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� Abstract

Algorithm retrieval  is  a  special  case  of  mathematical  knowledge retrieval,  which  is  one  of  the  fundamental
problems of mathematical knowledge management.

In  this  paper, we distinguish between various versions of  the problem of  algorithm retrieval focusing on the
version which can only be appropriately formulated in the frame of formal logic. This is the following problem: 

Given formulae S[ p, q, ...] that specify properties of a couple of (algorithmic operations) p,q,... and a
knowledge base K of formulae,

find  operations  P,  Q,  ...  (occurring  in  the  vocabulary  of  K)  such  that  S[  P,  Q,  ...]  is  a  logical
consequence of K.  

Considering candidate operations P, Q, ... in the vocabulary of K, the problem of checking whether or not S[
P, Q, ...] is  a logical consequence of K, can be trivial, easy, moderately difficult or very difficult depending on
how  much  knowledge  on  P,  Q,  ...  is  already  contained  in  K.  Accordingly,  in  this  paper,  we  consider  the
following two instances of algorithm retrieval in a formal (logic based) setting:

é K contains no knowledge on P, Q, ... except their (algorithmic) definitions. In this case, algorithm
retrieval essentially is algorithm verification.

é K contains so much knowledge on P, Q, ... that the proof of S[ P, Q, ...] from K becomes "easy" in
the  sense  that  it  can  be  done  by  "symbolic  computation"  (conditional  equational  proving,
propositional  proving,  manipulation  with  bounded  quantifiers  etc.).  This  is  the  case  which  we
consider to be desirable, i.e. good knowledge bases should contain sufficiently much knowledge
for  making algorithm retrieval  less  cumbersome than algorithm verification. In  other  words,  as  a
tendency, one should always try to "complete" mathematical knowledge bases on given concepts
to  the  extent  that  subsequent  proving  (and  disproving)  of  additional  statements  about  these
concepts is "easily" possible by symbolic computation proving.

Furthermore, it  may be the case that K contains no candidate operations P, Q, ... for which S[ P, Q, ...] is a
logical  consequence  of  K.  In  this  case,  algorithm  retrieval  becomes  algorithm  invention  (algorithm
synthesis).



We  give  a  case  study  in  which  the  distinction  between  the  three  basic  cases  and  the  dependence  of
algorithm retrieval  on  the  contents  of  the  knowledge base  becomes clear.  We  demonstrate that  algorithm
retrieval in a knowledge base essentially is theorem proving, namely proving that the given specification
of  the  algorithm(s),  for  algorithms  that  occur  in  the  knowledge  base,  is  a  logical  consequence  of  the
information on these algorithms already stored in the knowledge base.

Keywords:  algorithm retrieval, mathematical knowledge retrieval, symbolic computation proving, high|school
proving, proving by rewriting, physicists’ proving, basic prover, complete knowledge for mathematical notions,
algorithm  verification,  algorithm  synthesis,  program  synthesis,  decoupling  of  requirements,  re|usable
algorithms,  functors,  requirement  engineering,  didactics  of  programming,  sorting,  merging,  merge|sort,
Theorema.
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à Introduction

As any other information retrieval problem, the problem of algorithm retrieval is the problem of finding detailed
information  about an algorithm,  e.g. code for the algorithm, under the assumption that some information
about the algorithm, for example its name or its specification, is given.

Of course this problem is only meaningful if we also specify the knowledge base in which the search should
be  carried  out:  libraries  with  journals  and  books  in  printed  form,  mathematical  software  systems  like
Mathematica  or  Maple,  or  information  in  digitized  form  accessible  through  the  web.  Currently,  quite  some
effort is spent on "digitizing" printed mathematical papers, to add semantic information to digitized versions of
mathematical  papers  and  to  turn  digitized papers  into  papers  in  a  formal  language, see  [Buchberger et  al.
2003] for various research directions in digitization of mathematical knowledge. 

In this paper, we start from the situation that

é the given information on the algorithm, 

é the knowledge base,

é and the information to be found

are  presented as  formulae in  a  logical  language.  We believe that  this  assumption will  be  realistic  in  the
near  future.  In  other  words,  we  believe  that  only  when  mathematical  information is  available  in  completely
formal  presentation  within  a  well|defined  logic,  the  more  sophisticated  versions  of  the  information  retrieval
problem can be attacked.

Of course, on a first layer of algorithm retrieval, one thinks about finding details of an algorithm by a search
through libraries given some keywords about the algorithm like "Lagrange", "interpolation", "polynomials" etc.
These  days,  the  solution  of  this  problem,  with  the  web,  powerful  search  engines,  special  research  and
citations  indices  etc.,   is  already  in  a  state  that  is  by  far  more  pleasant  than  only  10  years  ago  and  more
progress is  to  be expected soon by  the joint effort  of  the mathematical knowledge management community
that recently established itself also as a formal organization at the 1st International Workshop of Mathematical
Knowledge Management (MKM) initiated by this author with annual successor conferences well  established
both in Europe and the US, see [Asperti 2003]. 

However, we need to go a decisive step forward: In this paper, the information on the algorithm(s) is not given
by  "external"  keywords  but  is  given  by  formulae  that  describe  properties  of  the  algorithm(s),  which  we  call
"specification"  of  the  algorithm(s),  and  the  problem  consists  in  deciding  whether  an  algorithm  (algorithms)
meeting the given specification are available in the given formulae knowledge base. Needless to say that this
problem is much more demanding than the algorithm retrieval problem based on textual information but one
might  argue  whether  this,  more  demanding,  version  of  the  algorithm  retrieval  problem  really  occurs  "in
pratice". Thus, let us start with an example that illustrates the substantial relevance of this formal version of
algorithm retrieval:
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However, we need to go a decisive step forward: In this paper, the information on the algorithm(s) is not given
by  "external"  keywords  but  is  given  by  formulae  that  describe  properties  of  the  algorithm(s),  which  we  call
"specification"  of  the  algorithm(s),  and  the  problem  consists  in  deciding  whether  an  algorithm  (algorithms)
meeting the given specification are available in the given formulae knowledge base. Needless to say that this
problem is much more demanding than the algorithm retrieval problem based on textual information but one
might  argue  whether  this,  more  demanding,  version  of  the  algorithm  retrieval  problem  really  occurs  "in
pratice". Thus, let us start with an example that illustrates the substantial relevance of this formal version of
algorithm retrieval:

Example:  In  our  "lazy  thinking"  automated  algorithm  invention  (program  synthesis)   paradigm  based  on
algorithm  schemes  and  learning  by  failure,  see  [Buchberger  2003a],  we  showed  how  finding  an  algorithm
’sorted’ satisfying the specification

"
is|tuple@XD is|sorted|version@X, sorted@XDD

can  be  automatically  reduced  to  finding  algorithms  ’left|split’,  ’right|split’,  and  ’merged’  satisfying  the
specification

is|left - right - merge|structure@left|split, right|split, mergedD
defined by

"
left|split,right|split,merged

 

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
is|left|right|merge|structure@left|split, right|split, mergedD �

loooooooooooooooooooooom

n
oooooooooooooooooooooo

"
is|tuple@XD

Øis|trivial|tuple@XD  

looooooomnooooooo
left|split@XD � X
is|tuple@left|split@XDD
right|split@XD � X
is|tuple@right|split@XDD

"
is|tuple@Y,ZD is|tuple@merged@Y, ZDD

"
is|tuple@X,Y,ZD

Øis|trivial|tuple@XD  

i
k
jjjjjjjjjjjjjj

looooooomnooooooo
left|split@XD » Y
right|split@XD » Z
is|sorted@YD
is|sorted@ZD Þ

lomno merged@Y, ZD » X
is|sorted@merged@Y, ZDD

y
{
zzzzzzzzzzzzzz

=
y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
Here,  (all)  details  of  the  specification  predicate  ’is|sorted|version’  must  be  contained  in  the  underlying
knowledge base, see appendix.

For completing the algorithm invention process we must, of course, find suitable algorithms  ’left|split’, ’right|
split’,  and  ’merged’.  For  this  problem,  it  is  not  sufficient  to  do  a  textual  search,  in  the  knowledge base,  for
algorithms with names  ’left|split’, ’right|split’, and ’merged’: 

é There may exist algorithms with these names in the knowledge base. However, they may not meet
exactly the specification above (although their names may suggest this!).

é There may  exist  algorithms with  these names in  the knowledge base and these algorithms may
well meet the specification above but their definitions and properties may, literally, be quite distinct
from  the  specification  above.  Thus,  by  a  purely  textual  search,  we  cannot  find  out  that  these
algorithms are appropriate .
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é There  may  exist  algorithms  whose  names  are  quite  distinct  from  the  names  above  and  these
algorithms may well  meet the specification above but,  again, we cannot find this out by a purely
textual search.

Hence,  "finding"  in  the  existing  knowledge  base  suitable  algorithms  that  meet  the  above  specification  is  a
problem that  goes far  beyond purely textual  search of  appropriate algorithm names.  Rather,  the problem is
essentially  a  theorem  proving  problem,  which  we  call  "logical  algorithm  retrieval  problem"  and   whose
nature  we  will  explore  in  the  subsequent  sections.  We  will  study  variants  of  the  logical  algorithm invention
problem of increasing logical complexity.

Note: All examples, in this paper, are presented in the Theorema system, see [Buchberger et al. 1997, 2000].
However,  the  analysis  of  the  algorithm retrieval  problem presented is  quite  general   and  independent of  a
particular  system  for  computer|supported  theory  exploration  and  also  holds  in  the  context  of  theory
exploration without computer support.

à The Trivial Variant: Logical Algorithm Retrieval = Formulae Identity

In the first variant of the logical algorithm retrieval problem, we assume that the specification for the algorithms
to be found (in our example, the algorithms ’left|split’, ’right|split’, and ’merged’) and inductive definitions for
these algorithms already appear in the given knowledge base. In our example, this means that the formulae

"
is|tuple@XD

Øis|trivial|tuple@XD  

looooooomnooooooo
left|split@XD � X
is|tuple@left|split@XDD
right|split@XD � X
is|tuple@right|split@XDD

"
is|tuple@Y,ZD His|tuple@merged@Y, ZDDL

"
is|tuple@X,Y,ZD

Øis|trivial|tuple@XD  

i
k
jjjjjjjjjjjjjj

looooooomnooooooo
left|split@XD » Y
right|split@XD » Z
is|sorted@YD
is|sorted@ZD Þ

lomno merged@Y, ZD » X
is|sorted@merged@Y, ZDD

y
{
zzzzzzzzzzzzzz.

and, for example, the formulae

left|split@X\D = X\
"
x

Hleft|split@Xx\D = Xx\L
"

x,y,z��
Hleft|split@Xx, y, z��\D = x \ left|split@Xz��\DL

right|split@X\D = X\
"
x

Hright|split@Xx\D = X\L
"

x,y,z��
Hright|split@Xx, y, z��\D = y \ right|split@Xz��\DL

merged@X\, X\D = X\
"

y, y��
Hmerged@X\, Xy, y��\D = Xy, y��\L

"
x, x��

Hmerged@Xx, x��\, X\D = Xx, x��\L
"

x, x��,y, y��
 
ikjjjmerged@Xx, x��\, Xy, y��\D = 9 x \ merged@Xx��\, Xy, y��\D Ü x > y

y \ merged@Xx, x��\, Xy��\D Ü Ø x > y
=y{zzz

that  give inductive definitions of  ’left|split’, ’right|split’, and ’merged’, already appear in  the knowledge base.
(Here  and  in  the  rest  of  the  paper  we  assume  that  the  knowledge  base  only  contains  formulae  whose
correctness has already been (automatically) proved w.r.t. the underlying theory that introduces the data type
in which we are working, in our case the theory of tuples.)
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In this case, checking whether the algorithms ’left|split’, ’right|split’, and ’merged’ meet the specification 

is|left|right|merge|structure@left|split, right|split, mergedD
is a trivial task in the exact sense that proving is a "one|line" proof. 

Of course, still, this task would be trivial if the property of the algorithms ’left|split’, ’right|split’, and ’merged’, in
the knowledge base, were described by some logical variant (with different choice of the bound variables, with
some re|arrangement of the formulae etc.), for example by the variant

"
is|tuple@AD

Øis|trivial|tuple@AD  

looooooomnooooooo
left|split@AD � A
is|tuple@left|split@ADD
right|split@AD < A
is|tuple@right|split@ADD

"
is|tuple@B,CD is|tuple@merged@B, CDD

"
is|tuple@A,B,CD

Øis|trivial|tuple@AD  

i
k
jjjjjjjjjjjjjj

looooooomnooooooo
left|split@AD » B
right|split@AD » C
is|sorted@BD
is|sorted@CD Þ merged@B, CD » A

y
{
zzzzzzzzzzzzzz

"
is|tuple@A,B,CD

Øis|trivial|tuple@AD  

i
k
jjjjjjjjjjjjjj

looooooomnooooooo
left|split@AD » B
right|split@AD » C
is|sorted@BD
is|sorted@CD Þ is|sorted@merged@B, CDDy

{
zzzzzzzzzzzzzz.

à A Degenerate Variant: Logical Algorithm Retrieval = Algorithm 
Verification

This  variant  of  the  logical  algorithm retrieval  problem is  characterized by  the  fact  that  the  knowledge base
contains  the  inductive  definitions  of  algorithm  candidates  without  any  further  (proved)  properties  of  the
algorithms and we have to find out whether these candidates meet the given specification. In this variant, the
algorithm retrieval problem is nothing else than an algorithm verification problem.

In our example, this means that we would find the inductive definition of three algorithms, say ’l’, ’r’, ’m’,  in the
knowledge base, for example,

l@X\D = X\
"
x

Hl@Xx\D = Xx\L
"

x,y,z��
Hl@Xx, y, z��\D = x \ l@Xz��\DL

r@X\D = X\
"
x

Hr@Xx\D = X\L
"

x,y,z��
Hr@Xx, y, z��\D = y \ r@Xz��\DL

m@X\, X\D = X\
"

y, y��
Hm@X\, Xy, y��\D = Xy, y��\L

"
x, x��

Hm@Xx, x��\, X\D = Xx, x��\L
"

x, x��,y, y��
 
ikjjjm@Xx, x��\, Xy, y��\D = 9 x \ m@Xx��\, Xy, y��\D Ü x > y

y \ m@Xx, x��\, Xy��\D Ü Ø x > y
=y{zzz
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and we would have to prove that 

is|left|right|merge|structure@l, r, mD.
In  many cases, such proofs can be carried out completely automatically with current mathematical software
systems like Theorema.  We do not give the details of the appropriate proof for our example because, in this
paper, our main emphasis will be on the non|degenerate variant of the algorithm retrieval problem described
in  the  next  section.  Note  however  that,  typically,  such  algorithm  verification  proofs  are  non|trivial
inductive proofs.

à The Non|Degenerate Variant: Logical Algorithm Retrieval = Symbolic 
Computation Proving

� The Problem

This  variant  of  the  logical  algorithm retrieval  problem is  characterized by  the  fact  that  the  knowledge base
contains the inductive definitions of algorithm candidates together with a couple of (proved) properties of the
algorithms  that  describe  these  algorithms  "completely"  and  we  have  to  find  out  whether  these  candidates
meet the given specification. Here, the emphasis is on "completeness" of properties. We will expand on this
notion in more detail below. In fact, this notion is the central notion in this paper. In this variant, the algorithm
retrieval problem can be solved by "easy" proving, which more specifically is "symbolic computation proving"
("proving by rewriting", "high|school proving", "physicists’ proving").

Before we go into an analysis of "complete knowledge" and "symbolic computation proving", we study the non|
degenerate variant of the algorithm retrieval problem in our example:  

We assume again that  we find the inductive definition of  three algorithms, say ’l’,  ’r’,  ’m’,   in  the knowledge
base, for example,

l@X\D = X\
"
x

Hl@Xx\D = Xx\L
"

x,y,z��
Hl@Xx, y, z��\D = x \ l@Xz��\DL

r@X\D = X\
"
x

Hr@Xx\D = X\L
"

x,y,z��
Hr@Xx, y, z��\D = y \ r@Xz��\DL

m@X\, X\D = X\
"

y, y��
Hm@X\, Xy, y��\D = Xy, y��\L

"
x, x��

Hm@Xx, x��\, X\D = Xx, x��\L
"

x, x��,y, y��
 
ikjjjm@Xx, x��\, Xy, y��\D = 9 x \ m@Xx��\, Xy, y��\D Ü x > y

y \ m@Xx, x��\, Xy��\D Ü Ø x > y
=y{zzz.

However,  in  addition, we also assume that  the following (proved) properties is|left|right|structure[l,r] and is|
merge|structure[m] were already available in the knowledge base, where is|left|right|structure and is|merge|
structure are defined as follows:
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"
l,r

 

i
k
jjjjjjjjjjjjjjjjjjjjis|left|right|structure@l, rD �

"
is|tuple@XD

Øis|trivial|tuple@XD  

looooooooom
n
ooooooooo

l@XD � X
is|tuple@l@XDD
r@XD � X
is|tuple@r@XDDHl@XD ^ r@XDL » X

y
{
zzzzzzzzzzzzzzzzzzzz

"
m

 

i
k
jjjjjjjjjjjjis|merge|structure@mD �

looooomnooooo
"

is|tuple@Y,ZD is|tuple@m@Y, ZDD
"

is|tuple@Y,ZD  
ikjjjlomno is|sorted@YD

is|sorted@ZD Þ
lomno HY ^ ZL » m@Y, ZD

is|sorted@m@Y, ZDD y{zzz
y
{
zzzzzzzzzzzz

where ’^’ denotes concatenation.

We now, again, have to prove that

is|left|right|merge|structure@l, r, mD.
Now, let’s look to this proof:

� The Proof

We assume

is|left|right|structure@l, rD
and

is|merge|structure@mD
and we have to prove

is|left|right|merge|structure@l, r, mD,
i.e., for arbitrary X, Y, Z satisfying

is|tuple@XD
Ø is|trivial|tuple@XD
is|tuple@YD
is|tuple@ZD

and

l@XD » Y
r@XD » Z
is|sorted@YD
is|sorted@ZD
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we have to prove

l@XD � X
is|tuple@l@XDD
r@XD � X
is|tuple@r@XDD
is|tuple@m@Y, ZDD
m@Y, ZD » X
is|sorted@m@Y, ZDD.

Now,  the first four goals are true by is|left|right|structure[ l, r], the fifth goal is true by the assumptions and the
first  formula  in  is|merge|structure[  m],  and  the  seventh  formula  is  true  by  the  assumptions  and  the  third
formula in is|merge|structure[ m].

Proof of the sixth goal:

m@Y, ZD »
(1) HY ^ ZL »

(2) Hl@XD ^ r@XDL »
(3)

X

and, hence, by transitivity and symmetry of » (see knowledge base in the appendix)

m@Y, ZD » X.

(1): By the assumptions and the second formula in is|merge|structure[ m].

(2): By the assumptions and the property (see knowledge base in the appendix)

"
is|tuple@A,B,Y,ZD HHA » Y ß B » ZL Þ HHA ^ BL » HY ^ ZLLL.

(3): By the last formula in is|left|right|structure [l, r].

� Observation on the Proof Method and on Complete Knowledge Bases

Note  that  the  above  proof  is  neither  trivial  (i.e.  just  be  renaming  of   bound  variables  and  simple  re|
arrangement  of  the  formulae)  nor  "difficult".  More  exactly,  the  proof  is  carried  out  exclusively  by  "rewrite
steps"  ("symbolic  computation  steps",  "high|school  proving  steps",  "physicists’  proving  steps",
"proving by algebraic manipulation").  These are steps that involve only the "arbitrary but fixed" technique
for universally bound variables in goals, substition of terms for universally bound variables in formulae in the
knowledge  base,  replacement  of  a  term  by  another  term  whose  equality  or  congruence  modulo  an
equivalence  is  already  known,  propositional  steps  including  the  expansion  of  formulae  containing  case
distinction, and special inference rules for bounded quantifiers. This kind of proving is typical for proofs in high|
school  textbooks  and  also  for  "derivations"  of  formulae  in  applied  mathematics,  e.g.  physics,  where  proofs
normally  do  not  involve  alternating  quantifiers  (’"  $  "  ...’  etc.)  and,  hence,  no  full|fledged  predicate  logic
proving with the necessity of  finding term instances for  proving existential propositions, nor induction proofs
for  formulae  universally  quantified  over  inductive  data  types  is  necessary.  Within  "symbolic  computation
proving", the only available proof technique for universally quantified goals in symbolic computation proving is
the  "arbitrary  but  fixed"  technique.  "Symbolic  computation  proving"  does  not  need  any  big  ideas  for  the
ingenious choice  of  suitable  instances  for  existentially  quantified proof  goals,  it  has  a  purely  computational
flavor.  The  only  ingenuity  that  may  be  necessary  lies  in  finding  the  appropriate  sequence  of  proof  steps
leading to a successful proof.

This notion of "symbolic computation proving", which is admittedly somewhat vague, is in some sense dual to
the notion of a "complete knowledge base": We consider a knowledge base K to be complete if all formulae
that are logical consequences of  formulae in K and are not yet  in K can be obtained from formulae in K by
symbolic  computation  proving  (i.e.  "easy"  proving).  Conversely,  if  we  had  a  clear  understanding  of  what
"complete" knowledge bases are, we would say that symbolic computation proving is the proving sufficient for
deriving all logical consequences from complete knowledge bases. Complete knowledge bases also could be
(vaguely) characterized by saying that they admit a decision algorithm by symbolic computation.
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This notion of "symbolic computation proving", which is admittedly somewhat vague, is in some sense dual to
the notion of a "complete knowledge base": We consider a knowledge base K to be complete if all formulae
that are logical consequences of  formulae in K and are not yet  in K can be obtained from formulae in K by
symbolic  computation  proving  (i.e.  "easy"  proving).  Conversely,  if  we  had  a  clear  understanding  of  what
"complete" knowledge bases are, we would say that symbolic computation proving is the proving sufficient for
deriving all logical consequences from complete knowledge bases. Complete knowledge bases also could be
(vaguely) characterized by saying that they admit a decision algorithm by symbolic computation.

Of  course,  by  the  fundamental  theorems  of  logic  (Goedel’s  incompleteness  theorem  etc.)  there  exist
knowledge  bases  ("theories")  that  cannot  be  completed.  However,  practically,  many  of  the  hundreds  of
theories that arise in the layered build|up of  mathematics can  be completed in a quite concrete and natural
way.  Our  strategic  suggestion  is  that,  in  the  systematic  layered  build|up  of  mathematics  (including  both
nonalgorithmic and algorithmic mathematics), after  the  introduction of  any new, albeit  intermediate and
auxiliary  concepts  (operations,  i.e.  functions  and  predicates)  by  axioms  or  definitions,  always
complete  the  knowledge  base  for  the  new  concepts  by  a  systematic  exploration  of  all  possible
interactions of the new concepts with all existing concepts and with themselves, before you proceed
to introducing and exploring the next new concepts. Ways for a systematic exploration and completion of
the theories introduced by new concepts are described in [Buchberger 2000] and [Buchberger 2003b].

à Another Degenerate Variant: Logical Algorithm Retrieval = Algorithm 
Invention

This  variant  of  the  logical  algorithm retrieval  problem is  characterized by  the  fact  that  the  knowledge base
does not contain any algorithms that meet the given specification. In this case, the logical algorithm retrieval
problem becomes the algorithm invention (algorithm synthesis) problem.

In our example, this means that we would have to synthesize algorithms ’l’, ’r’, ’m’ satisfying

is|left|right|merge|structure@l, r, mD
from  the  operations  available  in  the  knowledge  base.  For  example,  the  following  algorithms  could  be
synthesized

l@X\D = X\
"
x

Hl@Xx\D = Xx\L
"

x,y,z��
Hl@Xx, y, z��\D = x \ l@Xz��\DL

r@X\D = X\
"
x

Hr@Xx\D = X\L
"

x,y,z��
Hr@Xx, y, z��\D = y \ r@Xz��\DL

m@X\, X\D = X\
"

y, y��
Hm@X\, Xy, y��\D = Xy, y��\L

"
x, x��

Hm@Xx, x��\, X\D = Xx, x��\L
"

x, x��,y, y��
 
ikjjjm@Xx, x��\, Xy, y��\D = 9 x \ m@Xx��\, Xy, y��\D Ü x > y

y \ m@Xx, x��\, Xy��\D Ü Ø x > y
=y{zzz.

In  fact,  this  synthesis  is  automatically  possible  by  the  method  described  in  [Buchberger  2003a]  and  other
algorithm synthesis methods. The method in [Buchberger 2003a] synthesizes the algorithms ’l’,  ’r’,  ’m’ while
establishing, in parallel, a proof of the fact that

is|left|right|merge|structure@l, r, mD.
Note that, similarly to the algorithm verification problem, the algorithm synthesis problem requires to come up
with  non|trivial inductive proofs that go beyond the capability of "symbolic computation proving".
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à Decoupling Coupled Algorithm Specifications

� Coupled and Decoupled Specifications

The relation between the two requirements (algorithm specifications)

is|left|right|merge|structure@l, r, mD
and

is|left|right|structure@l, rD ß is|merge|structure@mD
is  a  very interesting one: We call  the second requirement "decoupled",  whereas the first  one is  "coupled".
This is an analogy, on the higher|order level for algorithms, to the notion of decoupled and coupled systems
of, say, algebraic or differential equations.

Decoupling coupled requirements is of eminent practical importance: Typically, for given algorithms,  the
correctness  proof  of  decoupled  requirements  is  much  easier  than  the  correctness  proof  of  coupled
requirements. Analogously, the synthesis of algorithms satisfying decoupled requirements is much easier than
the  synthesis  of  algorithms  satisfying  coupled  requirements.  Thus,  finding  a  decoupled  requirement  that
entails  a  coupled  requirement  is  an  important  subgoal  in  the  exploration  of  theories.  In  our  example,  the
decoupled requirement

is|left|right|structure@l, rD ß is|merge|structure@mD
entails the coupled requirement

is|left|right|merge|structure@l, r, mD
as we have shown in the section on algorithm retrieval by symbolic computation.

� Explicit and Non|explicit Formulation of Specifications

Note furthermore that, in our example, the definition of both decoupled requirements 

is|left|right|structure@l, rD
and

is|merge|structure@mD
are what we call "explicit requirement formulations" (or "explicit problem descriptions"): Formulae T (with the
one free variable x) and P (with the two free variables x and y) are an explicit formulation of a requirement R
for algorithms if 

"
f

i
k
jjjjjjjjR@fD � "

x
T@xD P@x, f@xDDy

{
zzzzzzzz

(and analogously for algorithms with more than one argument and also algorithms with more than one output |
which may also be conceived as two simultaneous algorithms). T, x, P, y are called the "input formula", "input
variable", "input / output formula" (or, just, "output formula"), and "output variable" of the explicit requirement
formulation, respectively.
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(More exactly, the above formula should be written:

"
f

i
kjjjjjjjR@fD � "

x
T

Py¬f@xD y
{zzzzzzz

where ’¬’ denotes the substitution operation.)

For example, the requirement ’is|merge|structure’ is explicitly defined  by the input formula

is|tuple@Y, ZD
with input variables ’Y’ and ’Z’ and the output formula

is|tuple@MDikjjjlomno is|sorted@YD
is|sorted@ZD Þ

lomno HY ^ ZL » M
is|sorted@MD y{zzz

with the additional output variables ’M’.

Also, the requirement ’is|left|right|structure’ is  explicitly defined. For this we consider l  and r  as yielding two
outputs for one input. The input formula is 

is|tuple@XD ß Ø is - trivial - tuple@XD
with input variable ’X’ and the output formula is

L � X
is|tuple@LD
R � X
is|tuple@RDHL ^ RL » X

with the additional two  output variables ’L’, ’R’. 

Even  the  requirement ’is|left|rigth|merge|structure’, although it  is  not  decoupled, is  explicitly  defined by  the
formula in the introduction: We just look at the part 

"
is|tuple@X,Y,ZD

Øis|trivial|tuple@XD  

i
k
jjjjjjjjjjjjjj

looooooomnooooooo
left|split@XD » Y
right|split@XD » Z
is|sorted@YD
is|sorted@ZD Þ

lomno merged@Y, ZD » X
is|sorted@merged@Y, ZDD

y
{
zzzzzzzzzzzzzz

of  the  definition,  which  describes  the  interaction  between  ’left|split’  and  ’right|split’  on  the  one  side  and
’merged’ on the other side. (The other parts are explicit as we have seen above.) This is a formula that can be
read as an explicit definition with input formula

is|tuple@X, Y, ZD
with input variables ’X’, ’Y’, ’Z’ and output formula

Ø is|trivial|tuple@XD Þ

i
k
jjjjjjjjjjjjjj

looooooomnooooooo
L » Y
R » Z
is|sorted@YD
is|sorted@ZD Þ

lomno M » X
is|sorted@MD

y
{
zzzzzzzzzzzzzz

with additional three output variables ’L’, ’R’, and ’M’.
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Here is an example of an algorithm requirement (specification) that is inherently non|explicit, i.e. for which one
cannot find an equivalent definition that is explicit:

is|canonic|simplifier@t, Σ, ~D �

loooomnoooo
"

t@xD  (Σ[x]~x)

"
t@x,yD Hx~y Þ HΣ@xD = Σ@yDLL.

I have an easy proof of the fact
that this requirement cannot be made explict
but, unfortunately, time and space
does not permit me to give this proof
here.

(Additional remark: I do hope that,
in approximately 300 years from now,
somebody will find this paper and
try to find and write down a proof.)

More  on  coupled  and  decoupled,  explicitly  and  non|explicitly  defined  requirements  will  be  contained  in
[Buchberger 2003 b].

à Conclusion

We  have  clarified  the  problem  of  "logical  algorithm  retrieval"  and  have  emphasized  the  importance  of  two
notions in this context:

é "symbolic  computation  proving"  ("high|school  proving",  "physicists’  proving",  "algebraic  proving",
"table look|up proving", "basic proving")

é "complete knowledge base".

For  the  Theorema  system,  this  has  the  following  practical  consequence:  We  will  put  decisive  effort  into
implement  a  "basic  prover"  that  can  be  used  as  an  elementary  building block  for  the  problem of  algorithm
retrieval (and any other type of mathematical knowledge retrieval) and, at the same time, also as a sub|prover
for all other, more sophisticated special provers for the various areas of mathematics.
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à Appendix: Knowledge Base for the Sorting Problem

� Definitions 

"
is|tuple@XD,Y  

i
k
jjjjjjjjis|sorted|version@X, YD � 9 is|tuple@YD

X » Y
is|sorted@YD

y
{
zzzzzzzz

is|sorted@X\D
"
x

is|sorted@Xx\D
"

x,y,z
-

 
ikjjjis|sorted@Xx, y, z��\D �

lomno x ³ y
is|sorted@Xy, z��\D y{zzz

X\ » X\
"
y,y��

HX\ M Xy, y��\L
"

x,x��,y��
HXx, x��\ » Xy��\ � Hx Î Xy��\ ß Xx��\ » dfo@x, Xy��\DLL

"
x

Hx Ï X\L
"

x,y,y��
HHx Î Xy, y��\L � HHx = yL Þ x Î Xy��\LL

"
a

Hdfo@a, X\D = X\L
"

a,x,x��
 
ikjjjdfo@a, Xx, x��\ D =

lomno Xx��\ Ü x = a
x \ dfo@a, Xx��\D Ü otherwise

y{zzz
"
y��� HØ X\ � Xy��\L
"
x,x��

HXx, x��\ � X\L
"

x,x��,y,y��
HXx, x��\ � Xy, y��\ � Xx��\ � Xy��\L

13



"
x,y��

Hx \ Xy��\ = Xx, y��\L
"
x,y��

HXy��\ [ x = Xy��, x\L
"
x��,y��

H < x�� > ^ < y��� >= < x��, y��� > L
"
X

Jis|tuple@XD � $
x��� HX = Xx��\LN

"
X

His|empty|tuple@XD � HX = X\LL
"
X

Jis|singleton|tuple@XD � $
x

HX = Xx\LN
"
X

His|trivial|tuple@XD � His|empty|tuple@XD Þ is|singleton|tuple@XDLL
� Axioms

"
x,x��,y,y��

HXx, x��\ = Xy, y��\L � HHx = yL ß HXx��\ = Xy��\LL
"
x,x��

HXx, x��\ ¹ X\L
� Properties

"
is|trivial|tuple@XD is|sorted@XD

"
is|trivial|tuple@XD, is|tuple@YD HX » Y � HX = YLL

"
is|tuple@XD HX » XL

"
is|tuple@X,YD HX » Y Þ Y » XL

"
is|tuple@X,Y,ZD HHX » Y ß Y » ZL Þ X » ZL

"
is|tuple@A,B,Y,ZD HHA » Y ß B » ZL Þ HA ^ BL » HY ^ ZLL

"
is|tuple@X,YD HX � Y Þ HY � XLL

"
is|tuple@X,Y,ZD HHX � Y ß Y � ZL Þ X � ZL
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