
Rule-based Deduction and Views in

Mathematica

Mircea Marin1? and Florina Piroi2??

1 Johann Radon Institute for Computational and Applied Mathematics
Austrian Academy of Sciences

Altenberger Straße 69, A-4040 Linz, Austria
Mircea.Marin@oeaw.ac.at

2 Research Institute for Symbolic Computation
Johannes Kepler University
A-4232 Hagenberg, Austria

Florina.Piroi@risc.uni-linz.ac.at

Abstract. We propose a rule-based system built on top of the capabili-
ties of Mathematica to program non-deterministic and partially defined
computations. The system is called ρLog and has primitive operators for
defining elementary rules and for computing with unions, compositions,
reflexive-transitive closures, and normal forms of rule applications. More-
over, ρLog can compute proof objects, which are internal representations
of deduction derivations which respect a specification given by the user.
We describe the programming principles and constructs of ρLog, the
structures used to encode deduction derivations, and the methods pro-
vided to manipulate and visualize them.

1 Preliminaries

ρLog is a renamed version of the rule-based programming system FunLog [9,
10]. We did this in order to avoid confusing it with FUNLOG [12], a system for
functional programming and logic programming developed in the eighties. Like
Elan [2], ρLog provides a suitable environment for specifying and implementing
deduction systems in a language based on rewrite rules whose application is
controlled by user-defined strategies. More precisely, ρLog allows to:

1. program non-deterministic computations by using the advanced features of
Mathematica [14], such as: matching with sequence patterns, and access to
state-of-the art libraries of methods for symbolic and numeric computation;

2. program rules l whose reduction relation →l can be defined, possibly recur-
sively, in terms of already defined reduction relations →l1 , . . . , →ln ;

3. enquire whether, for a given expression E and rule l, there exists an expres-
sion x such that the derivation relation E →l x holds. We denote such a
query by ∃?x : E →l x;

? Mircea Marin has been supported by the Austrian Academy of Sciences.
?? Florina Piroi has been supported by the Austrian Science Foundation FWF, under

the SFB grant F1302.

4. generate proof objects which encode deductions to decide the validity of
a formula ∃x : E →l x. The system has the capability to visualize such
deductions in human readable format, at various levels of detail.

We decided to implement ρLog in Mathematica mainly because:

1. Mathematica has advanced features for pattern matching and for com-
puting with transformation rules. These features provide good support for
implementing a full-fledged rule-based system,

2. it has very good support for symbolic and numeric computations,
3. rule-based programming, as envisioned by us, could be used efficiently to

implement provers, solvers and simplifiers which could be integrated in the
Theorema framework [5]. Since Theorema is implemented in Mathem-

atica, a Mathematica implementation of a powerful rule-based system
could become a convenient programming tool for Theorema developers.

The rest of this paper is structured as follows. Section 2 explains the princi-
ples of programming with rules in ρLog. The programming constructs of ρLog

are described in Section 3. We illustrate the deductive capabilities of ρLog in
Section 4. In Section 5 we describe the general structure of deduction deriva-
tions in ρLog. Section 6 is about proof objects, which constitute the internal
representation of deduction derivations. Section 7 gives an account to the meth-
ods provided by ρLog to manipulate proof objects, and to view the encoded
rule-based proofs in a human-readable format. Section 8 concludes.

In order to help the understanding of the pieces of Mathematica code
included in this report, we provide Appendix A with a brief description of the
pattern matching constructs of the Mathematica language.

2 Towards ρLog Rules

This section is intended to give the reader a clear understanding of what ρLog

rules are.

2.1 Rules

ρLog is a system for rule-based programming, in which rules specify non-
deterministic and partially defined computations. Formally, a rule has a specifi-
cation of the form

l :: patt :→ rhs (1)

where l is the rule name and patt :→ rhs is called the rule code. patt is a pattern
expression called the left-hand side of the rule, and rhs is called the right-hand
side of the rule. rhs specifies a computation in terms of the variables which
occur in patt . The computation described by rhs may be non-deterministic and
partially defined (see Section 2.2).

The main usage of rules is to apply them on expressions. Any expression
which can be represented in the language of Mathematica [14] is a valid ex-
pression for ρLog. Moreover, an expression may contain a distinguished number

2

of selected subexpressions. The current implementation of ρLog is capable to
apply rules on expressions with a (possibly empty) sequence of selected subex-
pressions E1, . . . , En such that Ei+1 is a subexpression of Ei whenever 1 ≤ i < n.
Such expressions are called ρ-valid.

Thus, the expressions which are meaningful for the current implementation
of ρLog have at most one innermost selected subexpression.

When we want to emphasize that a ρ-valid expression E has the innermost
selected subexpression E ′, then we will write E [[E ′]]. We may also write E [[E]]
when E is has no selected subexpressions, and E [[E ′/E ′′]] for the expression
obtained from E [[E ′]] by replacing the distinguished subexpression E ′ with the
unselected expression E ′′.

Note that the notation E [[E]] is ambiguous: either E has no selected subex-
pressions or E is selected itself. We allow this ambiguity because it is harmless
in our framework. In illustrative examples we will simply underline the selected
subexpressions of an expression.

Example 1. Take the expressions

E1 = f[f[x, e], e], E2 = f[x, e], E3 = f[f[f[x, e], x], y], E4 = f[f[x, e], f[e, x]].

E1,E2,E2 are ρ-valid, whereas E4 is not ρ-valid because it has two innermost
selected subexpressions.

We can write E1[[E1]], E2[[E2]] and E3[[f [x, e]]] to give information about the
innermost selected subexpressions (if any) of these expressions. We have

E1[[E1/z]] = z, E2[[E2/z]] = z, E3[[f[x, e]/z]] = f[f[z, x], y].

ut
The procedure which attempts to apply a rule l on a ρ-valid expression E and
returns the first result found is described below.

Procedure ApplyRule(E [[E ′]], l)
[E [[E′]] is a ρ-valid expression, l is the name of a rule l :: patt → rhs]
TS = { };
while (there is a substitution θ such that θ(patt) = E ′) and (θ /∈ TS) do

if θ(rhs) has a value
then

E ′′ = first value of θ(rhs);
return E [[E ′/E ′′]]

else TS = TS ∪ {θ};
fi;

od.

We call the substitutions θ matchers between patt and E ′. The meaning of θ(rhs)
is the following: compute the list of all possible values of rhs after instantiating
its variables with the bindings provided by the substitution θ.

The procedure which attempts to apply a rule l on a ρ-valid expression E
and returns all results is:

3

Procedure ApplyRuleList(E [[E ′]], l)
[E [[E′]] is a ρ-valid expression, l is the name of a rule l :: patt → rhs]
TS = { }; V = { };
while (there is a substitution θ such that θ(patt) = E ′) and (θ /∈ TS) do

TS = TS ∪ {θ};
V = V ∪ {E [[E ′/E ′′]] | E ′′ ∈ θ(rhs)};

od;
return V.

For a given rule l :: patt :→ rhs, we convene to write E ′ →l E ′′ if there exist

1. an enumeration strategy for matchers, and
2. an enumeration strategy of the elements of the lists of instances of rhs

for which the call ApplyRule[E ′, l] yields E ′′. If the call ApplyRule[E , l] does
not produce any value then we write E 6→l . We write →∗

l for the reflexive-
transitive closure of →l.

We conclude this section with the following observations:

1. a rule is applied to a whole expression or to a selected subexpression of an
expression,

2. rule application is a non-deterministic operation,
3. rule application is a partially defined operation,
4. rules can be composed into more complex rules via various combinators.

In the sequel we will assume implicitly that E,E ′, E1, E2, . . . denote ρ-valid
expressions, and that l, l′, l0, l1, l2,. . . denote ρLog rules.

2.2 Non-determinism

There are two sources of non-determinism when trying to apply a rule l, with
l :: patt :→ rhs, on some expression E: non-unique matchers θ, and non-unique
ways to evaluate a partially defined computation θ(rhs). Clearly, the result of an
application attempt E →l depends on the enumerations of matchers and results
which are built into a particular implementation. These enumeration strategies
are relevant to the programmer and are described in the specification of the
operational semantics of ρLog (Section 3).

2.2.1 Matchers. The matching mechanism of ρLog uses the one of Mathe-

matica [14, Sect. 2.3.8], which allows the usage of pattern constructs which
have no unique matchers. Such patterns can be specified if we employ sequence
variables1 and/or alternative patterns via the ”|” construct.

Example 2. In Mathematica, the pattern {x , 1, y } | {y , 2, x } matches
the list {a, 2, 1, 2, b} in 3 possible ways:

{x 7→ pa, 2q, y 7→ p2, bq}, {y 7→ paq, x 7→ p1, 2, bq}, {y 7→ pa, 2, 1q, x 7→ pbq}.
1 They are called named sequence patterns in the Mathematica book [14].

4

The symbols x and y in the pattern are followed by three underscores, and
therefore they denote variables which can be bound to an arbitrary sequence of
elements. To improve the readability of matchers, we have written the bindings
of sequence variables between p and q. The first matcher is the result of matching
with the first alternative of the pattern, whereas the last two are the result of
matching with the second alternative of the pattern. ut

The Mathematica interpreter relies on the following built-in enumeration strat-
egy [14, Sect. 2.3.8]: it tries first those matches that assign the shortest possible
sequences of arguments to the first sequence variables that are encountered while
traversing the pattern in a leftmost-innermost manner.

2.2.2 Partially defined computations. Because ρLog is implemented in
Mathematica, the partially defined computations in ρLog are specified via
Mathematica’s pattern matching constraints and/or by attaching side condi-
tions to patt or to rhs of (1). We write E/; cond for an expression E whose
instances σ(E) are defined if and only if σ(cond) evaluates to True (for some
substitution σ). The boolean expression cond is called the side condition which
determines whether a certain instance of E is defined or not.

Example 3. The expression

x − y/; (IntegerQ[x] ∧ IntegerQ[y] ∧ (x > y))

specifies a binary subtraction operation − : Z×Z → Z which is defined only for
pairs (x, y) ∈ Z × Z with x > y. ut

Thus, a rule with a condition attached to the right-hand side is of the form

l :: patt :→ rhs/; cond (2)

and it defines a reduction relation →l such that

∀E1,E2 : E1 →l E2 iff E2 = θ(rhs) ∧ θ(cond) = True

where θ is a matcher between E1 and patt .
The rule

l′ :: patt/; cond :→ rhs

differs from the rule l of (2) by having the side condition attached to the pattern
instead of the right-hand side of the rule code. The applicative behaviors of rules
l and l′ are the same.

It is possible to share variables between cond and rhs. This feature comes in
very handy when we want to use variables instantiated during the evaluation of
θ(cond) for computations in θ(rhs), when θ(cond) gives True. This capability
is achieved by enclosing the evaluation of rhs/; cond in a Mathematica Block

or Module construct, with a declaration of the variables shared between rhs and
cond .

5

Example 4. Consider the rule "second" defined by

"second" ::
X :→ Module [{res, OK}, res/; (

OK = True;
res = Replace[X, {{ , x , } :→x, x :→(OK = False; x)}];
OK)];

The rule defines the extraction of the second element from a list expression2. An
attempt to apply rule "second" to a concrete Mathematica expression E will
bind E to X (ba matching E with X), and thus the evaluation of the Module-
construct will assume the value E for X. The evaluation of the right-hand side
of "second" proceeds as follows:

– If the transformation rule { , x , } :→x is applicable to E , i.e. E is a list
and it has at least two elements, then the command

res = Replace[X, {{ , x , } :→x, x :→(OK = False; x)}]
will bind x to the second element of E and assign the value of x to res. In
this way, res gets bound to the second element of E . The value True of OK
remains unchanged. Therefore, the return value of the rule application is the
second element of E . In symbols, this means E →"second" E2 where E2 is the
second element of the list expression E .

– If the transformation rule { , x , } :→x is not applicable to E then the
effect of the command

res = Replace[X, {{ , x , } :→x, x :→(OK = False; x)}]
is to assign the value of E to x (via pattern matching), assign False to
OK, and finally assign the value of x, which is E , to res. In this way, the
side condition of the right-hand side of rule "second" evaluates to False.
Therefore E 6→"second". ut

Example 5. The rule

"split" :: {x , y }/; (Length[{x}] > Length[{y}]) :→{x}
takes as input a list L and computes a prefix sublist of L whose length is longer
than half the length of L. The attempt to apply rule "split" to {a, b, c} proceeds
as follows:

1. It starts to enumerate the matchers between {a, b, c} and {x , y } in the
order which is specific to the Mathematica interpreter, i.e.:

{x 7→ pq, y 7→ pa, b, cq}, {x 7→ paq, y 7→ pb, cq}, {x 7→ pa, bq, y 7→ pcq}, . . .

2. The enumeration is generated until we reach a matcher θ for which the condi-
tion θ(Length[{x}] > Length[{y}]) holds. In this example, the enumeration
stops when it reaches the matcher θ = {x 7→ pa, bq, y 7→ pcq} and the com-
putation resumes with the value {a, b} of the instance θ({x}). ut

2
Replace[E , rules] applies a rule or list of rules rules to E in an attempt to transform
the entire expression E [14].

6

2.3 Operations on rules

Rules can be composed with various combinators into more complex rules which
capture the most common ways of programming computations. ρLog provides
implementations for the following combinators:

choice: If l1, . . . , ln are rules then l1 | . . . | ln is a rule such that E1 →l1|...|ln E2

iff E1 →li E2 for some 1 ≤ i ≤ n,
composition: If l1, l2 are rules then l1 ◦ l2 is a rule such that E1 →l1◦l2 E2 iff

there exists E such that E1 →l1 E and E →l2 E2,
reflexive-transitive closures: If l1, l2 are rules then Repeat[l1, l2] is a rule

with E1 →Repeat[l1,l2] E2 iff there exists E such that E1 →∗
l1

E and E →l2 E2.
We write →∗

l1
for the reflexive-transitive closure of →l1 .

Similarly, Until[l2, l1] is a rule with the same denotational semantics as
Repeat[l1, l2]; the only difference is that Repeat[l1, l2] applies l1 as many
times as possible before applying l2 , whereas Until[l2, l1] applies l1 repeat-
edly until l2 is applicable.

normal form: If l is a rule then NF[l] is a rule such that E1 →NF[l] E2 iff E1 →∗
l

E2 and E2 6→l . Also, E →NFQ[l] E iff E 6→l .
rewrite rule: If l1 is a rule then the declaration RWRule[l1, l, options] defines

the rule l with

E →l E ′ iff there exists a subexpression E1 of E such that E1 →l1 E2, and
E ′ is the result of replacing in E the occurrence of E1 with E2.

l is called the rewrite rule induced by l1. The operational semantics of rewrit-
ing depends on the choice of the subexpression on which l1 can act. The
choice strategy of such expressions can be controlled via certain options to
the RWRule[] call. (See subsection 3.5.)

The implementation of ρLog is compositional, i.e., the meaning and enumeration
strategy of each program construct can be defined in terms of the meanings and
enumeration strategies of the component rules. These issues are addressed in the
following section.

3 Programming Constructs

A rule l is applied to an expression E via the call

ApplyRule[E , l]

If E →l, the call yields the value computed by the procedure ApplyRule de-
scribed in Section 2.1. Otherwise, E 6→l and the call returns the unevaluated
expression E . The call

ApplyRuleList[E , l]

returns the list computed by the procedure ApplyRuleList described in Section
2.1. Both methods ApplyRule[] and ApplyRuleList[] recognize a number of

7

options which can affect the output format and accuracy of the computed result
(more about this in Section 7).

In the remainder of this section we will describe the methods and constructs
mentioned in Section 2.3. For each of them we will explain how the enumeration
of values is done, and give some illustrative examples.

3.1 Basic rule

Basic rules are the most elementary programming constructs of ρLog. A basic
rule is a named Mathematica transformation rule. A basic rule l :: patt :→ rhs
is declared by

DeclareRule[patt :→ rhs, l]

The enumeration strategy for basic rules depends only on the enumeration strat-
egy of matchers between the (selection in the) input expression and the pattern
of the rule, which is the enumeration strategy implemented in Mathematica.

Example 6. The rule "perm" introduced by the declaration

DeclareRule[{x ,m , y , n , z }/; (m > n) :→{x, n, y,m, z}, "perm"]

takes as input a list of elements and permutes the elements which occur in
descending order. The outcome of the call

ApplyRule[{1, 2, 5, 4, 3}, "perm"]

is {1, 2, 4, 5, 3} where, the matcher is θ = {x 7→ p1, 2q,m 7→ 5, y 7→ pq, n 7→
4, z 7→ p3q}. ut

3.2 Choice

l1 | . . . | ln is the rule whose applicative behavior is given by

E1 →l1|...|ln E2 iff E1 →li E2 for some i ∈ {1, . . . , n}.

Enumerating the values for E1 →l1|...|ln E2 starts with enumerating the values
for E1 →l1 , followed by the enumeration of values for E1 →l2 , and so on up to
the enumeration of the values for E1 →ln .

Example 7. Consider the declarations

DeclareRule[{x ,m , y , n , z }/; (m > n) :→ False, "test"];
DeclareRule[{x } :→ True, "else"];

Then
ApplyRule[L, "test" | "else"]

yields True iff L is a list with elements arranged in ascending order. ut

8

3.3 Composition

l1 ◦ l2 is the rule whose applicative behavior is given by

E1 →l1◦l2 E2 iff E1 →l1 E and E →l2 E2 for some E .

The enumeration of values E2 for which the relation E1 →l1◦l2 E2 holds, proceeds
by enumerating values E2 such that E →l2 E2 during an enumeration of the
values E such that E1 →l1 E .

Example 8. The piece of code

DeclareRule[x Real/;x < 0 :→x + 7, "f"];
DeclareRule[x Real/;x > 0 :→√

x, "g"];

defines rules named "f" and "g" which encode the partially defined functions

f : (−∞, 0.) → R, x 7→ x + 7,
g : (0.,∞) → R, x 7→ √

x.

Then "f" ◦ "g" is the rule which encodes the function g ◦ f : (−7, 0) → R, and
the call

ApplyRule[−2., "f" ◦ "g"]
gives the result 2.23607. ut

3.4 Reflexive-transitive closures

Their applicative behavior of Repeat[l1, l2] and Until[l2, l1] is obtained by un-
folding the built-in recursive definitions:

Repeat[l1, l2] = (l1 ◦ Repeat[l1, l2]) | l2,
Until[l2, l1] = l2 | (l1 ◦ Until[l2, l1]).

It is easy to see that if l ∈ {Repeat[l1, l2], Until[l2, l1]} then

E1 →l E2 iff E1 →∗
l1

E and E →l2 E2 for some E

where →∗
l1

denotes the reflexive-transitive closure of →l1 . The enumeration strat-
egy for these rules can be expressed in terms of the enumeration strategies for
rule composition and choice described before.

Example 9 (Sorting). Consider the declarations of basic rules

DeclareRule[x :→x, "Id"];
DeclareRule[{x , m , y , n , z }/; (m > n) :→{x, n, y,m, z}, "perm"];

Then, an application of rule Repeat["perm", "Id"] to any list of integers yields
the sorted version of that list. For example

ApplyRule[{3, 1, 2}, Repeat["perm", "Id"]]

gives {1, 2, 3} via the following sequence of rule application steps:

{3, 1, 2} →"perm" {1, 3, 2} →"perm" {1, 2, 3} →"Id" {1, 2, 3}. ut

9

3.5 Selection shift rules and rewrite rules

ρLog allows programming rules which behave like term rewriting rules induced
by an already existing rule. In other words, if we have a rule l1 we can define a
rule l with the following behavior:

E →l E1 iff there exists a subexpression E ′ of E such that
E ′ →l1 E ′′ and E1 = E [[E ′/E ′′]].

A rewrite step E →l E1 can be regarded as a composition of two steps: one
which selects the subexpression of E to be rewritten, followed by another one
which rewrites it. To achieve suitable selection strategies for rewriting, we have
designed two kinds of rules:

1. the basic rule "Rw" whose applicative behavior can be depicted as follows:

E [[E ′]] →"Rw" E [[E ′/E ′]].

This means that, if E has no selected subexpressions then we add a selection
to it as a whole, otherwise we add a selection to the innermost selected
subexpression.

2. selection shift rules, which can shift the innermost selection on a proper
subexpression of the innermost selected subexpression. Selection shift rules
are important for navigating through the subexpressions of an expression,
until we reach one which can be rewritten.

Formally, a selection shift rule l is characterized by (a) a computable function
shiftl, and (b) a rule rl, with

E1 →l E2 iff ∃E ′ ∈ shiftl[E1] such that E ′ →rl
E2.

It is assumed that shiftl[E1] is a finite list of values for every input E1.
ρLog has only one built-in selection shift rule, SEL[l], whose applicative be-

havior is defined as a side-effect of a call

RWRule[l1, l, Traversal → val , Prohibit → {f1, . . . , fn}] (3)

with val ∈ {"LeftIn", "LeftOut"} and {f1, . . . , fn} a list of Mathematica

symbols. The option Traversal defines the choice strategy of the rewrite rule.
Traversal → "LeftIn" will look for a rewritable subexpression of the input
expression in leftmost-innermost order, while with Traversal → "LeftOut"

will look in the leftmost-outermost order.
When Prohibit is given a list of symbols {f1, . . . , fn}, the rewrite process

will ignore the subexpressions of the expressions with the outermost symbol one
of f1, . . . , fn. The default value of Prohibit is {}; this means that rewriting can
be performed everywhere.

The call (3), besides stating that l is a rewrite rule induced by l1, declares
the selection shift rule SEL[l] to be associated with the computable function

10

shiftSEL[l] defined by

shiftSEL[l][E [[E ′]]] =























{E ′
1, . . . ,E

′
m} if E ′ = f [E1, . . . ,Em] with

f 6∈ {f1, . . . , fn}, and
E′

i = E[[E′/f [E1, . . . ,Ei, . . . ,Em]]]
for all i ∈ {1, . . . ,m},

{ } otherwise

and with the rule

rSEL[l] =

{

l1 | SEL[l] if val = "LeftOut",
SEL[l] | l1 if val = "LeftIn".

The call (3) will also add the recursive definition l = "Rw"◦rSEL[l] into the ρLog

session.
Throughout this paper we will always assume that rl and shiftl represent

the rule and the computable function associated with a selection shift rule l.

Example 10. Consider the declarations

DeclareRule[f[x , e] :→x, "N"];
RWRule["N", "N*", Traversal → "LeftOut"];

and let E = f[f[x, e], y]. Then E →"N*" f[x, y] because of the following: "N*" can
be reduced to "Rw" ◦ rSEL[l], and E →"Rw" f[f[x, e], y]; then we take f[f[x, e], y] ∈
shiftSEL["N*"][f[f[x, e], y]], and apply rSEL["N*"] = "N" | SEL["N*"]; we choose the
alternative "N" and compute f[f[x, e], y] →"N" f[x, y]. ut

Selection shift rules can be defined by users too, but the current way to do it
is quite cumbersome. We are working on extending the actual implementation
of ρLog with a convenient definitional mechanism for selection shift rules.

We conclude the description of rewriting with an example which shows how
one can implement the evaluator of pure λ-calculus as a ρLog rewrite rule.

Example 11 (Pure λ-calculus). In λ-calculus [1], a value is an expression which
has no β-redexes outside λ-abstractions. We adopt the following syntax for λ-
terms:

term ::=
| x variable
| app[term1, term2] application
| λ[x, term] abstraction

β-redexes are eliminated by applications of the β-conversion rule, which can be
encoded in ρLog as follows:

DeclareRule[app[λ[x , t1], t2] :→ repl[t1, {x, t2}], "β"]

where repl[t1, {x, t2}] is defined by the user. In our example we want this func-
tion to replace all free occurrences of x in t1 by t2. A straightforward implemen-

11

tation of repl in Mathematica is3:

repl[λ[x , t], {x , }] := λ[x, t];
repl[x , {x , t }] := t;
repl[λ[x , t], σ] := λ[x, repl[t, σ]];
repl[app[t1 , t2], σ] := app[repl[t1, σ], repl[t2, σ]];
repl[t ,] := t;

The computation of a value of a λ-term proceeds by repeated reductions of the
redexes which are not inside abstractions. In ρLog, the reduction of such a redex
coincides with an application of the rewrite rule "β-elim" defined by

RWRule["β", "β-elim", Prohibit → {λ}]

The following calls illustrate the behavior of this rule:

t := app[z, app[λ[x, app[x, λ[y, app[x, y]]]], λ[z, z]]];
t1 := ApplyRule[t, "β-elim"]

app[z, app[λ[z, z], λ[y, app[λ[z, z], y]]]]

t2 := ApplyRule[t1, "β-elim"]

app[z, λ[y, app[λ[z, z], y]]]

t3 := ApplyRule[t2, "β-elim"]

app[z, λ[y, app[λ[z, z], y]]]

Thus, t2 is a normal form of t with respect to the rule "β-elim". To compute a
value of t directly, we could call

ApplyRule[t, Repeat["β-elim", "Id"]]

app[z, λ[y, app[λ[z, z], y]]]

ut

3.6 Normal form

If l is a rule then NFQ[l] is a built-in construct for a rule whose applicative
behavior is defined by

E →NFQ[l] E iff E 6→l .

NF[l] denotes a rule whose applicative behavior is given by

E →NF[l] E ′ iff (E →∗
l E ′ and E ′ 6→l).

The enumeration strategy of NF[l] is obtained by unfolding the built-in definition

NF[l] = NFQ[l] | (l ◦ NF[l]).
3 The Mathematica function definitions are tried top-down, and this guarantees a

proper interpretation of the replacement operation.

12

Example 12. Consider the rule "perm" defined in Example 9. The rule NF["perm"]
can be used to compute normal forms with respect to "perm". It is easy to see
that the normal form of an unordered list L with respect to "perm" is unique
and it coincides with the sorted version of L. Thus, the call

ApplyRule[L, NF["perm"]]

will always compute the sorted version of list L. For instance

ApplyRule[{3, 1, 4, 2}, NF["perm"]]

yields the sorted list {1, 2, 3, 4}. ut

3.7 Abstraction

If l0 is a rule built from other rules, the call

SetAlias[l0, l]

defines l as an alias to the composed rule l0. Note the distinction between
SetAlias[] and DeclareRule[]: the first argument of DeclareRule[] must
be a concrete Mathematica transformation rule, whereas the first argument of
SetAlias[] must be a rule composition, i.e., an expression made of rule names
and applications of the rule combinators described so far.

Example 13. For Example 9, the call

SetAlias[Repeat["perm", "Id"], "sort"]

declares a rule named "sort" whose applicative behavior coincides with that of
the construct Repeat["perm", "Id"]. ut

Declaring aliases makes compositions of rules easier and intuitive.

4 Illustrative Example

Consider the axioms of a non-commutative group with associative operation f,
right neutral element e, and inversion operation i. These axioms can be encoded
as basic ρLog rules as follows:

DeclareRule[f[f[x , y], z] :→ f[x, f[y, z]], "A"];
DeclareRule[f[x , e] :→ x, "N"];
DeclareRule[f[x , i[x]] :→ e, "I"];

The call
SetAlias["A" | "N" | "I", "G"];

defines "G" as an alias for the rule "A" | "N" | "I".

13

The rewrite relation induced by rules "A", "N", "I" can be programmed as

RWRule["G", "Group", Traversal → "LeftOut"];

The relation →"Group" is terminating but not confluent, since f[f[x, e], x] →"Group"

f[x, x] 6→"Group", f[f[x, e], x] →"Group" f[x, f[e, x]] 6→"Group". Therefore, checking
whether two terms s, t are joinable requires a systematic search for a term u
such that s →∗

"Group" u and t →∗
"Group" u.

A simple way to program this joinability test in ρLog is to declare:

DeclareRule[eq[x , x] :→ True, "Eq"];
SetAlias[Until["Eq", "Group"], "Join"];

Then the call:
ApplyRule[eq[s, t], "Join"]

will decide whether s and t are joinable or not by computing True if s and t
are joinable, and eq[s, t] otherwise. If we want to get more details about the
existence or non-existence of a rewrite derivation which makes the terms s and
t joinable, then we can call

ApplyRule[eq[s, t], "Join", TraceStyle → "Compact"];

This call will generate a Mathematica notebook with a human readable pre-
sentation of the underlying deduction derivation. Figure 1 shows the notebook
generated by the call

ApplyRule[eq[f[f[x, e], i[x]], f[f[e, y]], i[y]], "Join", TraceStyle → "Compact"];

5 Deduction Trees

A deduction tree (D-tree for short) is intuitively a trace of a validity-check for
the rule application query ∃?x : E →l x, for some given input expression E and
rule l. The construction of a D-tree proceeds by successively reducing the query
∃?x : E →l x to a finite number of simpler queries. This reduction process is
driven by the application of a set of inference rules.

We depict our inference rules as follows:

S1 . . . Sn

∃?x : E →l x
(4)

where Si (1 ≤ i ≤ n) are either (a) queries of the form ∃?x : Ei →li x, or (b)
valid reductions of the form Ei →l E ′

i , or (c) expressions of the form Ei →l′

E ′
i ∧ ∃?x : E ′

i →l1 x where Ei →l2 E ′
i is a valid reduction. We write [[Si]] for

the logical formula obtained by dropping the ’?’ superscripts from Si. With this
convention, each inference rule of our system will have the following meaning:

∃x : E →l x iff [[S1]] or . . . or [[Sn]].

14

Fig. 1. "Compact" presentation of a rule-based deduction.

Before describing the inference rules, one by one, we would like to treat first
the subject of rule reduction, and define some auxiliary notions.

We say that a rule l is elementary if it is either basic or of the form NFQ[l1]
with l1 some rule.

The reduct of l, denoted by red[l], is defined by4:

red[l] =







































































l l elementary, or choice, or selection shift,
or l1 ◦ l2 with l1 elementary or selection shift

l1 l SetAlias[l1, l]
l1 ◦ (l2 ◦ l3) l (l1 ◦ l2) ◦ l3
(l1 ◦ l0) | . . . | (ln ◦ l0) l (l1 | . . . | ln) ◦ l0
"Rw" ◦ (l0 | SEL[l]) l RWRule[l0, l, Traversal → "LeftOut"]
"Rw" ◦ (SEL[l] | l0) l RWRule[l0, l, Traversal → "LeftIn"]
(l1 ◦ Repeat[l1, l2]) | l2 l Repeat[l1, l2]
l2 | (l1 ◦ Until[l2, l1]) l Until[l2, l1]
red[l1] ◦ l2 l l1 ◦ l2
(l0 ◦ NF[l0]) | NFQ[l0] l NF[l0]

4 For lack of space, we will use the symbol ’ ’ for the reading ’is defined by’.

15

A rule l is reducible if red[l] 6= l, and irreducible otherwise. Ambiguities in the
definition of red[] are resolved by considering the first definition which becomes
applicable during a top-down scan in the function definition.

It is a routine proof to show that if l is a reducible rule then

∀x, y : x →l y ⇔ x →red[l] y.

Thus, the reduction of a rule l gives us an equivalent rule l′ such that ∃x : E →l x
is valid iff ∃x : E →l′ x is also valid. We regard the result of the call red[l] for
an irreducible rule l as the definition assigned by ρLog to l.

We define the relation � by

l � l′ iff l′ = red[l] and l 6= l′.

� is a well-founded relation because for any rule l, the string {ln}n∈N defined by

l0 = l and ln+1 = red[ln]

has an irreducible element ln0
.

Reducing a query ∃?x : E →l x to a simpler query is done by reducing
the rule l as much as possible, using the red[] function described above, until
we arrive at an irreducible rule which we try to apply. The termination of this
reduction process is guaranteed by the well-founded property of �.

We proceed now with describing the inference rules.

1. If l is reducible then the corresponding inference rule is:

∃?x : E →red[l] x

∃?x : E →l x

2. If l is an elementary rule then the corresponding inference rule is:

E →l E1 . . . E →l En

∃?x : E →l x

where E1, . . . , En (n ≥ 0) are all expressions such that E →l Ei.

3. If l is a selection shift rule then the corresponding inference rule is:

∃?x : E1 →rl
x . . . ∃?x : En →rl

x

∃?x : E →l x

where {E1, . . . ,En} = shiftl[E].

4. l ≡ l1 ◦ l2 where l1 is either elementary or a selection shift rule.
If l1 is elementary then the corresponding inference rule is

(E →l1 E1) ∧ (∃?x : E1 →l2 x) . . . (E →l1 En) ∧ (∃?x : En →l2 x)

∃?x : E →l1◦l2 x

where E1, . . . ,En are all the expressions such that E →l1 Ei.

16

If l1 is a selection shift rule then the corresponding inference rule is

∃?x : E1 →rl1
◦l2 x . . . ∃?x : En →rl1

◦l2 x

∃?x : E →l1◦l2 x

where {E1, . . . ,En} = shiftl1 [E].

5. l ≡ l1 | . . . | ln. The corresponding inference rule is

∃?x : E →l1 x . . . ∃?x : E →ln x

∃?x : E →l1|...|ln x
.

The definition of red[] guarantees that these inference rules cover all the possible
situations for the shape of a query.

D-Trees and partial D-trees. The D-tree for a query ∃?x : E →l x is obtained
by successive applications of the six inference rules defined above. We will denote
this D-tree by T (E , l). It is easy to see that T (E , l) may be infinite for certain
values of E and l. Consider, for example, the expression E = A∧B and the rule
"comm" :: X ∧ Y :→Y ∧ X, then T (E , l) is

...

A ∧ B →"comm" B ∧ A
B ∧ A →"comm" A ∧ B
A ∧ B →"comm" B ∧ A

To avoid the generation of such infinite data structures, we restrict the system
to the construction of partial D-trees which are obtained by imposing a limit
on the maximum number of inference applications along the branches of the
tree. Formally, the partial D-tree of maximum depth m, Tm(E , l), for the query
∃?x : E →l x, is defined by:

T0(E , l) ::=
∃?x : E →l x

Tm+1(E , l) ::=
E →l E1 . . . E →l En

∃?x : E →l x
l elementary

|
Tm(E1, rl1

) . . . Tm(E ′

n, rl1
)

∃?x : E →l x

l = l1
l1 selection
shift

|
Tm+1(E , red[l])

∃?x : E →l x
l reducible

|
Tm(E , l1) . . . Tm(E , ln)

∃?x : E →l x
l = l1 | . . . | ln

|
(E →l1

E1) ∧ Tm(E1, l2) . . . (E →l1
Ek) ∧ Tm(Ek, l2)

∃?x : E →l x

l = l1 ◦ l2
l1 elementary

|
Tm(E ′

1, rl1
◦ l2) . . . Tm(E ′

k, rl1
◦ l2)

∃?x : E →l x

l = l1 ◦ l2
l1 selection
shift rule

17

where k,m ∈ N and {E′
1, . . . , E

′
k} = shiftl1 [E]. Such a partial D-tree is ob-

tained by successive applications of the inferences defined earlier up to m times
along each branch. Inference steps of type (1) are not taken into account when
computing the depth of the D-tree.

In the sequel we will omit the expression E , the rule l and the depth m from
the notation of a (partial) D-tree Tm(E , l) whenever we consider it irrelevant.

The following classification of partial D-trees is relevant for interpreting the
data stored in their structure:

success D-tree is a partial D-tree which has at least one leaf node computed
by the application of inference rule of type (2) with n ≥ 1.

failure D-tree is a D-tree with no leaf nodes computed by the application of
inference rule of type (2) with n ≥ 1.

pending D-tree is a partial D-tree which is neither success D-tree nor failure
D-tree.

The meaning of a partial D-tree Tm(E, l) is:

– ∃x : E →l x if Tm(E, l) is a success D-tree;
– @x : E →l x if Tm(E, l) is a failure D-tree; and
– undefined, otherwise.

6 Proof Objects

The two most often invoked reasons for using proof objects in automated rea-
soning, and also the reasons for which ρLog implements one, are:

– keeping a complete record of a prover’s activity, and
– providing guidance to users (graphical/natural language display of proof

objects).

Other reasons for having a proof object in reasoning systems are extracting
proof tactics, later checking, extracting algorithms and computational methods,
etc. [13].

The proof objects of ρLog are intended to be a compact and more explicit
representation of the structure of a partial D-tree. They are defined by the
following grammar:

N ::= $SNODE[{E , lexpr ,E ′}]
| $SNODE[{E , lexpr}, N1, . . . , Nn]
| $FNODE[{E , lexpr}]
| $FNODE[{E , lexpr}, N1, . . . , Nn]
| $PNODE[{E , lexpr}, N1, . . . , Nn]
| $EPNODE[{E , lexpr}]

lexpr ::= l | {l1, . . . , ln} | 〈l,E , lexpr1〉.

In the sequel we describe the intended meaning of our proof objects. The proce-
dure which generates them is described in Section 6.4.

18

6.1 Success objects

A success object is a proof object of the form $SNODE[. . .]. Success objects are
encodings of success D-trees, thus they justify the validity of a formula ∃x :
E →l x or of a formula (E →l1 E ′) ∧ (∃x : E ′ →l2 x).

The success objects which justify the validity of ∃x : E →l x are of one of
the following forms:

– $SNODE[{E , l,E ′}] with l is elementary and E →l E ′ is the only way to
reduce E with →l,

– $SNODE[{E , l}, $SNODE[{E , l,E1}], . . . , $SNODE[{E , l,En}]] with l elementary,
n > 1, and E →l Ei (1 ≤ i ≤ n) are all possibilities to reduce E with →l,

– $SNODE[{E , {l1, . . . , ln},E ′}] where l1, . . . , ln are rules with the same applica-
tive behavior and $SNODE[{E , ln,E ′}] justifies the validity of ∃x : E →ln x,

– $SNODE[{E , {l1, . . . , ln}}, N1, . . . , Nk] where l1, . . . , ln are rules with the same
applicative behavior and $SNODE[{E , ln}, N1, . . . , Nk] justifies the validity of
∃x : E →ln x,

– $SNODE[{E , l1 | . . . | ln}, N1, . . . , Nn] where Ni are proof objects for ∃?x :
E →li x (1 ≤ i ≤ n), and at least one Ni is a success object,

– $SNODE[{E , l}, N1, . . . , Nk] where l is a selection shift rule with shiftl[E] =
{E1, . . . ,Ek}, Ni are proof objects for ∃?x : Ei →rl

x (1 ≤ i ≤ k), and at
least one Ni is a success object,

– $SNODE[{E , l1 ◦ l2}, N1, . . . , Nk] where l1 is elementary, E →l1 Ei (1 ≤ i ≤ k)
are all possible ways to reduce E with →l1 , Ni are proof objects for the
logical conjunction E →l1 Ei ∧ ∃?x : Ei →l2 x (1 ≤ i ≤ k), and at least one
Ni is a success object,

– $SNODE[{E , l1◦l2}, N1, . . . , Nk] where l1 is a selection shift rule, shiftl1 [E] =
{E1, . . . ,Ek}, Ni are proof objects for ∃?x : Ei →rl1

◦l2 x (1 ≤ i ≤ k), and at
least one Ni is a success object.

A success object for the logical conjunction E →l1 E ′ ∧ ∃x : E ′ →l2 x is of one
of the forms:

– $SNODE[{E , 〈l1,E ′, lexpr〉,E ′′}] where $SNODE[{E ′, lexpr ,E ′′}] justifies the va-
lidity of ∃x : E ′ →l x,

– $SNODE[{E , 〈l1,E ′, lexpr〉}, N1, . . . , Nk] where $SNODE[{E ′, lexpr}, N1, . . . , Nk]
justifies the validity of ∃x : E ′ →l x.

6.2 Failure objects

A failure object is a proof object of the form $FNODE[. . .]. Failure objects encode
failure D-trees, and therefore they justify the validity of a formula @x : E →l x
or of a logical conjunction (E →l1 E ′) ∧ (@x : E ′ →l2 x).

The failure objects which justify the validity of @x : E →l x are of one of the
following forms:

– $FNODE[{E , l}] with l is elementary and E 6→l,

19

– $FNODE[{E , {l1, . . . , ln}}, N1, . . . , Nk] where l1, . . . , ln are rules with the same
applicative behavior and $FNODE[{E , ln}, N1, . . . , Nk] justifies the validity of
@x : E →ln x,

– $FNODE[{E , l1 | . . . | ln}, N1, . . . , Nn] where each Ni is a failure object which
justifies that @x : E →li x,

– $FNODE[{E , l}, N1, . . . , Nk] where l is a selection shift rule with shiftl[E] =
{E1, . . . ,Ek} and Ni are failure objects which justify that @x : Ei →rl

x.
– $FNODE[{E , l1 ◦ l2}, N1, . . . , Nk] where l1 is elementary, E →l1 Ei (1 ≤ i ≤ k)

are all possible ways to reduce E with →l1 , and Ni are failure objects which
justify that E →l1 Ei ∧ @x : Ei →l2 x (1 ≤ i ≤ k),

– $FNODE[{E , l1◦l2}, N1, . . . , Nk] where l1 is a selection shift rule, shiftl1 [E] =
{E1, . . . ,Ek}, and Ni are failure objects which justify that @x : Ei →rl1

◦l2 x.

A failure object for the logical conjunction E →l1 E ′ ∧ @x : E ′ →l2 x is of the
form $FNODE[{E , 〈l1,E ′, lexpr〉}] where $FNODE[{E ′, lexpr}] justifies the validity
of @x : E ′ →l x.

6.3 Pending objects

A pending object is a proof object of the form $EPNODE[. . .] or $PNODE[. . .]. Pend-
ing objects of the form $EPNODE[. . .] are called elementary pending objects, and
they correspond to the objects of D-trees which are computed when the depth
limit for search is reached. The pending object corresponding to a pending D-tree
Tm(E , l) justifies the fact that an exhaustive search until depth m is insufficient
for deciding the validity of a formula ∃x : E →l x.

6.4 The encoding procedure

We will denote the encoding of a partial D-tree T by 〈〈T 〉〉. We will show how
the encoding function of a partial D-tree T can be defined recursively, in terms
of the partial D-subtrees of T .

Let Tm be a partial D-tree of depth m and d the search depth limit. The
computation of the proof object 〈〈Tm〉〉 for Tm proceeds as follows:

1. If Tm ≡ ∃?x : E →l x
with m < d then 〈〈Tm〉〉 = $FNODE[{E , l}].

2. Otherwise, if Tm ≡ ∃?x : E →l x
with m = d then Tm is a partial D-tree of

maximum search depth, and 〈〈Tm〉〉 = $EPNODE[{E , l}].

3. Otherwise, if Tm ≡ E →l E1 . . . E →l En

∃?x : E →l x
with n > 0 then

〈〈Tm〉〉 =

{

$SNODE[{E , l,E1}] if n = 1,
$SNODE[{E , l}, $SNODE[{E , l,E1}], . . . , $SNODE[{E , l,En}]] if n > 1.

20

4. Otherwise, if there exists a sequence of partial D-trees T 1, . . . , Tn of depth
most m such that

Tm = T 1(E , l), li+1 = red[li], T i(E , li) =
T i+1(E , red[li])

∃?x : E →li x
for 1 ≤ i < n

and Tn(E , ln) ≡ Tn,1 . . . Tn,k

∃?x : E →ln x
with ln irreducible and T n,i of depth most

m − 1, then we have the following cases:
– if there is i ∈ {1, . . . , k} such that T n,i is a success D-trees then

〈〈Tm〉〉 = $SNODE[{E , {l1, . . . , ln}}, 〈〈T n,1〉〉, . . . , 〈〈T n,k〉〉]

– if all T n,1, . . . , Tn,k are failure D-trees then

〈〈Tm〉〉 = $FNODE[{E , {l1, . . . , ln}}, 〈〈T n,1〉〉, . . . , 〈〈T n,k〉〉]

– if there is i ∈ {1, . . . , k} such that T n,i is a pending D-tree, and none of
Tn,1, . . . , Tn,k is a success D-tree then

〈〈Tm〉〉 = $PNODE[{E , {l1, . . . , ln}}, 〈〈T n,1〉〉, . . . , 〈〈T n,k〉〉].

5. Otherwise, if Tm ≡ T 1 . . . T k

∃?x : E →l x
with T i of depth most m − 1 for all 1 ≤

i ≤ k then
– if there is i ∈ {1, . . . , k} such that T i is a success D-tree then

〈〈Tm〉〉 = $SNODE[{E , l}, 〈〈T 1〉〉, . . . , 〈〈T k〉〉]

– if all T 1, . . . , T k are failure D-trees then

〈〈Tm〉〉 = $FNODE[{E , l}, 〈〈T 1〉〉, . . . , 〈〈T k〉〉]

– if there is i ∈ {1, . . . , k} such that T i is a pending D-tree, and for all
j ∈ {1, . . . , k} \ {i}, T j are pending or failure D-trees then

〈〈Tm〉〉 = $PNODE[{E , l}, 〈〈T 1〉〉, . . . , 〈〈T k〉〉]

6. Otherwise, Tm ≡ (E →l1 E1) ∧ T 1 . . . (E →l1 Ek) ∧ T k

∃?x : E →l1◦l2 x
where T i are par-

tial D-trees of depth at most m − 1 for ∃?x : Ei →l2 x, for all 1 ≤ i ≤ k.
For this situation we will make use of the function Annotate[E , l, N] which
is defined for an expression E , rule l and proof object N as follows:

- $SNODE[{E , 〈l,E1, l
′〉,E2}] if N = $SNODE[{E1, l

′,E2}],
- n[{E , 〈l,E1, lexpr〉}, N1, . . . , Nk] if N = n[{E1, lexpr}, N1, . . . , Nk] with

n ∈ {$SNODE, $FNODE, $PNODE}.
In the case k = 0, meaning that E 6→l1

, we have

〈〈Tm〉〉 = $FNODE[{E, l1 ◦ l2}]

For the case k > 0 we have the following subcases:

21

– if there is i ∈ {1, . . . , k} such that T i is a success D-tree then 〈〈Tm〉〉 is

$SNODE[{E , l1 ◦ l2}, Annotate[E , l1, 〈〈T 1〉〉], . . . , Annotate[E , l1, 〈〈T k〉〉]].

– if for all i ∈ {1, . . . , k}, T i is a failure D-tree then 〈〈T 〉〉 is

$FNODE[{E , l1 ◦ l2}, Annotate[E , l1, 〈〈T 1〉〉], . . . , Annotate[E , l1, 〈〈T k〉〉]].

– if there is i ∈ {1, . . . , k} such that T i is a pending D-tree, and for all
j ∈ {1, . . . , k} \ {i}, T j are pending or failure D-trees then 〈〈Tm〉〉 is

$PNODE[{E , l1 ◦ l2}, Annotate[E , l1, 〈〈T 1〉〉], . . . , Annotate[E , l1, 〈〈T k〉〉]].

The following example illustrates the behavior of the encoding procedure in a
concrete situation.

Example 14. Consider the rule declarations

DeclareRule[x Real/; (x < 0) :→x + 7, "f1"];
DeclareRule[x Real/; (x < 1) :→x + 4, "f2"];
DeclareRule[x Real/; (x > 0) :→x/2, "g"];
SetAlias["f1" | "f2", "f"];
SetAlias["f" ◦ "g", "fg"];

and the query ∃?x : −4.0 →"fg" x. The corresponding D-tree is T (−4.0, "fg")

(−4.0 →"f1" 3.0) ∧ 3.0 →"g" 1.5

∃?x : 3.0 →"g" x

∃?x : −4.0 →"f1"◦"g" x

(−4.0 →"f2" 0.) ∧ ∃?x : −0. →"g" x

∃?x : −4.0 →"f2"◦"g" x

∃?x : −4.0 →("f1"◦"g")|("f2"◦"g") x

∃?x : −4.0 →("f1"|"f2")◦"g" x

∃?x : −4.0 →"f"◦"g" x

∃?x : −4.0 →"fg" x

We construct the proof object 〈〈T 〉〉 incrementally, by traversing it from leaves
towards the root.

There are two leaf D-trees:

T1 =
3.0 →"g" 1.5

∃?x : 3.0 →"g" x
and T2 = ∃?x : 0. →"g" x

with the corresponding proof objects

〈〈T1〉〉 = $SNODE[{3.0, "g", 1.5}] and
〈〈T2〉〉 = $FNODE[{0., "g"}].

The D-subtrees of T which have T1 and T2 as direct subtrees, are

T3 =
(−4.0 →"f1" 3.0) ∧ T1

∃?x : −4.0 →"f1"◦"g" x
and T4 =

(−4.0 →"f2" 0.) ∧ T2

∃?x : −4.0 →"f2"◦"g" x
.

22

The corresponding proof objects are

〈〈T3〉〉 = $SNODE[{−4.0, 〈"f1", 3.0, "g"〉, 1.5}] and
〈〈T4〉〉 = $FNODE[{−4.0, 〈"f2", 0., "g"〉}]

computed in the way described in case (6) of the encoding procedure.
The D-subtree of T which has T3 and T4 as direct subtrees is

T5 =
T3 T4

∃?x : −4.0 →("f1"◦"g")|("f2"◦"g") x

and the corresponding proof object is

〈〈T5〉〉 = $SNODE[{−4.0, ("f1" ◦ "g") | ("f1" ◦ "g")}, 〈〈T3〉〉, 〈〈T4〉〉].

The following D-trees correspond to the sequence of rules

("f1" ◦ "g") | ("f2" ◦ "g"), ("f1" | "f2") ◦ "g", "f" ◦ "g", "fg"

where every element is a reduct of the element which follows it. Therefore, by
case (4), 〈〈T5〉〉 gives us

〈〈T 〉〉 = $SNODE[−4.0, {"fg", "f" ◦ "g",
("f1" | "f2") ◦ "g", ("f1" ◦ "g") | ("f2" ◦ "g")}, 〈〈T3〉〉, 〈〈T4〉〉].

It can be easily checked that T has the depth 3. The call

ApplyRule[−4.0, "fg", TraceStyle → "Verbose"]

generates a Mathematica notebook with a detailed description of the rule-
based deduction encoded in 〈〈T 〉〉. This notebook is shown in Figure 2. ut

7 Visualizing and Manipulating ρLog Proof Objects

Having implemented a data structure for storing a (partial) D-tree, we, of course,
desire to see it and handle it in a useful way. Because speed is one of the main
issues that we had in mind when designing ρLog, by default, the system does
not create the proof object described in section 6. However, the user has the
possibility to trigger the creation of it, and choose between different styles of
presentation: "Object"-style meant for debugging; "Compact"- and "Verbose"-
style for a user friendly presentation.

We have seen in the example presented in Section 1 how the rewrite mech-
anism of ρLog can be invoked. Triggering the different presentation styles is
done via Mathematica’s options mechanism ([14], Section 1.9.5). The options
of ApplyRule[] and ApplyRuleList[] are TraceStyle, MaxDepth and MaxSols.

TraceStyle can have the following values:
– "None" – the default value. ApplyRule[] will only return the eventually

found solutions or the original expression if no solution was found.

23

Fig. 2. "Verbose"-style presentation of a rule-based deduction.

– "Object" – choosing this value will cause the return of the proof object
internal data structure. This can be very large, and inspecting it requires
a clear understanding of how the data structure is defined (Section 6)

– "Compact" – this value of TraceStyle will generate a Mathematica

notebook with a user friendly presentation of the (partial) D-tree en-
coded in the internal data structure for the proof object. As the name of
the option-value says, it is a concise presentation of the rewriting process,
skipping all the details about unfolding the rules.

– "Verbose" – it is similar with the previous option value. The difference
consists in the amount of information displayed for each step that the
rewrite engine took in finding (or not) the solution.

24

The "Compact" and "Verbose" styles of presentation take advantage of
Mathematica’s notebook features, the most important which we mention
here is having nested cells to reflect the tree structure of the partial D-tree.

MaxDepth The purpose of this option is to avoid infinite computations deter-
mined by infinitely long branches in the search space for a derivation. Its
default value is 10000.

MaxSols The purpose of this option is to impose an upper limit on the number
of expressions E ′ to be found as witnesses for the validity of the query
∃?x : E →l x. For example, a call

ApplyRuleList[E , l, TraceStyle → "Compact", MaxSols → 3]

will start to insert pending objects in the proof object of the query ∃?x :
E →l x as soon as it had found 3 expressions E1,E2,E3 for which E →l Ei.
It is easy that this situation is reached when we succeed to compute 3 success
objects of type 1. (Section 6.4).

The default value of MaxSols is ∞. This means that, by default, that we do
not impose any upper bound on the number of solutions to be found.

We have seen how ρLog can be employed to compute proof objects and visualize.
There is also a number of methods which can operate directly on proof objects.

A very useful capability is to further expand the partial D-tree encoded in
a proof object, and ti obtain the proof object corresponding to the expanded
partial D-tree. This can be done by invoking

ExpandObject[obj , MaxDepth → n];

where obj is a proof object and n ∈ N is the depth limit for the partial D-trees
which will be computed and encoded to replace the elementary pending objects
which occur in obj .

Another useful capability is to visualize the proof encapsulated in a given
proof object obj. This is achieved by calling

DisplayProof[obj , options];

The most important option is DetailLevel. The possible values of DetailLevel
and their meaning in DisplayProof[] calls coincide with those of TraceStyle
in ApplyRule[] calls.

For the same return value, obj , the user can invoke

GetObjectSolutions[obj]

to extract, from obj , the list of all expressions Esol for which it is known that
E →l Esol. If obj encodes a failure or a pending D-tree then the call yields the
empty list {}.

25

8 Conclusion and Future Work

The design and implementation of ρLog was motivated by the desire to have
a convenient tool to program reasoners with Mathematica. The design of
its proof presentation capabilities is inspired from that of Theorema, whose
provers work in a ”natural style”. That is, the inference rules are similar to the
heuristics used by mathematicians, and the produced output is similar to the
proofs written by them [11].

Obviously, the range of problems which can be modelled and solved effi-
ciently with ρLog is very large. Most of its expressive power stems from the
capability to model non-deterministic computations as compositions of possibly
non-deterministic rules.

In this paper, we have described how the system can be employed as a de-
ductive system and be used to generate deduction trees for a certain kind of
queries. We expect our system to become a useful tool in the ongoing develop-
ment of the Theorema system [3–5], which is a framework aimed to support
the main activities of the working mathematician: proving, solving, computing,
exploring and developing new theories. Up to now, we have implemented a li-
brary of unification procedures for free, flat and restricted flat theories with
sequence variables and flexible arity symbols [6, 9]. These unification procedures
have straightforward and efficient implementations in ρLog because they are
based on the non-deterministic application of a finite set transformation rules.

Another direction of future work is to introduce control mechanisms for pat-
tern matching with sequence variables. In the current implementation, when
enumerating the matching substitutions θ during a call of ApplyRule[], ρLog

relies entirely on the enumeration strategy which is built into the Mathematica

interpreter. However, there are many situations when this enumeration strat-
egy is not desirable. We addressed this problem in [7, 8] and implemented the
package Sequentica with language extensions which can overwrite the default
enumeration strategy of the Mathematica interpreter. The integration of those
language extensions in ρLog will certainly increase the expressive power of our
rule based system. We are currently working on integrating Sequentica with
ρLog.

The current implementation of ρLog can be downloaded from

http://heaven.ricam.uni-linz.ac.at/people/page/marin/RhoLog/

References

1. Henk Barendregt. The Lambda Calculus, its Syntax and Semantics, volume 90.
North Holland, second edition, 1984.

2. Peter Borovansky, Horaţiu Cirstea, Hubert Dubois, Claude Kirchner, Hélène Kirch-
ner, Pierre-Etienne Moreau, Christophe Ringeissen, and Marian Vittek. ELAN:
User Manual, January 27 2000.

3. Bruno Buchberger. Theorema: A short introduction. Mathematica Journal,
8(2):247–252, 2001.

26

4. Bruno Buchberger, Claudio Dupré, Tudor Jebelean, Franz Kriftner, Koji Naka-
gawa, Daniela Văsaru, and Wolfgang Windsteiger. The theorema project: A
progress report. In Manfred Kerber and Michael Kohlhase, editors, Symbolic Com-
putation and Automated Reasoning. Proceedings of Calculemus’2000, pages 98–113,
St.Andrews, UK, 6–7 August 2000.

5. Bruno Buchberger, Tudor Jebelean, Franz Kriftner, Mircea Marin, Elena Tomuţa,
and Daniela Văsaru. A survey of the Theorema project. In W. Küchlin, editor,
Proceedings of the International Symposium on Symbolic and Algebraic Computa-
tion, ISSAC’97, pages 384–391, Maui, Hawaii, US, 21–23 July 1997. ACM Press.

6. Temur Kutsia. Solving and Proving in Equational Theories with Sequence Variables
and Flexible Arity Symbols. PhD thesis, Institute RISC-Linz, Johannes Kepler
University, Hagenberg, Austria, June 2002.

7. Mircea Marin. Functional Programming with Sequence Variables: The Sequen-
tica Package. In Jordi Levy, Michael Kohlhase, Joachim Niehren, and Mateu
Villaret, editors, Proceedings of the 17th International Workshop on Unification
(UNIF 2003), pages 65–78, Valencia, June 2003.

8. Mircea Marin and Dorin Ţepeneu. Programming with Sequence Variables: The se-

quentica Package. In Peter Mitic, Phil Ramsden, and Janet Carne, editors, Chal-
lenging the Boundaries of Symbolic Computation. Proceedings of 5th International
Mathematica Symposium (IMS 2003), pages 17–24, Imperial College, London, July
7–11 2003. Imperial College Press.

9. Mircea Marin and Temur Kutsia. On the Implementation of a Rule-Based Pro-
gramming System and some of its Applications. In Boris Konev and Renate
Schmidt, editors, Proceedings of the 4th International Workshop on the Imple-
mentation of Logics, pages 55–69, Almaty, Kazakhstan, September 26 2003.

10. Mircea Marin and Temur Kutsia. Programming with Transformation Rules. In
Proceedings of the 5th International Workshop on Symbolic and Numeric Algo-
rithms for Scientific Computing, pages 157–167, Timişoara, Romania, October 1-4
2003.

11. Florina Piroi and Tudor Jebelean. Advanced proof presentation in Theorema. In
Proceedings of the 3rd International Workshop on Symbolic and Numeric Algo-
rithms for Scientific Computing (SYNASC 2001), Timişoara, Romania, October
2-5 2001. Also avaialable as RISC-Linz Report Series No. 01-20.

12. P. A. Subrahmanyam and Jia-Huai You. FUNLOG: A Computational Model In-
tegrating Logic Programming and Functional Programming. Logic Programming:
Functions, Relations, and Equations, pages 157–198, 1986.

13. Geoffrey Norman Watson. Proof representation in theorem provers. Technical
Report 98-13, Software Verification Centre, School of Informatics Technology, The
University of Queensland, Queensland 4072, Australia, September 1998.

14. Stephen Wolfram. The Mathematica Book. Wolfram Media Inc. Champaign, Illi-
nois, USA and Cambridge University Press, 1999.

A Pattern Matching in Mathematica

Mathematica is a language with powerful capabilities for symbolic and nu-
meric computation. It supports functional programming via a matching mech-
anism based provides advanced features such as: sequence variables, alternative
patterns, side conditions, a.s.o.

27

The most peculiar feature of Mathematica for pattern matching is the
concept of sequence variable. A sequence variable is a function parameter which
can be instantiated with a (possibly empty) sequence of terms.

Example 15. The partial function defined by

IntElem[{x ,y Integer,z }]:=y
yields an integer element of a list l upon the call IntElem[l]. For instance,
the call IntElem[{a, 1, x, s, 2}] can yield either 1 by computing the matcher
{x → paq, y → 1, z → px, s, 2q}, or 2 by computing {x → pa, 1, x, sq, y →
2, z → pq}. Note that, to aid the reading the matchers, we have written the
bindings of sequence variables between p and q. ut
The Mathematica book [14] provides several convincing examples in favor of
programming with sequence variables. It is important to note that programming
with sequence variables relies on choosing a particular matcher during the eval-
uation of a function call. The interpreter of Mathematica chooses the matcher
which assigns the shortest possible lengths to the bindings of the first sequence
variables that show up when traversing the pattern in a leftmost-innermost
manner. In our example, the Mathematica interpreter chooses the matcher
{x → paq, y → 1, z → px, s, 2q} because the binding paq for x in the first
matcher is shorter than the binding pa, 1, x, sq for x in the second matcher.

In the sequel we give a brief account of the programming capabilities with
patterns of Mathematica. Table 1 depicts the most common pattern constructs
used in Mathematica.

Pattern Meaning

one term
sequence of 1 or more terms
sequence of 0 or more terms

h sequence of 1 or more terms, all of whose heads are h

h sequence of 0 or more terms, all of whose heads are h

?test sequence of 1 or more term which satisfy test
?test sequence of 0 or more term which satisfy test

Table 1. Patterns in Mathematica

A pattern patt may be named for later reference, e.g., we can write x : patt
for a pattern patt named x. The separator : is usually omitted when patt starts
with an underline. For example, we prefer to write x Real and y ?test instead
of x: Real and y: ?test.

Another useful construct is patt/; cond which defines a pattern which matches
iff patt matches and the evaluation of cond yields True.

Example 16. The pattern {x , y } matches the list {1, 2} in 2 possible ways:
with the matcher θ1 = {x → pq, y → p1, 2q} or with the matcher θ2 = {x →

28

p1q, y → p2q}. By contrast, the pattern {x , y }/; Length[{x}] < Length[{y}]
matches with {1, 2} only in one way, with matcher θ1, because

(Length[{x}] < Length[{y}])/.θ1 = Length[{}] < Length[{1, 2}] = 0 < 2 = True,
(Length[{x}] < Length[{y}])/.θ2 = Length[{1}] < Length[{2}] = 1 < 1 = False.

ut

Finally, the construct patt1 | . . . | pattn defines a pattern which matches iff there
exists a pattern patt i which matches.

We refer the interested reader to [14, Sect. 2.3] for a complete description of
the Mathematica patterns.

29

