q1,8), o1), t1<ps1 ~ ((n<paqi, 1),
= ~ ?
oy (s tor) b (a8, 8), o)) - TGk, O))).

EliminateM: f(t,£)<f(t, 5) ~»
(FO<F(3), &)

f(a, 6)<5 f(s1,8) ~» where
(fEo)<Ff(3), 1), o1 ={z « f(s1)},
(f(2,102) <L f(5), 02)), oy ={x « f(s1,2)}.

f@,H<Ef(s1,3) ~ where
((fEo1)<Ef(5), o1), o1 ={T < s1},
(f(@,102)<E f(5), 02)), oy ={T < 51,7}

h(t1,£)<%h(81,§) ~ if t1hs1 ~ (T, a)).
((9(to)<Fg(3), o)),

h(Z, 1)< ph(s1,3) ~ where
{({9(to1)< g (3), a1), o1 =A{T < s1},
(9(T, to2) <7 g(3), o2)), o2 = {T < 51,7}

Fig. 4. Transformation rules to simulate MATHEMATICA flat matching. { and § are
sequences of terms. hi, ha € Frix U Friex can be free or flat. h € Frix U Friex is free.
g € Friex is a new free symbol if h € Frix in the same rule, otherwise g = h. f € Friex
is flat.

