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Abstract. We present a new method for solving simple BVPs, using
noncommutative polynomials for modeling integral, differential and bound-
ary operators. The method is based on right inversion of linear differential
operators with constant coefficients and uses a fixed Grobner basis for
normalizing the resulting Green’s operator. We have implemented the
algorithm in Theorema. The paper concludes with presenting a sample
computation carried out by our implementation.
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1 Introduction

In [6, 8] we have presented a new approach for solving simple BVPs (throughout
this extended abstract this means “BVPs for linear differential operators with
constant coefficients such that there is a unique solution”) via noncommutative
Grdobner bases. In the course of the ongoing PhD thesis [7], we have found another
new method, which has several advantages:

— It avoids the costly computation of a Grébner bases by applying right in-
version and one fized Grébner basis for reducing the Green’s operator to
standard form.

— Our new method is fully algorithmic and works for any simple BVP. It has
been implemented in Theorema [2].

— It does not need Gaussian elimination for symbolic expressions as e.g. in the
standard formula for the Green’s function; see page 189 in [4].

The paper is structured as follows. We will specify in detail which type of
problem we want to solve. Then we describe the main features of our solution
algorithm, whose central datatype is the Green’s polynomials. Finally, we present
how a sample BVP is solved by our implementation.



Our topic is related but yet fundamentally different from the more common
task of symbolically solving differential equations, as pursued e.g. by Bronstein,
Singer, Ulmer, van der Put; see the ISSAC proceedings of 2003 and 2002 for a
representative survey on the state of the art in this field. The essential difference
between boundary problems and differential equations is that one searches for
an operator rather than a function—as detailed in the next section.

2 Problem Specification

Let [a, b] be a finite interval in R, and let T be a linear differential operator with
constant coefficients given by

Tu=cou™ +...4+cp1u +cpu,

where ¢g is nonzero. We view T as a linear operator on the Banach space
(Cla, b], || - ||oo) With dense domain of definition ®(T") = C™[a, b]. The boundary
operators are defined on the same domain; for each i = 1,...,n we have

B; u=pio u(")(a) + ...+ pin—1u'(a) + pinula)
+qiou™®) + ...+ gin_1u' (D) + qinud),

where the coeflicients p; ;, g;,; are real numbers. Now the boundary value problem
induced by T and By, ...,B, is to find for each right-hand side f € Cla,b] a
function v € C"[a,b] (we assume its existence and uniqueness throughout this
note, restricting ourselves to regular BVPs) such that

Tu=f,

Now we could view this as a differential equation parametrized by the forcing
function f, but this is a rather artifical interpretation in the sense of computer
algebra: Solution algorithms for ODEs are typically specialized to a certain class
of functions —like Liouvillian extensions—for exploiting all the structural in-
formation available. However, in the BVP (1), we view f as ranging over the
nonalgorithmic domain Cfa, b]. Therefore the natural interpretation of (1) is to
search not for a function u € C™[a,b] for the infinitely many instantiations of
f but for an operator G : C[a,b] < C™[a,b], mapping each f € C|a,b] to “its”
solution u € C™[a, b]. The operator G is known as the Green’s operator [9].

The Green’s operator can be defined analogously for many other types of
BVPs for ODEs and PDEs, and it can often be described as an integral operator
having a so-called Green’s function g as its kernel. In the case of (1), this is
indeed possible [3], leading to the Green’s operator

b
G f(z) = / oa. ) F(€) dt. @)

Thus one can reduce the search for the operator G to the search of the (bi-
variate!) function ¢, and there is a solution method going along these lines [4].



However, working directly on the operator level seems more natural to us, and
we will now outline a new method for computing G in a suitable polynomial
setting [6,7]. The Green’s function g can be extracted from G in a trivial post-
processing step, if this is desired. Apart from the conceptual advantages, our
method may also be superior to [4] on efficiency grounds, but this should be
analyzed in detail later.

3 The Green’s Polynomials

Our approach models the involved differential, integral and boundary operators
as noncommutative polynomials: The differentiation u — u’ is represented by
the indeterminate D, the antiderivative operator u — (z +— f: u(€) d€) by A,

its dual u — (z — fzb u(&) d€) by B, the left boundary operator u — (z — u(a))
by L, and the right counterpart v — (z — (b)) by R. Moreover, we have
a parametrized family of multiplication operators My representing u — (z —
fz) u(z)).

The functions f are assumed to range over some algebra § of functions that
should fulfill suitable closure axioms coming out as a natural extension of the
well-known axioms for a differential algebra. We call such an § an analytic al-
gebra; see [7] for details. For the results presented here, it is sufficient to take
{z— 2¥ e’ |k € NA X € C} for §. The noncommutative polynomial ring

An(§) = C(A, B,D,L, R, M; | f € 3)

will be called analytic polynomials.

The algorithm for solving a BVP of the type (1) proceeds in three phases.
First we compute a projector P € An(F) onto the nullspace of T' by using some
trivial linear algebra on the fundamental system of T' (the latter is typically pre-
supposed when solving a BVP). Second we employ the Moore-Penrose theory [5]
for reducing (1) to the right-inversion problem GT = 1 — P, which can be solved
immediately by factoring the characteristic polynomial of T'. Third we reduce
the resulting expression (1 — P) T'* (with T* € 2n being the right inverse) with
respect to a carefully selected system of 36 polynomial equations. The resulting
polynomial is in a normal form that allows to read off the Green’s function (2)
immediately.

The polynomial equation system is the core idea for the algebraization em-
ployed in our approach. It captures the essential interactions between the inde-
terminates of 2n(F). For example, we have the equation D A = 1, expressing the
Fundamental Theorem of Calculus, the product rule, and integration by parts.
We have proved that the rewrite system induced by these equations is noetherian
and confluent; thus one can regard it as a noncommutative Grobner basis [1]. The
ideal generated by them identifies all those operators that should be equal on
analytic grounds; we call the corresponding factor algebra the Green’s polynomi-
als. The algorithm computes the Green’s polyomial associated with the Green’s
operator by providing its canonical representative.



4 An Example

The algorithm outlined above has been implemented in Mathematica, using
the framework of the Theorema system, an integrated working environment for
proving, solving and computing in various domains [2]. The following call solves
the boundary value problem for the differential operator T = D? 4+ 2D + 1 for
the boundary conditions Lu = 0 and Ru = 0. We give the input and output
verbatim:

1In[13]:= Compute[Green[D? + 2D + 1,(L, R}, by — GreenEvaluator]
Out[13]= (1 —7 Y[e *x]Ale®] — [e " |A[e*x] + 71 [e %x] Ae®x]
—n e ®z|B[e®] + n~1[e~%z]| B[e®x]

The multiplication operators My are denoted by [ f] for the sake of readabil-
ity. Note that one can immediately read off the corresponding term g(z,&) for
the Green’s function (2), which is typically defined by a case distiction on £ < x
and £ > x: The summands with A go into the first case, those with B into the
second; the multiplication operators before A and B yield terms in z, those after
yield terms in £.

The computing time for the example above is below one minute on a Pentium
1686, which is rather short in the light of Mathematica’s interpretation strategy:
It is known that self-made functions are slower by a factor of 100 to 1000 when
compared to C (using many built-in library functions, reduced the factor down
to almost 2). Thus Mathematica should only be used as a convenient platform
for early prototyping, which is precisely the intention of our current research
phase.

5 Conclusion

The method we have presented in this extended abstract can solve any regular
BVP for linear differential operators with constant coefficients. It is clear, how-
ever, that the essential ideas contained in our approach can be transferred to
various more general settings, if one manages to make the appropriate adaptions.
For example, the computation of the nullspace projector and the reduction with
respect to interaction equalities do not presuppose constant coeflicients in the
given differential operator; only the right inversion must be slightly generalized.

Besides this, one may use very similar techniques for approaching certain
easy partial differential equations (using D, and D, instead of just D, etc); the
crucial point is to find an appropriate notion of boundary operators. These and
similar questions will be addressed by the author in the course of further research
after the PhD thesis [7].
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