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Abstract
This paper presents some fundamental aspects of the design and the im-
plementation of an automated prover for Zermelo-Fraenkel set theory
within the well-known Theorema system. The method applies the “Prove-
Compute-Solve”-paradigm as its major strategy for generating proofs in
a natural style for statements involving constructs from set theory.

1. Introduction

The set theory prover in Theorema adapts the “Prove-Compute-Solve” (short:
PCS) proving strategy for proofs containing language constructs from set theory.
The PCS paradigm was introduced originally in (Buchberger 2000) and it has
already been applied successfully for proofs in elementary analysis in (Vasaru-
Dupré 2000). The main strategy in a PCS-oriented prover is to structure the
proof generation into phases of

e proving (P), i.e. application of inference rules for propositional connectives,
the standard quantifiers from predicate logic, and for theory-specific lan-
guage constructs,

e computing (C), i.e. rewriting w.r.t. formulae in the knowledge base,
e solving (S), i.e. instantiation of existential variables.

Having the computer algebra system Mathematica in the background of Theo-
rema, we aim towards applying known solution methods from computer algebra
during the S-phase, such as the Grobner bases method for systems of algebraic
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equations, see (Buchberger 1985), or Collins’ CAD method for systems of in-
equalities over the reals, see (Collins 1975).

The current design of provers in the Theorema system requires a so-called “user
prover” to be composed from “special provers”, see (Tomuta 1998). A special
prover consists of a collection of inference rules, whereas the user prover guides
the strategy, through which the proof search procedure applies the inference rules.
The P-C-S structure of the set theory prover is reflected in the composition of
the set theory user prover from several special provers implementing the ‘P’
‘C’, and ‘S’ phase, respectively. It consists of a set theory proving unit handling
set-theory-related connectives and quantifiers in the goal or in the knowledge
base, a set theory computing unit responsible for rewriting and simplification,
and a set theory solving unit capable of instantiating existential goals resulting
from unfolding definitions for set operations. In addition to these set theory
specific components, the set theory prover re-uses several special provers already
available in the Theorema system.

Following the philosophy of most of the Theorema provers, the set theory
prover aims at generating automated proofs in a human-like natural style. Since
many mathematicians are used to building up their theories in the frame of set
theory, computer support for doing proofs in this area of mathematics is a basic
ingredient for computerized mathematics. In our experience, the acceptance of
machine-generated proofs depends heavily on the readability of the proof for
a human. In the automated theorem proving community, however, this aspect
has not played a central role for a long time. Of course, as long as one does
not display the proof, one can expand set-theoretic language constructs into
first-order predicate logic and then apply powerful first-order theorem provers,
like Otter, Vampire, or SPASS. The Theorema set theory prover, on the other
hand, implements proof strategies applied by humans in an attempt to generate
machine-proofs in a style acceptable by a human. Apart from others, this will
have considerable impact on computer-aided math education.

The description is structured as follows: Section 2 describes the theoretical
basis upon which the set theory prover is built, Section 3 explains the interplay
between user prover and special provers in the Theorema system, Section 4
introduces the set theory proving units STP and STKBR, Section 5 describes the
set theory computing unit STC, Section 6 presents the set theory solving unit
STS, and finally we conclude with some examples of proofs generated by the set
theory prover in Section 7.

2. The Theoretical Basis of the Set Theory Prover

The use of set theory in Theorema is not tied to one particular axiomatization
of set theory. Instead, we introduce “sets” on the level of the language by pro-
viding the braces ‘{’ and ‘}’ as a flexible arity matchfix function symbol used
for constructing finite sets, the set quantifier as a means for describing sets by
a characteristic property, and several other language constructs commonly used
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in mathematics, such as ‘C’ (subset), ‘U’ (union), ‘0’ (intersection), or ‘\’ (set

difference), see (Kriftner 1998) for an overview on supported set syntax. Provid-

ing these language constructs, we implicitly assume that sets such as {a}, {1,b},

{z | P,} (the set of all x satisfying P,), or {7, | P,} (the set of all T}, when x
X X

satisfies P,) actually exist, which is typically guaranteed by some axioms of the
underlying set theory. There are different approaches, in the Zermelo-Fraenkel
axiomatization (ZF) as described e.g. in (Ebbinghaus 1979) the existence of the
singleton {a} follows from an axiom on power sets and the existence of {1, b} fol-
lows from the existence of singletons together with an axiom on unions, whereas
in an axiomatization given in (Takeuti & Zaring 1971), which also follows the
spirit of ZF, the existence of {1,b} is guaranteed by an axiom of pairing and the
singleton {a} is then just defined to denote the pair {a,a}. (Shoenfield 1967),
also following ZF, shows the existence of the pair {1, b} from an axiom on power
sets and defines the singleton {a} to stand for {a,a}.

A Theorema language construct that deserves closer inspection in this context,

is the so-called set quantifier, i.e. the expression {x | P,}, which allows one to
xr

define a set from a property P,. In the literature, this is often addressed as the

abstraction of a set from a property and it goes back to G. Cantor, the founder

of modern set theory. As explained in (nearly) every introductory course in

mathematics, the unrestricted use of abstraction soon leads to contradictions

such as the well-known Russell paradox. With R denoting the “Russell-set”

{z | z & x} it is straight-forward to derive the contradiction R € R < R ¢ R.
x

Different axiomatizations of set theory provide fundamentally different solutions
how to avoid Russell’s paradox (and others):

e ZF set theory restricts abstraction to what is called separation. Roughly, it
requires the structure z € S A Q for P, in an abstraction {z | P,}, which
X

disallows constructions like R.

e Von-Neumann-Gddel-Bernays’ axiomatization (NGB) of set theory, see e.g.
(Bernays & Fraenkel 1968) or (Quine 1963), distinguishes between sets and
classes and allows the membership predicate only for sets. Russell’s paradox
is avoided by showing that R is not a set an therefore R € R is not a well-
formed assertion.

e Russell himself introduced type theory, where membership is only allowed
for sets of different type, see (Russell & Whitehead 1910). R € R is not
allowed on the grounds that R and R are not of different type.

The Theorema system as such does not force the user into one of the above
mentioned axiomatizations. The Theorema language allows unrestricted use of
both the set quantifier and the membership predicate, therefore allowing both
the definition of R and formulae such as R € R < R ¢ R. The set theory prover,
however, relies on ZF and therefore refuses to apply inference rules on formulae
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involving constructs such as R. In other words, the Theorema set theory prover
does not support all of what the Theorema language offers for set theory. If a
user desires to work e.g. in NGB set theory the Theorema language would allow
this but this set theory prover would not support it.

ZF is an axiom system that guarantees the existence of certain sets. Based
on these axioms, several new functions and predicates useful for set theory can
then be introduced by explicit definitions. In the sequel, we will list those axioms
and definitions from ZF, on which the inference rules of the set theory prover
rely. Furthermore, we introduce some convenient abbreviations for commonly
used formulations in set theory supported by our prover. The Theorema set
theory prover should, thus, be a useful tool for mathematicians embedding their
work in some set theory that is consistent with these axioms, definitions, and
abbreviations.

AXIOMS 2.1 (SEPARATION AXIOMS): For every formula' P, and every S, s.t.
x 1s not contained in S and S is not contained in P,, we have an ariom

dVe ez« axeSAP, .

z T

The separation axioms?® allow us—for any formula P, and any term S (fulfilling
the side-conditions given in Axiom 2.1)—to define the set containing all x of
S such that P,, see (Shoenfield 1967). The Theorema syntax for this set is

{z | P,} (alternatively {z € S | P,}) and from Axiom 2.1 we get
€S

V(re{z |SPw}<:>:v€S/\P$). (1)

x xE

AXIOMS 2.2 (REPLACEMENT AXIOMS): For every formula Q, and every S, s.t.
S is not contained in Q),, we have an axiom

ViaV(yeze Q) = 3IV(3I Q.=y<z) .

T zy z Yy xES

As a special case, let (0, be defined as P, Ay = T, for some formula P, and
some term 1), and let S be some term not contained in (),. Then the respective
replacement axiom justifies the definition of the set of all T, for all z € §
satisfying Py, see (Shoenfield 1967). In Theorema we may write {7,, | P,} and

TES
from Axiom 2.2 we get

Viyel{l, | P} 3 P.ANy=T,) . (2)
y TES z€ES

1P, indicates that the variable x occurs free in P,. The expression P, may contain other
free variables than z as well.

2In the literature, the separation axioms are sometimes referred to as “subset axioms”.
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At first sight, the construct {7, | P,} appears to cover also sets of the form

z€S
{z | P}, just take T, = x. However, both the separation axioms and the re-
z€eS
placement axioms are needed for the existence proof of {7, | P,}, see (Shoen-

€S
field 1967), thus, the separation axioms cannot be omitted.

(1) and (2) define membership for special variants of the Theorema set quan-
tifier that can safely be used in ZF. Based on the set quantifier, we can now give
the definitions used in the set theory prover. The existence of the sets defined
in the sequel is guaranteed by axioms of ZF, see e.g. (Shoenfield 1967) for the
justifications.

From now on, if not stated otherwise, we want to use P,, Q,, R,, and C, as
typed variables on the meta-level to denote formulae (with z among the free
variables), all other letters shall denote terms (with free variables as indicated
in the subscript position). As long as the existence of the sets {x | P,} and

X

{T, | P} is guaranteed by some axiom, we generalize (1) and (2) as follows:
X

V(ze{x J|C P} <= P,) (3)

Vye{l, | B} <= 3P, Ny="T,) . (4)
Y T x

The latter is supported even in the more general case of a multiple range that
binds more than one variable simultaneously. The multiple range in the set quan-
tifier translates literally to the respective multiple range in the existential quan-
tifier, i.e.

Vye{Tv,.0n | Poywnt= 3 Poan NY=Ty  2.) -

Y L1y Iy L1y

It is convenient to allow also an additional condition in the set quantifier. We
follow the convention to use
{... | P} (5)
xr

Cz

as an abbreviation for

(o [CanP) 6)

We do not generalize the inference rules in the set theory prover to cover set
quantifiers with conditions, we rather convert any expression of the form (5) in
the goal or in the knowledge base into the corresponding form (6), when formulae

are passed to the prover?.

3Conditions in set quantifiers with multiple ranges are handled analogously.
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DEFINITION 2.1 (SUBSET, SET EQUALITY):

SWCS?i=V(zes=zes?)

T

S =8@ =V (zec SV e res?)

T

DEFINITION 2.2 (EMPTY SET, SET DIFFERENCE):

0:={x |z #x}
SO\ S = {z|ze SV Az ¢gSs?}

DEFINITION 2.3 (FINITE SET CONSTRUCTION): For any n > 1:

(s . 8y ={z|z=8Vv.. . ve=5M}

DEFINITION 2.4 (UNION, INTERSECTION, PRODUCT): For any n > 2:

SOy...usS™W.={z|zeSVv...vezesm

SON. .. .NnS™W.={z|zeSYUA...Azec S

SWox xS =Ly, xn) | e SYA Az, € SMY

(11)

(12)

(13)

(14)

(The notion (...) is used for finite tuples provided as basic data type in Theo-
rema. We do not model tuples within set theory but we use built-in knowledge
about tuples provided by the semantics of the Theorema language. The logical
operators ‘A’ and ‘V’ are assumed to be associative and commutative, thus, the
set operators ‘U’, ‘N, ‘x’ and the finite set construction are associative and

commutative “by definition”.)

DEFINITION 2.5 (UNION, INTERSECTION, POWER SET):

US={z] 3 z€s}
x SES

ﬂS:z{x| V z€s}
T s€ES

P[S] := {xlx C S}
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Frequently used combinations of |J and () with the set quantifier can conve-
niently be abbreviated when introducing | J and () as quantifiers.

J S; abbreviates U{Sx | Cp} (18)
zel zel
Ce

() Sz abbreviates m{Sx | Cy} (19)
zel zel
Ce
When using the Theorema set theory prover one accepts the above definitions
and assumes an underlying axiomatic system—such as ZF-—that guarantees the
existence of all these sets. We do not invent a new set theory that promises
to be better suited for automated theorem proving, an approach that is taken
elsewhere, e.g. in (Formisano 2000).

2.1. Preliminaries on Terminology

We will use the following terminology in the description of the proof modules:
a proof situation K + G is made up from a knowledge base of assumptions K
and a goal GG, and it should be understood as an abbreviation for the phrase:
“We have to prove G from K”. Typically, the goal will be a single formula of
the Theorema language, whereas the knowledge base consists of a collection of
formulae, called the assumptions.

Now, the task of the special provers is essentially the execution of individual
proof steps that reduce the proof situation towards terminal proof situations,
from which proof success or failure can easily read off. The rules applied by
the special provers guiding the reduction of proof situations are called inference
rules. Thus, an inference rule turns a proof situation K + G into a proof situation
K'F G with a new goal G’ and a new knowledge base K'. In the description of
inference rules, we will denote an inference rule named ‘I’ transforming K -+ G
into K' - G’ by

I K F &
" K F G
(read as: “The rule ‘T’ justifies a proof step to reduce the proof of G' from K
to a proof of G’ from K'”). This notation is similar to notations used in logic
for describing inference rules in formal proof calculi (e.g. the natural deduction
calculus or the Gentzen calculus). Certain similarities to these formalisms are
desired, but we use it purely as a symbolic description for proof steps, and we
do not refer to any meaning of the symbols in any known logic system.

We give an example of a well-known inference rule from the natural deduction
calculus for predicate logic written in this style*:

4P, z, stands for P with each free occurrence of x substituted by zo.
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K b P, |
ArbitraryButFixed : " |- V P, (where xg is a new constant)

The rule ‘ArbitraryButFixed’ tells that, in order to prove V P, (from K) it

suffices to prove P,_,,, (from K) for a new constant x;.
3. How Provers are Setup in Theorema

Proof search procedure

Proof object
r—-——r - — — — — |
| @
| Special Prover A Special Prover P
| I
bl E) 2 b |
| K,FG K,FG
1 1 1 1
| Iy —— I —— | o)
K,+-G K,FG
| 14y 14y |
|
I K,-G, . KtG, |
" K,+G > K,+G |
| oG 2 G I
: Special Prover Q Special Prover Z | |
I |
| ) K,,D—G’l . KI’D—G’, | current proof situation
I " UK,FG, - > K,-G, l
| |
| K,FG K,FG |
: " K,G, - > K,FG, |
| |
| |
|

Figure 1: Proof search and prover composition

The Theorema user interface provides the command
Prove| G, using — K, by — M],

which lets Theorema prove the goal GG using the knowledge base K by the
method M. In the Theorema terminology, we call the available prove-methods
user provers. A user prover is a program that sets up a particular configuration
grid (see Figure 1) of special provers and then passes control to Theorema’s
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global proof search procedure. The proof search procedure manipulates the global
proof object with the help of the user prover chosen in the Prove-call. The proof
object has a tree structure with each node containing one proof situation. The
proof search procedure maintains a current proof situation, which specifies the
node that is to be manipulated next. Initially, the proof object consists of only
the root containing the current proof situation given by the user. Each proof
tree manipulation is the augmentation of the proof object at the current proof
situation by one or more new nodes, whose contents depend on inference rules
found by the proof search procedure in the special provers. Figure 1 explains the
main phases of one proof step:

1. The proof search procedure extracts the current proof situation K, - G.
from the proof object.

2. Mathematica’s pattern matching mechanism is used to select appropriate
inference rules in order to reduce the current proof situation. Inference rules
are implemented as Mathematica functions with goal, knowledge base, and
“additional facts” (see Section 4) as input and a new node to be inserted
into the proof tree as output. In this phase, the setup of the special provers
is crucial: The special provers in the first row are tried left to right, in each
prover the rules are tested top to bottom. The first rule matching K. - G,
will be selected. If none of the special provers in the first row applies, the
special provers in the second row are tried again left to right / top to
bottom. From each applicable prover, the first rule matching K, - G, will
also be selected. The implementation of the user prover arranges the special
provers in the grid, the implementations of the special provers arrange the
inference rules within the special provers. Thus, the experience of the prover
programmer is reflected in a smart choice of inference rules.

3. All inference rules selected in the previous phase will be applied in this proof
step to the current proof situation resulting in new nodes to be inserted into
the proof object.

4. If there is more than one new node, each node is assigned a new branch in
the proof object. Branches reflect alternative proof attempts in a proof.

5. Finally, the current proof situation is stepped to the new node on the left-
most new branch.

For details on the organization of the proof search within Theorema we re-
fer to (Tomuta 1998). A concrete example demonstrating the process shown in
Figure 1 will be given in Section 4.1. In its current status, the proof search is
completely automated with no possibility for user-interaction. We are investigat-
ing possibilities how to incorporate user-interaction into the existing proof-search
environment, for future versions of the Theorema system, see (Piroi & Jebelean
2002). In the sequel, ‘set theory prover’ will refer to the user prover for set the-
ory. In the subsequent sections, we will describe only new special provers that
have been developed for set theory. The set theory prover utilizes, of course,
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also other special provers available in Theorema, e.g. BasicND for basic predi-
cate logic reasoning, QR for rewriting w.r.t. quantified equalities, equivalences, or
implications in the knowledge base, or CDP for treatment of case distinctions, see
(Buchberger & Vasaru 2000), (Vasaru-Dupré 2000), and (Windsteiger 2001a).

4. STP and STKBR: The Set Theory Proving Units

The PCS proof strategy imposes a structure on proofs as alternating phases of
proving, computing, and solving, as already described in Section 1. Inference
rules for set theory specific language constructs are provided in the two new
special provers STP and STKBR. During the Prove-phase, we alternate steps of
reducing the goal with steps of expanding the knowledge base. While STP reduces
set theory specific language constructs in the proof goal, STKBR expands them in
the knowledge base. The set theory prover arranges both special provers in the
first row of the configuration grid.

4.1. Inference Rules used in STP

Set theory specific goal reduction is implemented as a special prover named STP.
The inference rules differ mainly in the syntactic patterns for the proof situ-
ation. A few inference rules are influenced in addition by global variables, by
which, for instance, certain inference rules can be deactivated. Some strategies
depend on the proof progress stored in STP’s local proof context, which is part
of the “additional facts”-parameter in the implementation of inference rules, see
Section 3.

The inference rules are grouped into rules for membership, rules for inclusion,
and rules for set equality. The rules for membership cover proof situations, where
the outermost symbol in the proof goal is ‘€’. There is at least one inference
rule for each “kind of set” introduced in Section 2, in some cases we provide
specialized rules in order to offer special treatment for special cases. We show
some of the membership rules as they are used in STP.

MembershipSeparation: - ¢ ¢ {z | P}
TES

We give an impression of what the result of this inference rule is in a concrete
example. If, during a concrete proof, the proof search procedure arrives at a proof

situation, where we need to prove a € {x | z < 10} w.r.t. some knowledge base
rES

K, then the special prover STP would be applied in the following format:
STP[LIf["G",a € {z | z < 10}, finfo]]], sasml[K], af] (20)

xrES

where olf|...] represents the proof-goal (labelled “G”), sasml[K] is the current
knowledge base, and ‘af’ are the additional facts containing among others STP’s
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local proof context. Note, that this is not how the user needs to call a prover!
The actual application of the special prover is based on internal data structures
such as «lf[...] or «finfo[...], which are built-up automatically during the proof
search. The interface between the user and the internal data structures as they
show up above is provided through the user prover and the Prove-call as shown
in Section 3.

For readers familiar with the Mathematica programming language we show
part of the actual implementation of the inference rule ‘MembershipSeparation’
as a Mathematica function®

STP[ W[ 1, t_ € {y- |S P_}, i], a_easml, af_|:= (program)
y-€S_
The pattern in this function definition obviously matches the function call (20),
thus, the rule ‘MembershipSeparation’ applies, and the Mathematica program
(program) will return the new node

{” AndNode”,
{”MembershipSeparation”, eusedFormulae[’ G"],
«generatedFormulae[ «lf[’G"””, a € s A a < 10, finfol]]]},
{{”ProofSituation”, «lf["G”, a € s A a < 10, «finfo[]], sasml[K], af}},

{}, {}, "pending”}

The proof search procedure will insert this node into the Theorema proof object.
The node contains enough information in order to later simplify a successful
proof (object) and to generate the natural language text from it. Note, however,
that it does not contain the natural language text representation itself! When
later generating the proof presentation from a proof object, this step of the proof
would read as follows:

In order to prove (G) we have to show:
(G') a€esAa<l10.

The correctness of the inference rule ‘MembershipSeparation’ follows immedi-
ately from consequence (1) of the separation axiom 2.1. Some of the inference
rules, however, condense several inference steps into one compact rule to be ap-
plied. In these cases, we provide hand-proofs for the correctness of the respective
rules®. An example of such a rule is the elimination of the union-quantifier in

5The Theorema language parser is applied to formula expressions in a prover program

before the program is processed further. This allows to use nicely formatted expressions such

as ‘t- € {y- |S P_}’ in a program, which hides internal data structures to some extent from
€

the prover programmer.

6Ideally, the Theorema Predicate Logic Prover should be capable of producing these proofs
when having the definitions from Section 2 in its knowledge base. The correctness assertion for
an inference rule is, however, always higher-order. Moreover, some of the inference rules, e.g.
‘MembershipSeparation’, require formula manipulations such as variable substitution available
in the object language. In its current status, we neither have a higher-order predicate prover
nor does the Theorema language provide the necessary language constructs on the object level!
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the goal. Simply using abbreviation (18) would lead to an inference rule

K F teJ{S: | Ci}

TES
Membership-U: [+ ¢¢ (J S,
TES
Cy

The STP prover, however, implements the rule

K+ 3 (teS,AC,)

xreSs
MembershipUnionOf : " | ¢ ¢ U S,

ZEs
Ce

‘MembershipUnionOf’ reduces the proof of t € J S, to prove 3 (t € S, ACy).

TES xES
Cq

Proof: Assume 3 (t € S, A Cy), thus t € S, A Cy, for some constant xy € s.

HASK]

With z := S, we can infer from this t € 2 A Cp; A 2 = Sy, hence

(T tezANC,AN2=5,) . (21)

zZ TES

Separating the quantifiers in (21) gives 3 (t € 2z A 3 (C, Az = S;)), which, by

TES

(2), is equivalent to 3 (t € z Az € {S; | C,}). By (15) this is equivalent to

TES
te U{S: | C.},thuste |J S, by (18). O
xES xrEes
Cy

As special rules for membership, we provide e.g. for n > 2

t#£8@ t£8M K + t=50
K F te{sW s® . sy

MembershipFinite :

tgS? . tgSM K - tesh
K F te|{sW,s® .. smy
Both set inclusion and set equality reduce, by Definition 2.1, to membership.

Additionally, we provide special rules for special cases in order to reduce the
search depth in the proof search procedure, e.g.

MembershipUnion :

proved
ConjunctionSubset : | {z]...Az€SA...}CS
X

. PLL‘—):C()’J;OEX’K F :EOEY/\Qy—):CO
SubsetSeparation : K+ {z ] PYC{y | Q,}
zeX Yyey
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(where xy is some new constant). For the empty set, the expansion of Defini-
tion 2.2 would result in “unnatural” proof steps, hence we provide special rules
like e.g.
proved
EmptySetSubset : [ | () C {T, | P}
X

K F =P T—T0
EqualsEmptySet : ¢ {T, | P} =0 where x( is some new constant.
T

For more details and a complete listing of inference rules used in STP we refer to
(Windsteiger 2001a).

4.2. The Structure of STKBR

The special prover STKBR (for Set Theory Knowledge Base Rewriting) uses a level
saturation technique, see also (Konev & Jebelean 2000), to infer new knowledge
from the knowledge base using inference rules for set theory specific language
constructs. It differs from most of the other special provers in the Theorema
system in that it does not implement inference rules as separate Mathemat-
ica functions differing in the argument patterns. This “classic” implementation
scheme for Theorema special provers as described in Section 3 is not suitable
for an efficient implementation of a level saturation mechanism. Since it would
allow each inference rule to infer only one new formula, it would result in massive
growth of the required search depth and a considerable administrative overhead
in the proof search.

The STKBR prover, instead, is just one Mathematica function implementing a
mechanism that uses inference rules n parallel in order to generate all possible
new formulae during only one application. It is considered to be applicable to
the current proof situation as soon as new formulae occur in the knowledge base
compared to the previous run. This check is done with the help of an entry in
the local proof context passed among the “additional facts”, see Section 3. The
saturation of the current knowledge level happens in two phases:

1. New formulae are simplified using built-in semantic knowledge available in
the Theorema language semantics’, see also STC in Section 5. Application
of built-in semantics can be suppressed through a user option in the Prove-
call.

2. New knowledge is inferred from the simplified knowledge base. Inference
rules as used in STKBR are implemented as Mathematica functions taking
formulae as parameters returning some internal data structure containing

"Here we see that STKBR contributes to both the P- and the C-phase, hence, we should not
call it a pure proving unit! For reasons of efficiency we allowed this mixture of P- and C-phase
in one special prover in the current implementation.
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Figure 2: Schematic flow of the STKBR level saturation

the new formulae inferred from the given ones together with additional in-
formation for later proof text generation. These inference rules are grouped
into two groups,

e Group One containing rules for inferring new knowledge from one
known formula and

e Group Two containing rules for inferring new knowledge from two
known formulae.

Matching rules from Group One are applied to the simplified new formulae,
matching rules from Group Two are applied to all new pairs of formulae
containing at least one new formula8.

All formulae generated during these two phases make up the new knowledge base
and a new proof situation is inserted into the proof object. Since the new proof
situation contains all knowledge, that can be made available at that point, we
call it a saturated knowledge level. Finally, the formula labels contained in the
saturated level are stored in the local proof context being accessible in the next
saturation run.

The schematized flow of STKBR level saturation mechanism is shown in Fig-
ure 2. Phase 1 is accomplished by calling the function ‘Simplified Assumptions’

8Up to now, no inference rules have been implemented that depend on three formulae. As
soon as such inference rules are needed, we will provide a Group Three of inference rules, which
will be applied to all possible triples of formulae.
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with two arguments: the entire knowledge base and a list of labels ‘sat’ specifying
the saturated knowledge level. Each new formula from the knowledge base is sent
through the function ‘EvaluateFromProve’, which computes a simplified version
of the formula w.r.t. semantic knowledge from the Theorema language. ‘Evalu-
ateFromProve’ is the function used also in the STC module for goal simplification
by computation, see Section 5. It is based on the function ‘EvaluateStandard’,
which is the basic evaluation function for computations using Theorema se-
mantics, which is used also by Compute, the top-level user function to initiate
computations. This guarantees utmost coherence between all computations hap-
pening in the Theorema system, be it on the user level by calling Compute, be
it on the prover level by doing simplifications on the goal or on the knowledge
base. Formulae that cannot be simplified as well as formulae from the previous
saturation level leave phase 1 unchanged.

Phase 2 is covered in the implementation by the function ‘Augmented Knowl-
edgeBase’, which receives the simplified knowledge base resulting from phase 1
and again the list ‘sat’. ‘NewKnowledgeFromOne’ applies Group One of inference
rules componentwise to all new assumptions, ‘NewKnowledgeFromTwo’ applies
Group Two of inference rules to all new pairs that can be formed using the new
assumptions. The results joined with the simplified knowledge base resulting
from phase 1 give the saturated knowledge level.

The inference rules applied by STKBR can more or less be read off the Defini-
tions in Section 2. Again they are grouped into rules for membership, inclusion,
and set equality. For each “kind of set” introduced in Section 2 we provide a
membership rule for a proof situation, where ‘€’ appears as outermost symbol
in one of the assumptions. Moreover, the prover contains rules for unfolding
membership inside universally quantified formulae.

4.2.1. Rule Locking

Rule locking helps to prevent cycles during level saturation. As an example,
consider the two inference rules

..,xeAreB,... - G - ..., x€ANB,... - G

L——<canB... r ¢ V' 2¢4d. . . 2¢B..F q

occurring in STKBR. We call two rules inverse to each other if one rule neutralizes
the effect of the other. Unrestricted use of inverse rules immediately results in
a cycle in the proof search. Rule locking allows to dynamically disable certain
inference rules for certain values of the input parameters. In the above example,
the application of rule I’ resulting in a new formula F would automatically
prevent rule I from being applied to F' and vice versa.

In general, for each pair of inverse rules I and I’ we implement both I and T’
such that they lock their inverse for certain inputs. There is no general law, for
which inputs an inverse rule must be locked. As a special case, inference rules
may lock themselves in order to avoid “uninteresting” expansions in the proof
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search. Consider again the example from above: Applying rule I’ once would add
the new assumption € A N B. During the next saturation run, I’ would add
the new assumptions z € AN (AN B) and z € BN (AN B) and so forth.

Rule locking utilizes STKBR’s local proof context to store this type of infor-
mation on the proof progress. More precisely, the local proof context contains a
lookup table of so-called rewrite exceptions. The rewrite exception for an infer-
ence rule I from Group One is a list of formula labels. The inference rule T will
only apply to a formula if I's rewrite exception does not contain the formula
label. The rewrite exception for an inference rule I from Group Two is a list of
pairs of formula labels. The inference rule I will only apply to two formulae if
I’s rewrite exception does not contain the pair of formula labels.

5. STC: The Set Theory Computing Unit

The Theorema language contains semantics essentially for finite sets, namely

e sets that are constructed using the set braces ‘{’ and ‘}’ as set constructor
applied to finitely many arguments, and

e sets that are constructed using algorithmic versions of the set quantifiers
introduced in Section 2, see also (Buchberger 1996), i.e. set quantifiers with
finite and computable range specifications, see (Windsteiger 2001a). In par-
ticular, integer ranges and set ranges for finite sets are algorithmic ranges,
which lead to finite sets when used in combination with the set quantifiers.

The Theorema semantics enables the construction of finite sets as an enumera-
tion of the (finitely many) elements contained in the set. Set operations (such as
union, intersection, power set, etc.) on finite sets are implemented in a construc-
tive fashion. Proving properties (such as membership, inclusion, or set equality)
of finite sets therefore reduces to testing finitely many cases, which is imple-
mented in the frame of the Theorema language as well.

Computation using built-in semantics knowledge is available in the Theorema
system through the top-level user command Compute. A typical computation
involving finite sets is

Compute[{3z | is-prime|x]}]
ze{1,2,3,4}

resulting in the finite set {6,9}.

It is the intention of the STC special prover to integrate the knowledge available
for computations seamlessly into the Theorema proving machinery. Otherwise,
all algorithmic knowledge about finite sets needed to be re-implemented inside
the set theory prover, which would make it next to impossible to guarantee
identical behavior in proving and computing. In order to avoid this duplication
of code and knowledge, the STC prover simplifies the goal by sending the formula
to the same evaluation function that is also used in Compute and in STKBR.
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Basically, when the STC prover applies to a proof situation, one proof step con-
sists of calling the evaluation function ‘EvaluateFromProve’ (see also Section 4.2)
and, in case the result differs from the original form, of adding a node to the
proof object, from which the effect and a complete trace of the computation can
be displayed. Again, the use of ‘EvaluateFromProve’ preserves coherence with
STKBR and Compute. Many details on combining computation with proving can
be found in (Windsteiger 2001a).

6. STS: The Set Theory Solving Unit

The special prover STS collects inference rules for eliminating existential quan-
tifiers in the proof goal®. Methods used for instantiating existential goals range
from matching against formulae in the knowledge base, over unification and in-
troduction of solve constants until the use of Mathematica’s ‘Solve’ function. We
present only one typical inference rule from STS.

K F Quoy N3 (PoAy"=Ty) ARy yy
TES

IntroSolveConstant : K + 3(@Q,Aye{l, | P.JAR,)
Y

xES

where @), and R, are possibly empty conjunctions of formulae and y* is a solve
constant.

A solve constant™® is some constant, whose value is not yet known at the time
when it is introduced. Solve constants allow to eliminate existential quantifiers
and delay their instantiation to a later phase of the proof. For the proof to
succeed, the values for all solve constants that have been introduced must be
expressed through appropriate ground terms in such a manner that the resulting
formula can be proven. A solve constant differs from a Skolem constant in that
it is a placeholder for a concrete term that needs to be determined during the
proof whereas a Skolem constant is a new constant about which we do not know
anything. Of course, the strategy after introducing solve constants must always
be to isolate the solve constants, and then to apply special solving techniques
depending on the nature of the remaining formula in order to determine the
concrete value of the solve constants. Applying this strategy reduces proving
to solving over various domains, and it offers the possibility to benefit from
the great advances that have been accomplished in developing powerful solving
methods in computer algebra.

The inference rule described above might appear random. It is part of STS

th

In fact, it should contain only the set theory specific part of solving. Since the solving
components in the Theorema system are not yet far-advanced, we started with STS collecting
inference rules for proof situations as they appear in typical proofs in set theory.

10What we call solve constant is often addressed as meta variable by other authors. The
technique of meta variables is well known and used also in other systems. Essentially, it imitates
what a human does when instantiating existential quantifiers.
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since it applies exactly to proof situations left after expanding membership in

special unions, namely goals of the form ¢ € |J{T, | P} It can be observed in
TES

many examples involving proof goals of this form (see in particular the example
in Section 7.4) that this strategy leads to a well-strucured proof. The rule elim-
inates the outermost existential quantifier by introducing a solve constant and
it introduces another existential quantifier by immediately expanding member-
ship. STS contains further rules, which allow the elimination of the remaining
existential quantifier in this particular case and even in other more general sit-
uations, see (Windsteiger 2001a). Note, that the solve constant already appears
in isolated position, so that it can immediately be expressed by the ground term
T, as soon as P, is solved for x. In addition to rules introducing solve constants,
the STS prover, of course, also contains several rules for instantiating solve con-
stants as soon as they appear in an isolated position. Some examples of different
instantiation techniques will be shown in Section 7.

7. Comparison and Examples
7.1. Comparison to State-of-the-Art Theorem Provers

In this section, we test the Theorema set theory prover on some examples from
the SET section of TPTP, see (TPTP: Thousands of Problems for Theorem
Provers n.d.). Timings refer to the CPU seconds consumed on a 1500 MHz Intel
P4 running Mathematica 4.2 and include the time needed for generating the
proof, simplifying the successful proof, and displaying the formatted proof as
shown in Section 7.2. Table 1 shows a comparison of the computing times to
state-of-the-art theorem provers as they performed in CASC-18, see (CADE-
18 ATP System Competition (CASC-18) n.d.), which refer to CPU time on a 993
MHz Intel P4. The timings of the “Saturate”-prover were taken from (Ganzinger
& Stuber 2003) and were measured on a 2000 MHz CPU (timings are only
available for examples from the FOF division (first-order form) of CASC-18).

Table 1: Comparison to systems on examples from CASC-18

Example | Theorema | E-SETHEOQO | Vampire | DCTP | Bliksem | Saturate
SET010 3.0 15.8 23.9 1.2 >300 ?
SET014 3.2 >300 >300 | 281.0 >300 1.8
SET096 2.0 9.6 17.0 | 113.7 7.1 8.1
SET171 4.0 >300 >300 | >300 >300 2.9
SET580 8.7 0.4 0.1 1.5 >300 1.7
SET612 2.1 >300 >300 | >300 >300 9.9
SET624 43.7 0.7 0.8 1.7 >300 10.2
SET630 24 0.4 62.3 1.5 >300 116.8
SET716 6.8 >300 >300 | >300 >300 8.8

HGoftware versions used: E-SETHEO csp02, Vampire 5.0, DCTP 10.1p, Bliksem 1.12a
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Former winner of the FOF division of previous CASCs, SPASS, did not partic-
ipate in CASC-18. Table 2 compares timings of the Theorema set theory prover
on some of the SE'T examples contained in TPTP to the performance of a revised
version of SPASS as reported in (Afshordel et al. 2001). SPASS’s timings have
been recorded on a 333 MHz Intel P2, Theorema timings refer to experiments

on a 400 MHz Intel P2.

Table 2: Theorema vs. SPASS
Example | Theorema | SPASS 2.0
SET010 6.1 1
SET612 7.5 1
SET624 155.4 101
SET694 5.5 1
SET698 22.7 71
SET722 6.6 18
SET751 5.04 3

The comparison of computing times to other systems is, however, difficult,
since the Theorema system is implemented in the programming language of
Mathematica. There is no possibility of compiling Mathematica programs, hence,
comparing the run-time of interpreted code to computing times of optimized
compiled machine code does not tell much. One can observe though in prac-
tice that the proofs generated by the set theory prover contain only few failing
branches, and each branch contains only few useless formulae.

We want to emphasize, that the absolute computation times are not our main
focus. We are much more interested in having automatically generated “nice
proofs” that are easily understandable for a human reader. As a consequence,
we aim at designing provers that apply inference rules in a smart way without
too many failing branches during the proof search.

7.2. Proofs Generated by the Theorema Set Theory Prover

In this section, we collect some representative proofs that were generated com-
pletely automatically by the Theorema set theory prover. The proofs shown in
this section are taken from the system comparison in Section 7.1, the label of the
goal formula refers to the example name as given in Tables 1 and 2. The proofs
below are displayed in simplified form, i.e. they do not contain anymore failing
proof branches and they do not show any formulae that did not contribute to
the final proof success. The simplification of the “raw proof object” produced
by the set theory prover is a standard post-processing feature available in the
Theorema system and the timings given in Section 7.1 include also the time
needed for proof simplification. As already mentioned above, most of the proofs
generated by the Theorema set theory prover succeed in the first branch that is
tried and the prover generates only few unnecessary formulae.
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The optical appearance of the proofs in the Theorema system corresponds
exactly to how they are typeset in this paper! Within Theorema, the standard
presentation of proofs is generated in a Mathematica notebook document, a
document format provided by Mathematica that allows typeset mathematical
text being intermixed with Mathematica input and output expressions as well
as graphics. Some of the features of the Theorema standard proof presentation
utilize special capabilities of the Mathematica notebook format and can therefore
not be rendered in this paper:

e Formulae in the knowledge base and goal formulae are displayed in different
color.

e Formula labels in running text are “clickable” and show the entire refer-
enced formula in a popup-window.

e Proof branches are organized in a hierarchy that reflects the structure of
the proof. Collapsing entire proof-branches by mouse-click allows to quickly
browse through the structure of a proof and easily “zoom into” the inter-
esting proof parts or skip uninteresting proof parts, respectively.

Proof: (SET010) B\ (CNnD)=(B\C)U(B\D) .
C: We assume

(1) Ble B\ (CnD)

and show

(2) Ble(B\C)U(B\D)

From (1) we can infer

(3) BleB

4) BL¢CND .

From (4) we can infer

(5) BL¢CVB1¢D .

In order to prove (2) we may assume
(6) Bl ¢ B\ D

and show

(7) Ble B\C

From (6) we can infer

(8) Bl¢ BVBl1€D .

We have to prove (7), thus, we first show:
(9) BleB:
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Formula (9) is true because it is identical to (3).
For proving (7) it still remains to show

(10) B1¢C :
From (3) and (8) we obtain
(11) BleD .
From (5) and (11) we obtain
(12) B1¢C .

Formula (10) is true because it is identical to (12).

D: Now we assume (2) and show (1).
From (2) we can infer

(13) Ble B\CVBleB\D .
We have to prove (1), thus, we first have to show

(14) BleB .

(WE SKIP THE PROOF OF (14). IT SUCCEEDS BY CASE DISTINCTION BASED ON (13).)

For proving (1) it still remains to show:
(15) Bl¢CnD .

Assume

(16) BLe CND

From (16) we can infer

(17) BleC

(18) Bl€D .

Case (13.1) Bl € B\ C:
From (13.1) we can infer

(19) Bl € B

(20) B1¢C .

(17) and (20) are contradictory.
Case (13.2) Bl € B\ D:
From (13.2) we can infer

(21) BleB

(22) B1¢D .
(18) and (22) are contradictory.

21

|

Set theory specific reasoning requires only rules from STP and STKBR in this
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example. The case distinction based on formula (13) is done by the special prover
CDP, the rest is basic predicate logic from BasicND.

Proof: (SET171) AZC (AUB)N(AuC)=AuUu(BNC(C)

For proving (SET171) we take all variables arbitrary but fixed and prove:
(1) (AgUBy)N(AgUCy) = AgU (ByNCy) .

C: We assume

(2) A1y € (AU By) N (AgUCy)

and show:

(3) Alg € AgU (ByNCy) .

From (2) we can infer

(5) Aly € Ay U By ,

(6) Alg€ AgUC, .

From (5) we can infer

(7) Alo€ AgVAlg€ By .

From (6) we can infer

(8) Alge AgVvVAlgeCy .

In order to prove (3) we may assume
(10) A1g¢ ByNCy

and show:

(9) Alo€ Ap .

(Note, that in all other cases the formula (3) trivially holds!)
From (10) we can infer

(11) A1o¢ ByVv A1y ¢ Cy .

We prove (9) by case distinction using (11).
Case (11.1) A1y ¢ By:
From (11.1) and (7) we obtain by resolution

(12) Alg€ Ay .
Formula (9) is true because it is identical to (12).

Case (11.2) A14 ¢ Cy:
From (11.2) and (8) we obtain by resolution

(13) Alo€ A, .
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Formula (9) is true because it is identical to (13).
D: Now we assume

(3) A1y € AgU (BynCy)

and show:

(2) Alo€ (AgUBy) N (AgUCy) -
From (3) we can infer

(14) A1p€e AgVALly€ ByNCy .

We prove (2) by splitting up the intersection into its individual components:
We have to prove:

(15) A1y€ AyUB, .

In order to prove (15) we may assume
(18) Atog By

and show:

(17) A1y € Ap .

(Note, that in all other cases the formula (15) trivially holds!)
We prove (17) by case distinction using (14).

Case (14.1) A1y € Ap:

Formula (17) is true because it is identical to (14.1).

Case (14.2) A1y € By N Cy:

From (14.2) we can infer

(20) A1, € By,

(21) Al,€Cp .

Formula (17) is proved because (20) and (18) are contradictory.
We have to prove:

(16) Aly€ AyUC, .

In order to prove (16) we may assume

(23) A1o ¢ Co

and show:

(22) Alg€ A, .

(Note, that in all other cases the formula (16) trivially holds!)
We prove (22) by case distinction using (14).

Case (14.1) Al € Ay:

Formula (22) is true because it is identical to (14.1).

Case (14.2) A1y € By N Cy:

From (14.2) we can infer
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(25) A1y € By,

(26) A1, € Cy .
Formula (22) is proved because (26) and (23) are contradictory. O
Note that the Theorema set theory prover comes up with this straight-forward

proof in only 4 seconds whereas all the systems from the CASC competition
failed in this example after 300 seconds.

Proof: (SET624) V BN (CUD)#{}< BnNC#{}vBnD#{}
B,C,D

For proving (SET624) we take all variables arbitrary but fixed and prove:
(1) BoN(CoUDg) #{} < BoNCo#{}VByNDo#{}.

Direction from left to right:
We assume

(3) BoN(CoUDy) #{}

and show

(2) BonCo#{}V BonDo#{} .

From (3) we know that we can choose an appropriate value such that
(6) Blg € ByN (CoU Dy) .

From (6) we can infer

(8) Bi1y € By,

(9) Bl1oe CoUDy .
From (9) we can infer
(11) B1, € CyV Blyge Dy .

We prove (2) by proving the first alternative negating the other(s).
We assume

(13) =(Bon Do #{}) -
We now show
(12) BonCo #{} .

Formula (12) means that we have to show that

(14) 3 B2€B,NC, .
B2

We prove (14) by splitting up the intersection into its individual components:
We have to prove:
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(15) 3 B2 € ByAB2 € (.
B2

Formula (13) is simplified to
(16) BoNDy={}.

From (16) we can infer

(17) ¥ B3¢ By Dy .

From (17) we can infer
(18) V B3¢ ByV B3¢ Dy .
B3

We prove (15) by case distinction using (11).

Case (11.1) B1y € Cy:

Now, let B2 := B1,. Thus, for proving (15) it is sufficient to prove:
(20) B1ly,€ By Bly € C() .

Proof of (20.1) B1y € By:

Formula (20.1) is true because it is identical to (8).
Proof of (20.2) B1y € Cy:

Formula (20.2) is true because it is identical to (11.1).
Case (11.2) Bly € Dy:

From (8), by (18), we obtain:

(29) Bi1y ¢ D, .

Formula (15) is proved because (29) and (11.2) are contradictory.
Direction from right to left:
We assume

(5) BoNCo #{}V ByN Dy #{}
and show
(4) Bon(CoUDy) #{} .

Formula (4) means that we have to show that
(30) 3 B4 € Byn (CoU Dy) .
B4

25

We prove (30) by splitting up the intersection into its individual components:

We have to prove:
(31) 3 B4 € ByAB4 € CyUDy .
B4

We prove (31) by case distinction using (5).
Case (5.1) BoN Cy # {}:
From (5.1) we know that we can choose an appropriate value such that
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(32) B5g€ BoNnCy .

From (32) we can infer

(34) B5, € By |

(35) B5o€Cy .
Now, let B := B5y. Thus, for proving (31) it is sufficient to prove:
(38) Bbg € ByAB5ye CyUDy .

We prove the individual conjunctive parts of (38):

Proof of (38.1) B5y € By:

Formula (38.1) is true because it is identical to (34).

Proof of (38.2) B5y € Cy U Dy:

In order to prove (38.2) we may assume

(40) Bdq ¢ Do

and show:

(39) B5y € Cy .

(Note, that in all other cases the formula (38.2) trivially holds!)
Formula (39) is true because it is identical to (35).

Case (5.2) BynN Dy # {}:

From (5.2) we know that we can choose an appropriate value such that
(41) B6y € ByN Dy .

From (41) we can infer

(43) B6,y € By ,

(44) B6y € D, .
Now, let B := B6,. Thus, for proving (31) it is sufficient to prove:
(47) B6o € By A B6o € Co UD, .

We prove the individual conjunctive parts of (47):
Proof of (47.1) B6y € By:
Formula (47.1) is true because it is identical to (43).

Proof of (47.2) B6y € Cy U Dy:
In order to prove (47.2) we may assume

(49) B6, ¢ Dy
and show:
(48) B6y € Cy .

(Note, that in all other cases the formula (47.2) trivially holds!)
Formula (48) is proved because (49) and (44) are contradictory.

26
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Although the prover does not generate any failing branches for example (SET624)
it is substantially slower than the CASC provers. SPASS shows similar behavior
like the Theorema prover in that (SET624) is the example in which SPASS per-
forms by far worst. Most probably, the reason for the weak performance of the
Theorema set theory prover is an inefficient implementation of matching the ex-
istentially quantified variable against constants available in the knowledge base,
which is needed several times in this example.

Proof: (SET722) v f::A—>B/\gof::Asﬂ'02>g::Bsﬂ>j'C,
A,B,C,f,g

under the assumption:

(Definition (Composition)) V (go f)lz] := g[f]z]] -

9,@
We assume

(1) fo::Ag— BoAgoo fo:: Ag %j‘co,
and show

(2) go:: By g Coy -

In order to show surjectivity of go in (2) we assume
(3) z1o€ Cy,

and show

B1

From (1.1) we can infer

(6) V Al € A() = fo[AJ] € By .
Al

From (1.2) we know by definition of “surjectivity”

(7) Av2 A2 € Ay = (go0 fo)[A2] € Cy

2 A2

By (8), we can take an appropriate Skolem function such that

(9) V22 € Cy= A,?()[.IQ] € A() A (g() o fo)[A,?()[.IQ]] =22 .

2
Formula (3), by (9), implies:

A2¢[z10] € Ao A (go o fo)[A2o[x10]] = x10 ,
which, by (6), implies:

JolA2o[z10]] € Bo A (go © fo)[A20[z1]] = x14
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which, by (Definition (Composition)), implies:
(10) fo[AZo[z10]] € Bo A go[fo[AZ0[z10]]] = 210 .

Formula (4) is proven because, with BI := fo[A2[x10]], (10) is an instance. O

The notion f :: A — B denotes the predicate “f is a function from A to B (in
intensional form)”. In intensional form, a function from A to B is something that
can be applied to some term in A resulting in a term in B. Theorema offers also
the concept of a function from A to B in extensional form (written f : A — B),
where a function is a certain subset of Ax B. The Theorema set theory prover can
handle both and it does not require the definition of surjectivity in its knowledge
base. Rather, it recognizes surjectivity on the inference rule level, i.e. the prover
contains inference rules for proving surjectivity and for expanding surjectivity
in the knowledge base, respectively. The use of these inference rules can be
suppressed by an option in the Prove-call. In this case, the knowledge base
needs to contain the definition of surjectivity. The proof, however, succeeds even
in this setting. It differs only in that the special inference rule combines several
proof steps into one compact step. Special inference rules are available also for
injectivity, which are used in (SET716), where the proof takes just 6.8 seconds,
which is about the same time that the “Saturate”-prover needs. Note, however,
that all the CASC provers fail in (SET716).

We now want to present two variants of a proof for (SET751). The first one
uses intensional function notation as already shown in the previous example,
whereas the second uses the extensional function concept typically used in set
theory!'2. The computing times do not essentially differ between the two variants.

Proof: (SET751)

V. XCAANYCAANXCYAf:A— B= image[f, X]C image[f,Y] ,
A7B’f,X7Y

under the assumption:

(Definition (Image)) V image[f, X]:= {f[x]| x € X} )
X T

We assume

(1) XoCAgAYy C A AXgC YA fo:: Ay — By,
and show

(2) image[fo, Xo] C image[fo, Yo] -

For proving (2) we choose

12We chose to present both variants of the proof in order to demonstrate the flexibility of
the prover. The set theory prover does not require the user to force all of mathematics into
set representation.
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(3) f1, € image[fo, Xo] ,
and show:

(4) f1, € imagelfy, Y]
From (1.3) we can infer

(8) VX2€Xyg=X2€Y,.
X2

Formula (3), by (Definition (Image)), implies:
(11) f1, € {fo[x]| = XO} .

From (11) we know by definition of {T,,| P} that we can choose an appropriate

xr
value such that

(12) 21, € Xy,
(13) f1o = folz1o] -
Formula (4), using (13), is implied by:
fO[IJO] € image[fo;%] )
which, using (Definition (Image)), is implied by:
(19) folzlo] € {fo[x]\ = YO} .

In order to prove (19) we have to show

Since x := x1, solves the equational part of (20) it suffices to show

(21) 210 €Yy .

Formula (21), using (8), is implied by:

(22) z1p€ X, .

Formula (22) is true because it is identical to (12). O
The instantiation of the existential variable x in the proof goal (20) was done

by solving the equation fo[z1o] = fo[x] for x, which is done by a call to the
Mathematica function Solve for solving (systems of) equations.

Proof: (SET751)

V. XCAAYCAAXCYAf:A— B=image[f, X| C image[f,Y] ,
AB.f, XY
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under the assumption:

(Definition (Image)) V image[f, X]:= {y| dz e X A {(z,y) € f} .
£,X y x

We assume

(1) XoCAgNYy C AgAXg C Yy A fo: Ay — By,
and show

(2) image|fo, Xo] C image[fy, Yo] -

For proving (2) we choose

(3) f1, € image[fo, Xo] ,

and show:

(4) f1, € imagelfo, 5]

From (1.3) we can infer

(8) VX2€Xg=X2€Y,.
X2

Formula (4), using (Definition (Image)), is implied by:
(11) f1, € {y| Jz €Yo la,y) € fo} .
Yy x

In order to prove (11) we have to show:

(12) Fz e YoA(x,fly) € fo-

Formula (3), by (Definition (Image)), implies:
(14) f1,€ {yl Jx € XgA(z,y) € fo} :
Yy x

From (14) we can infer

<15) dx € X()/\ <.’E,f]0> € fo .

By (15) we can take appropriate values such that:

(16) xo € Xo A (0, f1y) € fo -

Now, let x := xy. Thus, for proving (12) it is sufficient to prove:
(19) o € Yo A (20, f1¢) € fo -

Proof of (19.1) zy € Yj:
Formula (19.1), using (8), is implied by:

(20) 20 € Xy .

Formula (20) is true because it is identical to (16.1).

30
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Proof of (19.2) (x, f1,) € fo:
Formula (19.2) is true because it is identical to (16.2). O

7.3. Theory-specific Knowledge Built into the Prover

In this section, we want to show two examples that demonstrate, how set theory
specific knowledge is built into the prover. The set theory prover does not only
apply axioms of ZF, but it uses in addition some theorems that are valid in
ZF. This is reasonable because the Theorema set theory prover is intended for
mathematicians who want to have support in their every-day work using sets. It
is not intended to be a prover that can prove the entire build-up of set theory
based on the axioms of ZF.

Proof: (Proposition (intersection powerset)) (P[A] =0 ,

with no assumptions.
We have to prove (Proposition (intersection powerset)), hence, we have to show:

(1) A1, ¢ NP[A] .

We prove (1) by contradiction.
We assume

(2) A1o€NP[A],

and show (a contradiction).

From (2) we can infer

(3) V A2 e P[A] = Aly€ A2 .
A2

From (3) we can infer

(4) Aloe®

(5) Alp€e A .

Using available computation rules we can simplify the knowledge base:
Formula (4) simplifies to

(6) False .

Formula (a contradiction) is true because the assumption (6) is false. O

It is a special inference rule in STKBR that allows the instantiation of the
universally quantified assumption (3) to infer (4) and (5). The simplification of
(4) to (6) is then accomplished in phase 1 of the subsequent saturation run by
built-in semantic knowledge about finite sets, in particular, the empty set.

The following example is taken from the case study on the mutilated checker-
board, see (McCarthy 1964), (McCarthy 1995), (Windsteiger 20015), (Wind-
steiger 2001a). The theorem says that an 8 x 8 checkerboard with two opposite
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corners missing can always be covered by dominos. A proof of this theorem
can be given using a formulation of the problem in set theory. A proof of the
theorem has been generated using Theorema by building up the theory of domi-
nos, checkerboards, coverings, etc. and by completely exploring new notions as
they are defined. “Completely exploring”, in this context, means that sufficiently
many properties of a new notion are proven before the next notion will be intro-
duced, see (Buchberger 1999). During one of these so-called exploration rounds,
we arrived at the proposition that whenever X is a domino on the board then
the domino covers two distinct fields that are adjacent to each other.

Proof: (Proposition (dominos adjacent))

V domino-on-board[X] = X C Board A 3 z € X Ay € X Ax # y A adjacent[z, y] ,
X @y

under the assumption:

(Definition (Domino))

V (domino-on-board[z] :<> x C Board A |z| =2 A

X

V 2l €x ANz2 € x ANzl # 22 = adjacent|z], z2]) .

1,22
We assume

(2) domino-on-board[Xj] ,
and show

(3) X9 CBoard A 3 2z € XgAy € Xo Az # y A adjacent[z,y] .
-’,E,y

Proof of (3.1) X, C Board: (SKIPPED)
Proof of (3.2):
Formula (2), by (Definition (Domino)), implies:

(5) |Xo| =2A Xy C Board A

V z1 € XgANz2 € Xog Azl # 22 = adjacent|z],22] .

zl,z2

From (5.1) we can infer
(6) X1o9€ Xy,

(7) X1, € Xy,

(8) Xio# X1, .



W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 33

Now, let y := X1,. Thus, for proving (3.2) it is sufficient to prove:
(10) de e XoNX1lge XogAzx 7é X1g A adjacent[a:,Xlo] .

Now, let x := X1;. Thus, for proving (10) it is sufficient to prove:
(15) X1, e XogNX1p€e Xog AN X1, 7é X1g A adjacent[Xll,Xlo] .

Using available computation rules we evaluate (15) using (8) and (5.1) as addi-
tional assumption(s) for simplification:

(16) X1 e XoANX1y € Xg A adjacent[Xll,Xlo] .

Proof of (16.1) X1, € Xj:

Formula (16.1) is true because it is identical to (7).
Proof of (16.2) X14 € Xo:

Formula (16.2) is true because it is identical to (6).
Proof of (16.3) adjacent[ X1, X1,]:

Formula (16.3), using (5.3), is implied by:

(17) X19€ XoNX11 € XogNX11+# X1y .

N AN TN N

Using available computation rules we evaluate (17) using (8) and (5.1) as addi-
tional assumption(s) for simplification:

(18) Xlge XoNX11€ X, .

Proof of (18.1) X1, € Xj:

Formula (18.1) is true because it is identical to (6).

Proof of (18.2) X1, € Xj:

Formula (18.2) is true because it is identical to (7). O

The next example shows, how arithmetic knowledge on natural numbers pro-
vided by Mathematica is accessible for the prover.

Proof: (G) 36€ |J {j* | j>inj<i+5}
ieN T jeN
under the assumption

(A) Va>m=3i<nAi>mAieN.
m,n %

In order to show (G) we have to show

(1) 336€{j> | j>iNj<i+5}AiEN.
% jEN

J€
In order to prove (1) we have to show

(2) 337>iNjENAF<i+5NTIENA36= 2.
i j

Since j := 6 solves the equational part of (2) it suffices to show
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(3) 3ieNA6>iN6ENAGCSS+i .

2
Using available computation rules we evaluate (3):

(4) 3i<6Ai>1AieN.

Formula (4), using (A), is implied by:
(5) 6>1.
Using available computation rules we evaluate (5):

(6)  True .

Formula (6) is true because it is the constant True. O

The derivations of formulae (1) and (2) result from applying STP inference
rules for membership in a union and membership in a set abstraction, respec-
tively. Reduction of (2) to (3) is accomplished by instantiating j by a solution
of a quadratic equation done in STS. The Mathematica ‘Solve’ function is used
internally to solve the quadratic equation 36 = j2, which finds two solutions
j = —6 and j = 6. The first solution results in a failing proof attempt, since
—6 € N simplifies to False by built-in knowledge about N. The failing branch is
eliminated when finally simplifying the successful proof. Simplifications from (3)
to (4) and from (5) to (6) were made using available semantic knowledge by STC
(6 € N and 6 > 1, respectively) and, finally, reduction from (4) to (5) and the
detection of proof success were made by standard predicate logic inference rules.
We have no specialized solving methods for natural numbers available, therefore
we needed assumption (A) in the knowledge base. An appropriate solver for N
would be able to verify (4) without any additional knowledge. We will investigate
necessary solving techniques in future work.

7.4. Theory Exploration vs. Isolated Theorem Proving

We consider (SET770), an example from the TPTP library concerning equiv-
alence classes, namely the theorem that two equivalence classes are equal or
disjoint. Note again, that none of the provers in the CASC competition could
solve this problem. In (Windsteiger 2001a), an entire exploration of the theory
of equivalence relations, equivalence classes, factor sets, partitions, induced re-
lations, etc. is given. Instead of proving (SET770) from first principles, i.e. from
the axioms, it is preferable to first prove some auxiliary lemmata, which later
facilitate the proof of the theorem. This is just what a human mathematician
very often does. We present here the proof of (SET770) using the two auxiliary
propositions (equal classes) and (not in distinct class) in the knowledge base.
The computing time for the proof is 5.8 seconds on a 2000 MHz Intel P4, the
proofs of the auxiliary propositions take 8.5 and 8.6 seconds, respectively.
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Proof: (SETT770) V is-symmetric[R] A is-transitive[R] =
R,x,y

(class[z, R] = class|y, R]) V (class[z, R]) N class[y, R] ={}) .

under the assumptions:

(Proposition (equal classes)) V is-transitive[R] A is-symmetric[R] A
R,y

(z,y) € R = class[z, R] = class[y, R] ,

(Proposition (not in distinct classes)) V  is-symmetric[R] A is-transitive| R] A
R7w7y7z

x € class[y, R| Az € class[z, R] = (y,2) € R .

We assume

(1) is-symmetric[Ry] A is-transitive[Ry] ,

and show

(2) (class[zg, Ry| = class[yo, Ro]) V (class|zg, Ro]) N class[yo, Ro] = {}) -

We prove (2) by proving the first alternative negating the other(s).
We assume

(4) class[zg, Ro] N class|yo, Ro] # {} -

We now show

(3) class[zg, Ry] = class|yo, Ro] -

From (4) we know that we can choose an appropriate value such that
(5) z8¢ € class|zg, Ro] N class[yo, Ro] -

From (5) we can infer

(7) 23 € class|zo, Ro) ,

(8) z8¢ € class[yg, Ro] -
Formula (3), using (Proposition (equal classes)), is implied by:
(11) is-symmetric[Ry] A is-transitive[Ry] A (zo,%0) € Ro -

Proof of (11.1) is-symmetric[Ro]:

Formula (11.1) is true because it is identical to (1.1).
Proof of (11.2) is-transitive[ Ro|:

Formula (11.2) is true because it is identical to (1.2).
Proof of (11.3) (zo, %) € Ry:

(11.3),

Formula using (Proposition (not in distinct classes)), is implied by:
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(12) 3 is-symmetric[Ry] A is-transitive|Ro] A x € class[zg, Ro] A x € class[yo, Ry -

Now, let x := 8. Thus, for proving (12) it is sufficient to prove:
(13) is-symmetric|Ro|Ais-transitive[ Ro]Az3g € class|xg, Ro]Az3q € class|yg, Ro] -

Proof of (13.1) is-symmetric|Ry:

Formula (13.1) is true because it is identical to (1.1).
Proof of (13.2) is—transitive[Ry:

Formula (13.2) is true because it is identical to (1.2).
Proof of (13.3) 3, € class|xg, Ry]:

Formula (13.3) is true because it is identical to (7).
Proof of (13.4) 23 € class|yo, Ro):

Formula (13.4) is true because it is identical to (8).

O

The same case study has been carried ot for an intensional concept of relations.
Similar to the intensional concept of a function described in Section 7.2, an
intensional relation is something that can be applied to terms yielding true or
false. An intensional relation is nothing else than a predicate in the sense of logic.
We show one of the proofs and explain its key steps.

Proof:

(Lemma (union inverse factor set)) V is-reflexivey[~] = [Jfactor-set [A] = A |
A

under the assumptions:

(Definition (relation sets): class) V classa  [z]:={a|a€ ANa~zx}
Ax a

(Definition (relat. sets): factor-set) V factor-set.[A] := {classs[z] | x € A} ,
A T

(Definition (reflexivity)) V is-reflexivey[~| =V (z€e A=z ~21) .
A

We assume

(1) is-reflexive4,[~] ,

and show

(2) Ufactor-set[Ag] = Ap .

Formula (2), using (Definition (relation sets): factor-set), is implied by:

U{classg, ~[z] | x € Ao} = Ao ,

which, using (Definition (relation sets): class), is implied by:
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(3) U{{alaer/\awx}lmer}:Ao .

Formula (1), by (Definition (reflexivity)), implies:
4) V(e Ay=xz~zx) .

Zz

We show (3) by mutual inclusion:
C: We assume

(5) xJOEU{{a(LaEAO/\aN:C}lJEEAO}

and show:
(6) -TJ() € AO .

From (5) we know by definition of the big | J-operator that we can choose an
appropriate value such that

(7) 220 €{{ala€cAgNa~z} ]|z €A},

<8) .T]() € .7720 .
From (7) we know by definition of {7, | P} that we can choose an appropriate

xr
value such that

(9) alg GAO ,

(10) 22 ={ala€ AgNar~ aly} .

Formula (8), by (10), implies:
(23) zlpef{ala€e Aghanr~aly} .

From (23) we can infer
(24) zlo € AgANzlg~ algy .

Formula (6) is true because it is identical to (24.1).
D: Now we assume

<6) I]O S AO .
and show:

(5) xJOEU{{GJLGEAO/\GNI}JC@"EAO}

In order to show (5) we have to show

(29) JzlpexiNzfe{{alacAyNa~za}]|ze A} .
4 a T

In order to solve (29) we have to find z4* such that
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(30) zlgex4* NI (x€eAgnzf*={ala€ Ay Na~za}) .

Since (6) matches a part of (30) we try to instantiate, i.e. let now x := x1,.
Thus, by (30), we choose z4* :={a | a € Ay Aa ~ z1y}.

[
Now, it suffices to show

(32) z1g€ AgANzlg€{a|a€ AgNanr~ xlo} .
a

Proof of (32.1) z14 € Ap:

Formula (32.1) is true because it is identical to (6).
Proof of (32.2) z1g € {a|a € Ay Na ~ 1y}

In order to prove (32.2) we have to show:

(33) .’EJ() € AO /\51;10 ~ iL’]() .

Formula (33), using (4), is implied by:

(34) .TJQ € AO .

Formula (34) is true because it is identical to (6). O

We briefly comment on the essential steps in the proof:

e The proof starts with a P-phase, in which the universally quantified impli-
cation in the proof goal is reduced by natural deduction inference rules for
predicate logic from BasicND, see (1) and (2).

e In a C-phase, QR rewrites the goal and the knowledge base using the defi-
nitions in the knowledge base, see (3) and (4).

e The prover switches back again to a P-phase, but now the STP prover re-
duces set equality X =Y to the two subgoals X C Y and X D Y. In fact,
the inference rule for set equality reduces the subgoals by Definition of ‘C’
immediately, see (5) and (6).

e For proving the first subgoal (6), staying in a P-phase, STKBR expands
membership in a union and a set quantifier in the knowledge base in two
subsequent level saturation runs, see (7), (8), (9) and (10).

e In a C-phase, QR uses the equality (10) for rewriting (8) into (23).
e In the final P-phase, expanding membership proves the subgoal (6).

e For proving the second subgoal (5), first STP reduces membership in a union
during a P-phase into the existential goal (29).

e The set theory prover enters an S-phase. The goal (29) has the special
structure 3 zlg € 24 A x4 € {T, | P,}, which can be handled by rule ‘In-
x4 T

troSolveConstant’” from Section 6. Thus, the existential quantifier is elimi-
nated by introducing the solve constant x4*, and the expansion of the inner



W. Windsteiger: A Zermelo-Fraenkel Set Theory Prover in Theorema 39

membership z4* € {T,, | P,} introduces another existential quantifier (now
T

for x), see (30).

e The existential sub-formula in (30) is solved for = by unification with for-
mulae in the knowledge base. In fact, in this example matching is sufficient,
but we provide unification in this step for the general case. Having solved
for x, the solve constant x4* can be instantiated from the equational sub-
formula z4* = ... in (30), reducing the solve problem (30) again to a proof
problem, see (32).

e In the P-phase, the goal (32) is split using general predicate logic, subgoal
(32.1) is trivially true, and subgoal (32.2) is handled first by a set theory
specific proof rule from STP, see (33).

e Finally, the goal (33) is proved by simple rewriting using implications from
the knowledge base in a C-phase, see (34).

8. Conclusion

This paper describes the design and the implementation of an automated prover
for Zermelo-Fraenkel set theory (ZF) in the frame of the Theorema system.
In particular, the prover follows the PCS paradigm for structuring automated
provers used already earlier in other provers provided in Theorema. The prover is
intended to support mathematicians working in arbitrary areas of mathematics
that are formulated using ZF rather than for proving theorems of ZF. This means,
we aim at proving theorems in the flavor of the examples shown in Sections 7.3
and 7.4 much more than most of the examples from the TPTP library. The proofs
shown in Section 7 demonstrate that the Theorema set theory prover is able
to produce proofs of non-trivial theorems in a human-comprehensible style. In
average, the computing times for automatically generating the formatted proofs
are comparably low. Further improvements of the prover will have to go into
the rewriting part of the prover in order to handle conditional rewriting more
efficiently.

From the point of view of prover design, the set theory prover is the first
prover in the Theorema system that interfaces proving with computing based on
available language semantics. The special provers STKBR and STC will be used as
models for future special provers requiring access to the Theorema computation
engine. Further investigations will be done in order to improve the S-phase by
developing more powerful special solvers and by interfacing solvers available in
the computer algebra and the constraint solving community.
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