
Exploring an Algorithm for Polynomial Interpolation in

the Theorema System

Wolfgang Windsteiger*

RISC Institute, University of Linz
A|4232 Hagenberg, Austria

Abstract

We present a case study using the Theorema system to explore an algorithm for polynomial
interpolation. The emphasis of the case study lies on formulating mathematical knowledge in
one language that appears in its syntax close to common mathematical language but is precise
enough to formulate all details necessary for proving. Moreover, the language allows the
computation of concrete examples without any further translation into an executable language.

* This work has been supported by the "Spezialforschungsbereich for Numerical and Symbolic Scientific Computing"
(SFB F013) at the University of Linz and the european union "CALCULEMUS Project" (HPRN|CT|2000|00102). The
author would like to thank B.Buchberger and M.Rosenkranz for many valuable discussions during the case study that
led to this paper.

1 Introduction

Existing mathematical software systems (e.g. Mathematica, MAPLE, Gap etc.) have made big progress
over the past decades by providing the users with comprehensive libraries of sophisticated algorithms in
various areas of mathematics. In parallel, basically independently, the past decades have also produced
enormous progress in the automation of the proving activity of mathematicians. These approaches,
however, have put their emphasis mainly on proving isolated theorems, where systems like Otter, Spass,
or Vampire are rather successful.

The challenge for the future is the theoretical foundation, the design, and implementation of integral
software systems that guide, support, and at least partially automate the entire process of inventing,
proving, and applying mathematical knowledge using mathematical knowledge and method libraries and,
as a result, expanding these libraries by the result of this process. Recently, this integral view and
research program for the next generation of mathematical software systems has been named úMathemati-
cal Knowledge Managementø (MKM) in the first international workshop on MKM, Sept. 14|16, 2001,
organized at RISC|Linz by B. Buchberger, see [MKM 03].

From the very beginning the Theorema project was meant to give a logical and software technological
frame for the entire mathematical knowledge management as an integral coherent process with the
following key design objectives and ideas:

è The three main activities of mathematics~proving, computing, and solving~should all be available
in one logical and software technological frame. Moreover, the natural interplay between proving,
computing, and solving should be supported by the system.

è Domains, functors and categories as a natural and powerful structuring mechanism for generic build|
up of systematic knowledge and methods.

è Preference to special proving, simplifying, and solving algorithms for special mathematical theories as
opposed to a one|method|approach to proving all of mathematics (e.g. resolution method) with the
possibility to link powerful and provenly correct algebraic algorithms (e.g. Cylindrical Algebraic
Decomposition for quantifier elimination, Gröbner bases method for systems of algebraic equations,
Risch’s algorithm for symbolic integration, or Zeilberger’s algorithm for sum identities).

è High usability and attractiveness for the working mathematician by using various software technologi-
cal advances, e.g. flexible syntax imitating the usual textbook|style, proof presentation with high
readability and postprocessing capabilities.

è Knowledge management tools for the construction, maintenance, and modification of large mathemati-
cal knowledge bases together with system support for integral theory exploration: failure analysis for
proofs and conjecture generation based on failure analysis; build|up of libraries of problem types,
knowledge types and algorithm types and their systematic use in the theory exploration process.

In this paper, we would like to demonstrate part of the currently available features in Theorema in a case
study, namely polynomial interpolation. In this case study, we show: 1) How the domain of univariate
polynomials can be built up in generic form using the functor construct available in Theorema. 2) We
demonstrate how the problem of interpolation can be specified in this setting. 3) How a special solution
of the interpolation problem, namely by the Neville algorithm, can be formulated. 4) How its correctness
proof can be given. 5) How the algorithm can finally be applied to concrete problems.
With this case study we want to demonstrate the following aspects, which play a crucial role in an
integral view of the mathematical knowledge management process: 1) Problem specification, algorithmic
formulation, correctness proof, and computation (application to concrete examples) can be done within
the one and uniform logic and system frame of Theorema. 2) The possibility for formulating mathemati-
cal knowledge and methods in a generic way that guarantees applicability and re|usability in a wide
range of (hierarchically built|up) domains. 3) Attractive choice of syntax, which is close to the common
usage of notation in mathematical textbooks and at the same time is formally rigorous in the sense that all
formulae (including the algorithms) are just formulae in the underlying predicate logic. We want to
particularly emphasize the didactic challenge in this context: on the one hand, every detail must be
spelled out unambiguously whereas, on the other hand, we want to stay close to common use (and often
ab|use) of mathematical notation used in mathematical texts.
In this paper, we do not yet talk about possibilities in Theorema for guiding and supporting the invention
process. However, note for example, that proofs for elementary properties of e.g. polynomial evaluation,
which are needed for polynomial interpolation, are naturally suggested by the structure of the polynomial
domain as defined in the polynomial functor. However, we would also like to emphasize that systematic
methods for mathematical exploration, in our view, are not only a desirable goal for completely automat-
ing the invention process (which will never be possible by the inherent incompleteness of mathematics)
but are a very reasonable and worthwhile research goal for improving the didactics and heuristics of
mathematics. In concrete terms this means that at certain stages in the invention process instead of getting
support from the system the user may also interact with the system by allowing the user to guide the
prover or suggesting the prover the general structure of an algorithm.
This case study is taken from lecture notes used in courses, whose goal is to present the entire content of
the first year of mathematics study in an algorithmic fashion. The Theorema language turns out to
provide a suitable frame for these courses, because the entire mathematical knowledge including all
algorithms can be formulated in a style, which later allows proving all the properties in subsequent
courses. Similar case studies have been initiated for other topics such as Gaussian elimination or Gröbner
bases theory.

2 Exploring an Algorithm for Polynomial Interpolation in Theorema

2 The Polynomial Functor

We present a case study in the domain of univariate polynomials over a field K . Polynomials can be
defined to be infinite K |sequences with only finitely many non|zero elements, i.e. the (infinite) direct
sum of (infinitely many copies of) the coefficient field. Thus, for each such sequence there must be an
index, such that the sequence consists of only zeroes after this index. This is an appropriate setting for a
computer|representation of polynomials, since it allows to naturally represent a polynomial by a K |tuple
of its coefficients up to the last non|zero entry in the sequence.

In the Theorema language, the domain of univariate polynomials over a coefficient field K can be
introduced nicely by a Functor. Functors are a well|known concept (e.g. in category theory) and the
hierachical construction of mathematical domains by functors has already been used in Computer Alge-
bra systems (the use of domains and categories is one of the distinctive design features of the well|known
AXIOM system, see [AXIOM]). The algorithmic nature of functors as introduced in the Theorema
system (see [Buchberger 96a], [Buchberger 96b], and [Windsteiger 99]) relates to how functors are
available in the programming language ML. In general, a functor allows to construct a new domain from
an already existing domain. In the concrete case, we assume a domain K and construct the domain of
polynomials over K , named Poly@KD , by defining the characteristic property for the elements in Poly@KD
and by defining operations in Poly@KD based on available operations in the underlying domain K . Note
that we will present here only part of the functor, namely just those definitions that are relevant for
further discussion on the polynomial interpolation algorithm presented in Section 4. The functor defini-
tion shown in Figure 1 must be read as follows: The domain Poly@KD is such a domain P , where, for any
p, q, n, a , the following operations are defined:

è Î
P

@pD (p is an element in P) iff p is a tuple of positive length with elements from K .

è x
P

 (a new constant x in P) is the tuple Z0
K

, 1
K

^ .

è deg
P

@pD (the degree of p in P) is either 0 or it is such an i between 1 and p¤ such that ¼ . (The úsuch

a|quantifierø '
i=1,¼, p¤ ¼ is a special language construct available in the Theorema language, which

stands for úsuch an i between 1 and p¤ satisfying the property ¼ø. It provides a formal frame for
giving implicit function definitions.)

è etc.

The constant x in the polynomial domain plays exactly the role of the úpolynomial indeterminateø x
when thinking of polynomials as úarithmetic termsø of the form Úk=0

n pi xi . In the functor notation all
function, predicate, and object constants carry the domain, for which they are defined, as an underscript,
e.g. -

Poly@KD for subtraction in the domain of polynomials as opposed to -
K

 for subtraction in the domain K .

In the remainder of this paper, all text in gray boxes is Theorema input or output as it appears in a
Theorema session. The syntax used~including all special symbols and typesetting facilities~is machine|
readable and the Theorema parser translates it unambiguously into Theorema’s internal representation.

Exploring an Algorithm for Polynomial Interpolation in Theorema 3

DefinitionA"Polynomial Domain", any@KD,
Poly@KD := FunctorAP, any@p, q, n, aD,

Î
P

@pD � ikjjjis|tuple@pD í p¤ > 0 í "
i=1,¼, p¤ Î

K
@pi Dy{zzz

x
P

:= Z0
K

, 1
K

^
deg

P
@pD :=

loooooomnoooooo
0 Ü "

j=1,¼, p¤ Jpj = 0
K

N
'

i=1,¼, p¤ ikjjjJpi ¹ 0
K

N í "
j=i+1,¼, p¤ Jpj = 0

K
Ny{zzz - 1 Ü otherwise

coef
P

@p, nD :=

loooomnoooo
pn+1 Ü n ³ 0 í n £ deg

P
@pD

0
K

Ü otherwise

const
P

@aD := Xa\
canonic

P
@pD := [pi È

i=1,¼,deg
P

@pD+1
_

p -P q := canonic
P

A[coef
P

@p, iD -K coef
P

@q, iD Ë
i=0,¼,MaximumAdeg

P
@pD,deg

P
@qDE_E

p *
P

q := [â
K

j=0,¼,i

coef
P

@p, jD *
K

coef
P

@q, i - jD É
i=0,¼,deg

P
@pD+deg

P
@qD_

p �
P

a := [coef
P

@p, iD �
K

a É
i=0,¼,deg

P
@pD_

eval
P

@p, aD := â
K

i=0,¼,deg
P

@pD coef
P

@p, iD *
K

ai

EE

Figure 1: The functor defining the domain of univariate polynomials.

3 Problem Specification: Polynomial Interpolation

Given a polynomial p over K and two tuples x and a , one might ask, whether p evaluates (in Poly@KD)
to ai at xi (for all i = 1, ¼, x¤), i.e. whether p is an interpolating polynomial for x and a in Poly@KD .
This consideration is natural because then the úpolynomial function associated with pø would run
through all the given points Xxi , ai \ , which is a crucial property for many applications in mathematics
(e.g. several methods for solving equations are based on iteratively solving equations for interpolating
polynomials). In Theorema, this property can be expressed as follows:

DefinitionA"Interpolating polynomial: characterization", any@p, x, a, KD,
IsInterpolatingPolynomial@p, x, a, KD :�

ikjjjj Î
Poly@KD @pD í deg

Poly@KD@pD £ x¤ - 1 í "
i=1,¼, x¤ ikjjj eval

Poly@KD@p, xi D = ai
y{zzzy{zzzzE

Under certain restrictions~the tuples x and a must be non|empty and have equal length and the elements
of x must be mutually distinct~it can be shown that for given x, a , and K there exists a unique polyno-
mial p over K of degree less equal x¤ - 1 such that IsInterpolatingPolynomial@p, x, a, KD . Of course, it is
then desirable to come up with an algorithm that computes the interpolating polynomial for given tuples
x, a and coefficient field K .

4 Exploring an Algorithm for Polynomial Interpolation in Theorema

4 Solution to the Interpolation Problem: Neville Algorithm

An ad|hoc solution for an interpolation algorithm can immediately be extracted from the proof of unique
existence of the interpolating polynomial. The proof of this fact can be reduced to prove solvability of a
system of linear equations, which is always guaranteed under the given restrictions on x and a . The
interpolating polynomial can then be computed by solving the linear system. However, there are better
algorithms for finding the interpolating polynomial, for instance the Neville algorithm, which proceeds by
recursion over the tuples x and a . Written in Theorema the algorithm is given as follows:

AlgorithmA"Neville", any@x, a, x0, x��, xn, a0, a��, an, KD,
NevillePolynomial@Xx\, Xa\, KD = const

Poly@KD@aD
NevillePolynomial@Xx0, x��, xn\, Xa0, a��, an\, KD =ikjjjikjjj x

Poly@KD -
Poly@KD const

Poly@KD@x0Dy{zzz *
Poly@KD NevillePolynomial@Xx��, xn\, Xa��, an\, KD -

Poly@KDikjjj x
Poly@KD -

Poly@KD const
Poly@KD@xnDy{zzz *

Poly@KD NevillePolynomial@Xx0, x��\, Xa0, a��\, KDy{zzz �
Poly@KD Ixn -K x0M

E

5 Correctness of the Algorithm

The correctness theorem for the Neville algorithm written in Theorema syntax is as follows:

Theorem@"Neville polynomial is interpolating polynomial", any@is|tuple@xD, a, KD, with@ x¤ > 0 ß a¤ = x¤D
IsInterpolatingPolynomial@NevillePolynomial@x, a, KD, x, a, KDD

For automatically proving a formula for all tuples x , we can use the tuple induction prover available in
the Theorema system. This prover implements a special prove technique available for tuples, namely
Noetherian induction. In order to call this prover, we issue the Theorema command

Prove@Theorem@"Neville polynomial is interpolating polynomial"D, using ® KB, by ® TupleInductionD ,

where KB contains the knowledge base of auxiliary assumptions needed for the proof. We will refer to
required knowledge from KB in the proof later. The tuple induction prover comes up with a successful
and complete proof. Due to space limitations, we show only the key steps of this proof (text in boxes
contains explanation of the prove techniques applied, all the rest~including formula labels, references,
and intermediate text~is generated completely automatically by the prover).

Since x is a tuple an induction over x is set up. Since nothing is known about a and K the prover chooses a, K
arbitrary but fixed.

Induction base: x = Xx1\ for arbitrary but fixed x1 . We have to show:

(1) a¤ = 1 Þ IsInterpolatingPolynomial@NevillePolynomial@Xx1\, a, KD, Xx1\, a, KD ,
We assume

(2) a¤ = 1,
and show

(3) IsInterpolatingPolynomial@NevillePolynomial@Xx1\, a, KD, Xx1\, a, KD .
From (2), we can infer:

(4) a = Xa1\ ,
for some new constant a1.
Formula (3), using (4) and (Algorithm (Neville)), is implied by:

(5) IsInterpolatingPolynomialAconst
Poly@KD@a1D, Xx1\, Xa1\, KE ,

Exploring an Algorithm for Polynomial Interpolation in Theorema 5

which, using (Definition (Polynomial Domain)), is implied by:

(6) IsInterpolatingPolynomial@Xa1\, Xx1\, Xa1\, KD ,
which, using (Definition (Interpolating polynomial: characterization)), is implied by:

(7) Î
Poly@KD @Xa1\D í deg

Poly@KD@Xa1\D £ Xx1\¤ - 1 í "
i=1,¼, Xx1\¤ ikjjj eval

Poly@KD@Xa1\, Xx1\i D = Xa1\i
y{zzz ,

Formula (7) can now be easily verified by expanding the polynomial operations defined in the functor.

Induction hypothesis: We assume for arbitrary but fixed n ³ 1

(8) "
x

H x¤ = n ß a¤ = x¤L Þ IsInterpolatingPolynomial@NevillePolynomial@x, a, KD, x, a, KD ,

and show

(9) H x¤ = n + 1 ß a¤ = x¤L Þ IsInterpolatingPolynomial@NevillePolynomial@x, a, KD, x, a, KD .
We assume

(10) x¤ = n + 1,
(11) a¤ = x¤ ,

From (10) and (11), we can infer:

(12) x = Xx0, x��, xn\ ,
(13) a = Xa0, a��, an\ ,

for new constants x0, xn, a0, an and new constant sequences x�� and a�� of length n - 1.

The prover guesses this particular structure for representing x and a from the definition of NevillePolynomial.

It remains to show

(14) IsInterpolatingPolynomial@NevillePolynomial@Xx0, x��, xn\, Xa0, a��, an\, KD, Xx0, x��, xn\, Xa0, a��, an\, KD .
Formula (14), using (Algorithm (Neville)), is implied by:

(15) IsInterpolatingPolynomialAikjjjikjjj x
Poly@KD -

Poly@KD const
Poly@KD@x0Dy{zzz *

Poly@KD NevillePolynomial@Xx��, xn\, Xa��, an\, KD -
Poly@KDikjjj x

Poly@KD -
Poly@KD const

Poly@KD@xnDy{zzz *
Poly@KD NevillePolynomial@Xx0, x��\, Xa0, a��\, KDy{zzz �

Poly@KD Ixn -K x0M,
Xx0, x��, xn\, Xa0, a��, an\, KE

,

Membership in the polynomial domain and the degree bound for the interpolating polynomial are not too difficult
to prove. For proving the evaluation property we need some auxiliary knowledge about polynomial evaluation,
such as e.g. eval@p + q, aD = eval@p, aD + eval@q, aD , which can be proven by another special prover, which can
handle formulae containing the Ú|quantifier. In our approach of theory exploration, we suppose that this
knowledge has already been proven in a previous exploration phase and is for this proof available in the knowledge
base KB. After several simplifications we arrive at the following formula to be proved:

"
i=1,¼,n+1

i
kjjjjjjjikjjj eval

Poly@KDAikjjj x
Poly@KD -

Poly@KD const
Poly@KD@x0Dy{zzz, Xx0, x��, xn\i E *

K
eval

Poly@KD@
NevillePolynomial@Xx��, xn\, Xa��, an\, KD, Xx0, x��, xn\i D -K eval

Poly@KDAikjjj x
Poly@KD -

Poly@KD const
Poly@KD@xnDy{zzz, Xx0, x��, xn\i E *

K

eval
Poly@KD@NevillePolynomial@Xx0, x��\, Xa0, a��\, KD, Xx0, x��, xn\i Dy{zzz �

K

Ixn -K x0M = Xa0, a��, an\i

y
{zzzzzzz

Since Xx0, x��, xn\i (and Xa0, a��, an\i) can be simplified in case i = 1 or i = n + 1 a case distinction is now made:

Case i = 1: We have to showikjjj eval
Poly@KDAikjjj x

Poly@KD -
Poly@KD const

Poly@KD@x0Dy{zzz, x0E *
K

eval
Poly@KD@NevillePolynomial@Xx��, xn\, Xa��, an\, KD, x0D -K

eval
Poly@KDAikjjj x

Poly@KD -
Poly@KD const

Poly@KD@xnDy{zzz, x0E *
K

eval
Poly@KD@NevillePolynomial@Xx0, x��\, Xa0, a��\, KD, x0Dy{zzz �

K

Ixn -K x0M = a0

which, using (Definition (Polynomial Domain)), is implied by:

(22) 0
K

-K JHx0 - xnL *
K

a0N �
K

Ixn -K x0M = a0.

6 Exploring an Algorithm for Polynomial Interpolation in Theorema

Formula (22) can be verified by auxiliary knowledge on arithmetic in K . The remaining cases proceed analogously.

6 Application of the Algorithm to Concrete Examples

The recursive Algorithm["Neville"] can be used immediately in computations without any translation to
some machine|executable language. The Theorema command úComputeø can perform rewriting using
the recursive definition as given in Section 4. Rewriting is done by the interpreter of the underlying
Mathematica system. In addition, it can access semantics for the algorithmic language constructs pro-
vided by the Theorema language (e.g. finite tuples, quantifiers with finite ranges, arithmetic on numbers,
etc.), which is needed for performing polynomial arithmetic as defined in the polynomial functor in
Section 2.

Compute@NevillePolynomial@X1, 2, 3, 4, 5\, X3, 1, 5, 2, 6\, QD,
using ® XDefinition@"Polynomial Domain"D, Algorithm@"Neville"D\D[51, -

1093
������������������

12
,

443
��������������

8
, -

161
��������������
12

,
9
������
8

_
This computation tells that the Neville|polynomial over Q for the tuples X1, 2, 3, 4, 5\ and X3, 1, 5, 2, 6\
is the polynomial X51, - 1093�������������12 , 443����������8 , - 161����������12 , 9�����8 \ , which would commonly be written as the arithmetic term
51 - 1093�������������12 x + 443����������8 x2 - 161����������12 x3 + 9�����8 x4 .

7 Conclusion

The Theorema system has been used in formal development of part of a mathematical theory. An entire
exploration cycle~from defining mathematical concepts, over stating mathematical properties, computer|
supported proving, until finally applying mathematical knowledge to concrete objects~has been carried
through inside the system. The main objective of this case study is to show the integration of proving and
computing in combination with an attractive mathematics|oriented syntax inside one system.

References

[AXIOM] Axiom. Developed by IBM Research, directed by R. Jenks.
http://www.nag.com/symbolic_software.asp.

[Buchberger 96a] B. Buchberger: Symbolic Computation: Computer Algebra and Logic. In: Frontiers of
Combining Systems (F. Baader, K.U. Schulz eds.), pp. 193|220. Applied Logic Series. Kluwer Aca-
demic Publishers, 1996.

[Buchberger 96b] B. Buchberger: Mathematica as a Rewrite Language. Invited paper in: Proceedings of
the Fuji Conference on Functional Logic Programming, Shonan Village, Nov 1|4, 1996, (T. Ida ed.), pp.
1−13, Telos Publishing.

[MKM 03] Bruno Buchberger, Gaston Gonnet, Michiel Hazewinkel (eds.). Mathematical Knowledge-
ment Management. Special issue of the journal Annals of Mathematics and Artificial Intelligence, Kluwer
Publishing Company, 2003.

[Windsteiger 99] W. Windsteiger: Building up Hierarchical Mathematical Domains Using Functors in
Theorema. In: A. Armando and T. Jebelean, editors, Electronic Notes in Theoretical Computer Science,
vol 23|3, p. 83|102, Elsevier, 1999.

Exploring an Algorithm for Polynomial Interpolation in Theorema 7

