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Abstract

We present  a  case  study using  the  Theorema  system to  explore  an  algorithm for  polynomial
interpolation. The emphasis of the case study lies on formulating mathematical knowledge in
one language that appears in its syntax close to common mathematical language but is precise
enough  to  formulate  all  details  necessary  for  proving.  Moreover,  the  language  allows  the
computation of concrete examples without any further translation into an executable language.

*  This  work  has  been  supported  by  the  "Spezialforschungsbereich for  Numerical  and  Symbolic  Scientific  Computing"
(SFB  F013)  at  the  University  of  Linz  and  the  european  union  "CALCULEMUS Project"  (HPRN|CT|2000|00102). The
author would like to thank B.Buchberger and M.Rosenkranz for many valuable discussions during the case study that
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1 Introduction

Existing mathematical  software systems (e.g.  Mathematica,  MAPLE, Gap etc.)  have  made big  progress
over the past decades by providing the users with comprehensive libraries of sophisticated algorithms in
various  areas  of  mathematics.  In  parallel,  basically  independently,  the  past  decades  have  also  produced
enormous  progress  in  the  automation  of  the  proving  activity  of  mathematicians.  These  approaches,
however, have put their emphasis mainly on proving isolated theorems, where systems like Otter, Spass,
or Vampire are rather successful.

The challenge for the future is the theoretical foundation, the design, and implementation of integral
software  systems  that  guide,  support,  and  at  least  partially  automate  the  entire  process  of  inventing,
proving, and applying mathematical knowledge using mathematical knowledge and method libraries and,
as  a  result,  expanding  these  libraries  by  the  result  of  this  process.  Recently,  this  integral  view  and
research program for the next generation of mathematical software systems has been named úMathemati-
cal  Knowledge  Managementø  (MKM) in  the  first  international  workshop  on  MKM, Sept.  14|16,  2001,
organized at RISC|Linz by B. Buchberger, see [MKM 03].

From the very beginning the Theorema project was meant to give a logical and software technological
frame  for  the  entire  mathematical  knowledge  management  as  an  integral  coherent  process  with  the
following key design objectives and ideas: 

è The three  main  activities  of  mathematics~proving, computing,  and  solving~should all  be  available
in  one  logical  and  software  technological  frame.  Moreover,  the  natural  interplay  between  proving,
computing, and solving should be supported by the system.



è Domains, functors and categories as a natural and powerful structuring mechanism for generic build|
up of systematic knowledge and methods.

è Preference to special proving, simplifying, and solving algorithms for special mathematical theories as
opposed  to  a  one|method|approach  to  proving  all  of  mathematics  (e.g.  resolution  method)  with  the
possibility  to  link  powerful  and  provenly  correct  algebraic  algorithms  (e.g.  Cylindrical  Algebraic
Decomposition  for  quantifier  elimination,  Gröbner  bases  method  for  systems of  algebraic  equations,
Risch’s algorithm for symbolic integration, or Zeilberger’s algorithm for sum identities).

è High usability and attractiveness for the working mathematician by using various software technologi-
cal  advances,  e.g.  flexible  syntax  imitating  the  usual  textbook|style,  proof  presentation  with  high
readability and postprocessing capabilities.

è Knowledge management tools for the construction, maintenance, and modification of large mathemati-
cal knowledge bases together with system support for integral theory exploration: failure analysis for
proofs  and  conjecture  generation  based  on  failure  analysis;  build|up  of  libraries  of  problem  types,
knowledge types and algorithm types and their systematic use in the theory exploration process.

In this paper, we would like to demonstrate part of the currently available features in Theorema in a case
study,  namely  polynomial  interpolation.  In  this  case  study,  we  show:  1)  How the  domain  of  univariate
polynomials  can  be  built  up  in  generic  form using  the  functor  construct  available  in  Theorema.  2)  We
demonstrate how the problem of interpolation can be specified in this setting. 3) How a special solution
of the interpolation problem, namely by the Neville algorithm, can be formulated. 4) How its correctness
proof can be given. 5) How the algorithm can finally be applied to concrete problems.
With  this  case  study  we  want  to  demonstrate  the  following  aspects,  which  play  a  crucial  role  in  an
integral view of the mathematical knowledge management process: 1) Problem specification, algorithmic
formulation,  correctness  proof,  and  computation  (application to  concrete  examples)  can  be  done  within
the one and uniform logic and system frame of Theorema. 2) The possibility for formulating mathemati-
cal  knowledge  and  methods  in  a  generic  way  that  guarantees  applicability  and  re|usability  in  a  wide
range of (hierarchically built|up) domains. 3) Attractive choice of syntax, which is close to the common
usage of notation in mathematical textbooks and at the same time is formally rigorous in the sense that all
formulae  (including  the  algorithms)  are  just  formulae  in  the  underlying  predicate  logic.  We  want  to
particularly  emphasize  the  didactic  challenge  in  this  context:  on  the  one  hand,  every  detail  must  be
spelled out unambiguously whereas, on the other hand, we want to stay close to common use (and often
ab|use) of mathematical notation used in mathematical texts.
In this paper, we do not yet talk about possibilities in Theorema for guiding and supporting the invention
process. However, note for example, that proofs for elementary properties of e.g. polynomial evaluation,
which are needed for polynomial interpolation, are naturally suggested by the structure of the polynomial
domain as defined in the polynomial functor. However, we would also like to emphasize that systematic
methods for mathematical exploration, in our view, are not only a desirable goal for completely automat-
ing the invention process (which will never be possible by the inherent incompleteness of mathematics)
but  are  a  very  reasonable  and  worthwhile  research  goal  for  improving  the  didactics  and  heuristics  of
mathematics. In concrete terms this means that at certain stages in the invention process instead of getting
support  from  the  system  the  user  may  also  interact  with  the  system  by  allowing  the  user  to  guide  the
prover or suggesting the prover the general structure of an algorithm.
This case study is taken from lecture notes used in courses, whose goal is to present the entire content of
the  first  year  of  mathematics  study  in  an  algorithmic  fashion.  The  Theorema  language  turns  out  to
provide  a  suitable  frame  for  these  courses,  because  the  entire  mathematical  knowledge  including  all
algorithms  can  be  formulated  in  a  style,  which  later  allows  proving  all  the  properties  in  subsequent
courses. Similar case studies have been initiated for other topics such as Gaussian elimination or Gröbner
bases theory.
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2 The Polynomial Functor

We  present  a  case  study  in  the  domain  of  univariate  polynomials  over  a  field  K .  Polynomials  can  be
defined  to  be  infinite  K |sequences  with  only  finitely  many  non|zero  elements,  i.e.  the  (infinite)  direct
sum of  (infinitely many copies  of)  the  coefficient  field.  Thus,  for  each such sequence there  must  be  an
index, such that the sequence consists of only zeroes after this index. This is an appropriate setting for a
computer|representation of polynomials, since it allows to naturally represent a polynomial by a K |tuple
of its coefficients up to the last non|zero entry in the sequence.

In  the  Theorema  language,  the  domain  of  univariate  polynomials  over  a  coefficient  field  K  can  be
introduced  nicely  by  a  Functor.  Functors  are  a  well|known  concept  (e.g.  in  category  theory)  and  the
hierachical construction of mathematical domains by functors has already been used in Computer Alge-
bra systems (the use of domains and categories is one of the distinctive design features of the well|known
AXIOM  system,  see  [AXIOM]).  The  algorithmic  nature  of  functors  as  introduced  in  the  Theorema
system  (see  [Buchberger  96a],  [Buchberger  96b],  and  [Windsteiger  99])   relates  to  how  functors  are
available in the programming language ML. In general, a functor allows to construct a new domain from
an  already  existing  domain.  In  the  concrete  case,  we  assume  a  domain  K  and  construct  the  domain  of
polynomials over K , named Poly@KD , by defining the characteristic property for the elements in Poly@KD
and by defining operations in Poly@KD  based on available operations in the underlying domain K .  Note
that  we  will  present  here  only  part  of  the  functor,  namely  just  those  definitions  that  are  relevant  for
further discussion on the polynomial interpolation algorithm presented in Section 4.  The functor defini-
tion shown in Figure 1 must be read as follows: The domain Poly@KD  is such a domain P , where, for any
p, q, n, a , the following operations are defined:

è Î
P

@pD  (p  is an element in P) iff p  is a tuple of positive length with elements from K .

è x
P

 (a new constant x  in P) is the tuple Z0
K

, 1
K

^ .

è deg
P

@pD  (the degree of p  in P) is either 0 or it is such an i  between 1 and  p¤  such that ¼ . (The úsuch

a|quantifierø  '
i=1,¼, p¤ ¼  is  a  special  language  construct  available  in  the  Theorema  language,  which

stands  for  úsuch  an  i  between  1  and   p¤  satisfying  the  property  ¼ø.  It  provides  a  formal  frame  for
giving implicit function definitions.) 

è etc.

The  constant  x  in  the  polynomial  domain  plays  exactly  the  role  of  the  úpolynomial  indeterminateø  x
when  thinking  of  polynomials  as  úarithmetic  termsø  of  the  form  Úk=0

n pi  xi .  In  the  functor  notation  all
function, predicate, and object constants carry the domain, for which they are defined, as an underscript,
e.g. -

Poly@KD  for subtraction in the domain of polynomials as opposed to -
K

 for subtraction in the domain K .

In  the  remainder  of  this  paper,  all  text  in  gray  boxes  is  Theorema  input  or  output  as  it  appears  in  a
Theorema session. The syntax used~including all special symbols and typesetting facilities~is machine|
readable and the Theorema parser translates it unambiguously into Theorema’s internal representation.
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DefinitionA"Polynomial Domain", any@KD,
Poly@KD := FunctorAP, any@p, q, n, aD,

Î
P

@pD � ikjjjis|tuple@pD í  p¤ > 0 í "
i=1,¼, p¤  Î

K
@pi Dy{zzz

x
P

:= Z0
K

, 1
K

^
deg

P
@pD :=

loooooomnoooooo
0 Ü "

j=1,¼, p¤ Jpj = 0
K

N
'

i=1,¼, p¤  ikjjjJpi ¹ 0
K

N í "
j=i+1,¼, p¤  Jpj = 0

K
Ny{zzz - 1 Ü otherwise

coef
P

@p, nD :=

loooomnoooo
pn+1 Ü n ³ 0 í n £ deg

P
@pD

0
K

Ü otherwise

const
P

@aD := Xa\
canonic

P
@pD := [pi È

i=1,¼,deg
P

@pD+1
_

p -P q := canonic
P

A[coef
P

@p, iD -K coef
P

@q, iD Ë
i=0,¼,MaximumAdeg

P
@pD,deg

P
@qDE_E

p *
P

q := [ â
K

j=0,¼,i

coef
P

@p, jD *
K

coef
P

@q, i - jD É
i=0,¼,deg

P
@pD+deg

P
@qD_

p �
P

a := [coef
P

@p, iD �
K

a É
i=0,¼,deg

P
@pD_

eval
P

@p, aD := â
K

i=0,¼,deg
P

@pD coef
P

@p, iD *
K

ai

EE

Figure 1: The functor defining the domain of univariate polynomials.

3 Problem Specification: Polynomial Interpolation

Given a polynomial p  over K  and two tuples x  and a , one might ask, whether p  evaluates (in Poly@KD)
to  ai  at  xi  (for  all  i = 1, ¼,  x¤),  i.e.  whether  p  is  an  interpolating polynomial  for  x  and a  in  Poly@KD .
This  consideration  is  natural  because  then  the  úpolynomial  function  associated  with  pø  would  run
through  all  the  given  points  Xxi , ai \ ,  which  is  a  crucial  property  for  many  applications  in  mathematics
(e.g.  several  methods  for  solving  equations  are  based  on  iteratively  solving  equations  for  interpolating
polynomials). In Theorema, this property can be expressed as follows:

DefinitionA"Interpolating polynomial: characterization", any@p, x, a, KD,
IsInterpolatingPolynomial@p, x, a, KD :�

ikjjjj Î
Poly@KD @pD í deg

Poly@KD@pD £  x¤ - 1 í "
i=1,¼, x¤ ikjjj eval

Poly@KD@p, xi D = ai
y{zzzy{zzzzE

Under certain restrictions~the tuples x  and a  must be non|empty and have equal length and the elements
of x  must be mutually distinct~it can be shown that for given x, a , and K  there exists a unique polyno-
mial p  over K  of degree less equal  x¤ - 1  such that IsInterpolatingPolynomial@p, x, a, KD . Of course, it is
then desirable to come up with an algorithm that computes the interpolating polynomial for given tuples
x, a  and coefficient field K .
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4 Solution to the Interpolation Problem: Neville Algorithm

An ad|hoc solution for an interpolation algorithm can immediately be extracted from the proof of unique
existence of the interpolating polynomial. The proof of this fact can be reduced to prove solvability of a
system  of  linear  equations,  which  is  always  guaranteed  under  the  given  restrictions  on  x  and  a .  The
interpolating polynomial  can  then  be  computed  by  solving the  linear  system.  However,  there  are  better
algorithms for finding the interpolating polynomial, for instance the Neville algorithm, which proceeds by
recursion over the tuples x  and a . Written in Theorema the algorithm is given as follows: 

AlgorithmA"Neville", any@x, a, x0, x��, xn, a0, a��, an, KD,
NevillePolynomial@Xx\, Xa\, KD = const

Poly@KD@aD
NevillePolynomial@Xx0, x��, xn\, Xa0, a��, an\, KD =ikjjjikjjj x

Poly@KD -
Poly@KD const

Poly@KD@x0Dy{zzz *
Poly@KD NevillePolynomial@Xx��, xn\, Xa��, an\, KD -

Poly@KDikjjj x
Poly@KD -

Poly@KD const
Poly@KD@xnDy{zzz *

Poly@KD NevillePolynomial@Xx0, x��\, Xa0, a��\, KDy{zzz �
Poly@KD Ixn -K x0M

E

5 Correctness of the Algorithm

The correctness theorem for the Neville algorithm written in Theorema syntax is as follows:

Theorem@"Neville polynomial is interpolating polynomial", any@is|tuple@xD, a, KD, with@ x¤ > 0 ß  a¤ =  x¤D
IsInterpolatingPolynomial@NevillePolynomial@x, a, KD, x, a, KDD

For automatically proving a formula for all tuples  x ,  we can use the tuple induction prover  available in
the  Theorema  system.  This  prover  implements  a  special  prove  technique  available  for  tuples,  namely
Noetherian induction. In order to call this prover, we issue the Theorema command

Prove@Theorem@"Neville polynomial is interpolating polynomial"D, using ® KB, by ® TupleInductionD ,

where KB contains the knowledge base of auxiliary assumptions needed for the proof.  We will refer to
required knowledge from KB in the proof later.  The tuple induction prover comes up with a successful
and  complete  proof.  Due  to  space  limitations,  we  show  only  the  key  steps  of  this  proof  (text  in  boxes
contains explanation of  the prove techniques applied,  all  the rest~including formula labels,  references,
and intermediate text~is generated completely automatically by the prover).

Since x  is a tuple an induction over x  is set up. Since nothing is known about a  and K  the prover chooses a, K  
arbitrary but fixed. 

Induction base: x = Xx1\  for arbitrary but fixed x1 . We have to show:

(1)  a¤ = 1 Þ IsInterpolatingPolynomial@NevillePolynomial@Xx1\, a, KD, Xx1\, a, KD ,
We assume

(2)  a¤ = 1,
and show

(3) IsInterpolatingPolynomial@NevillePolynomial@Xx1\, a, KD, Xx1\, a, KD .
From (2), we can infer:

(4) a = Xa1\ ,
for some new constant a1.
Formula (3), using (4) and (Algorithm (Neville)), is implied by:

(5) IsInterpolatingPolynomialAconst
Poly@KD@a1D, Xx1\, Xa1\, KE ,
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which, using (Definition (Polynomial Domain)), is implied by:

(6) IsInterpolatingPolynomial@Xa1\, Xx1\, Xa1\, KD ,
which, using (Definition (Interpolating polynomial: characterization)), is implied by:

(7) Î
Poly@KD @Xa1\D í deg

Poly@KD@Xa1\D £  Xx1\¤ - 1 í "
i=1,¼, Xx1\¤ ikjjj eval

Poly@KD@Xa1\, Xx1\i D = Xa1\i
y{zzz ,

Formula (7) can now be easily verified by expanding the polynomial operations defined in the functor.

Induction hypothesis: We assume for arbitrary but fixed n ³ 1

(8) "
x

H x¤ = n ß  a¤ =  x¤L Þ IsInterpolatingPolynomial@NevillePolynomial@x, a, KD, x, a, KD ,

and show

(9) H x¤ = n + 1 ß  a¤ =  x¤L Þ IsInterpolatingPolynomial@NevillePolynomial@x, a, KD, x, a, KD .
We assume

(10)  x¤ = n + 1,
(11)  a¤ =  x¤ ,

From (10) and (11), we can infer:

(12) x = Xx0, x��, xn\ ,
(13) a = Xa0, a��, an\ ,

for new constants x0, xn, a0, an and new constant sequences x��  and a��  of length n - 1.

The prover guesses this particular structure for representing x  and a  from the definition of NevillePolynomial.

It remains to show

(14) IsInterpolatingPolynomial@NevillePolynomial@Xx0, x��, xn\, Xa0, a��, an\, KD, Xx0, x��, xn\, Xa0, a��, an\, KD .
Formula (14), using (Algorithm (Neville)), is implied by:

(15) IsInterpolatingPolynomialAikjjjikjjj x
Poly@KD -

Poly@KD const
Poly@KD@x0Dy{zzz *

Poly@KD NevillePolynomial@Xx��, xn\, Xa��, an\, KD -
Poly@KDikjjj x

Poly@KD -
Poly@KD const

Poly@KD@xnDy{zzz *
Poly@KD NevillePolynomial@Xx0, x��\, Xa0, a��\, KDy{zzz �

Poly@KD Ixn -K x0M,
Xx0, x��, xn\, Xa0, a��, an\, KE

,

Membership in the polynomial domain and the degree bound for the interpolating polynomial are not too difficult 
to prove. For proving the evaluation property we need some auxiliary knowledge about polynomial evaluation, 
such as e.g. eval@p + q, aD = eval@p, aD + eval@q, aD , which can be proven by another special prover, which can 
handle formulae containing the Ú|quantifier. In our approach of theory exploration, we suppose that this 
knowledge has already been proven in a previous exploration phase and is for this proof available in the knowledge 
base KB. After several simplifications we arrive at the following formula to be proved:

"
i=1,¼,n+1

i
kjjjjjjjikjjj eval

Poly@KDAikjjj x
Poly@KD -

Poly@KD const
Poly@KD@x0Dy{zzz, Xx0, x��, xn\i E *

K
eval

Poly@KD@
NevillePolynomial@Xx��, xn\, Xa��, an\, KD, Xx0, x��, xn\i D -K eval

Poly@KDAikjjj x
Poly@KD -

Poly@KD const
Poly@KD@xnDy{zzz, Xx0, x��, xn\i E *

K

eval
Poly@KD@NevillePolynomial@Xx0, x��\, Xa0, a��\, KD, Xx0, x��, xn\i Dy{zzz �

K

Ixn -K x0M = Xa0, a��, an\i

y
{zzzzzzz

Since Xx0, x��, xn\i  (and Xa0, a��, an\i ) can be simplified in case i = 1 or i = n + 1 a case distinction is now made:

Case i = 1: We have to showikjjj eval
Poly@KDAikjjj x

Poly@KD -
Poly@KD const

Poly@KD@x0Dy{zzz, x0E *
K

eval
Poly@KD@NevillePolynomial@Xx��, xn\, Xa��, an\, KD, x0D -K

eval
Poly@KDAikjjj x

Poly@KD -
Poly@KD const

Poly@KD@xnDy{zzz, x0E *
K

eval
Poly@KD@NevillePolynomial@Xx0, x��\, Xa0, a��\, KD, x0Dy{zzz �

K

Ixn -K x0M = a0

which, using (Definition (Polynomial Domain)), is implied by:

(22) 0
K

-K JHx0 - xnL *
K

a0N �
K

Ixn -K x0M = a0.
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Formula (22) can be verified by auxiliary knowledge on arithmetic in K . The remaining cases proceed analogously.

6 Application of the Algorithm to Concrete Examples

The recursive Algorithm["Neville"] can be used immediately in computations without any translation to
some  machine|executable  language.  The  Theorema  command  úComputeø  can  perform  rewriting  using
the  recursive  definition  as  given  in  Section  4.  Rewriting  is  done  by  the  interpreter  of  the  underlying
Mathematica  system.  In  addition,  it  can  access  semantics  for  the  algorithmic  language  constructs  pro-
vided by the Theorema language (e.g. finite tuples, quantifiers with finite ranges, arithmetic on numbers,
etc.),  which  is  needed  for  performing  polynomial  arithmetic  as  defined  in  the  polynomial  functor  in
Section 2.

Compute@NevillePolynomial@X1, 2, 3, 4, 5\, X3, 1, 5, 2, 6\, QD,
using ® XDefinition@"Polynomial Domain"D, Algorithm@"Neville"D\D[51, -

1093
������������������

12
,

443
��������������

8
, -

161
��������������
12

,
9
������
8

_
This computation tells that the Neville|polynomial over Q for the tuples X1, 2, 3, 4, 5\  and X3, 1, 5, 2, 6\
is the polynomial X51, - 1093�������������12 , 443����������8 , - 161����������12 , 9�����8 \ , which would commonly be written as the arithmetic term
51 - 1093�������������12  x + 443����������8  x2 - 161����������12  x3 + 9�����8  x4 . 

7 Conclusion

The Theorema  system has been used in formal development of part of a mathematical theory. An entire
exploration cycle~from defining mathematical concepts, over stating mathematical properties, computer|
supported proving, until finally applying mathematical knowledge to concrete objects~has been carried
through inside the system. The main objective of this case study is to show the integration of proving and
computing in combination with an attractive mathematics|oriented syntax inside one system. 
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