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Abstract— We describe a new method for con-
structing a sequence of refined polygons, which starts
with a sequence of points and associated normals.
The newly generated points are sampled from cir-
cles which approximate adjacent points and the
corresponding normals. By iterating the refinement
procedure, we get a limit curve interpolating the
data. We show that the limit curve is G

1, and that
it reproduces circles. The method is invariant with
respect to group of Euclidean similarities (including
rigid transformations and scaling). We also discuss an
experimental setup for a G

2 construction and various
possible extensions of the method.

Index Terms— subdivision techniques, fitting of
algebraic curves

I. INTRODUCTION

During the last years, iterative techniques for
generating curve and surfaces have attracted a lot
of attention, and they are now frequently being
used in Computer Graphics and related areas. The
classical linear schemes produce affinely invariant
classes of curves and surfaces [1]. They are often
obtained by generalizing the subdivision algorithms
for certain spline functions, including trigonometric
ones [2]. These techniques also included Hermite
subdivision schemes, dealing with points with as-
sociated derivatives, see [3] and the references cited
therein. Recently, several non-linear schemes have
emerged, but these schemes – which seem to be
promising – are much harder to analyze [4], [5].

On the other hand, various circle–based and
circle–preserving techniques for generating curves
are available [6], [7], [8], [9]. Due to its technical
importance, the reproduction of circular shapes is a
desirable feature of constructions for planar curves.

We present a novel non–linear subdivision tech-
nique, which is able to reproduce circles. Starting
with a sequence of points and associated normals,
we compute a circle fit to any two neighboring

points. Then, the new point is picked from this
circle. It is shown that the circle is unique, and that
the scheme produces G1 limit curves for certain
reasonable classes of input configurations.

The construction can be modified in several
ways, including different weights in the objective
function used for the fitting, change of the fitted
curve, and different strategies of choosing the new
point. In particular, we propose a scheme which
has experimentally been demonstrated to generate
G2 curves.

The paper is organized as follows. In section
2 we introduce the notation and several necessary
notions. Section 3 analyzes the basic step repeated
during the refinement – the fitting of the circle to
point and normal data. In section 4, we recall the
setup for subdivision of curves and adapt it to our
construction. Section 5 provides the proof of sev-
eral facts about the limit curve produced. The last
section concludes the paper with several remarks
concerning possible variations and improvements
of the method.

II. PRELIMINARIES

Let P = {p0, . . . ,pn} be a sequence of points,
where pi ∈ R

2 for i = 0, . . . , n. and V =
{~n0, . . . , ~nn} be a sequence of associated unit
vectors, where ~ni = (cos θi, sin θi)

> ∈ S
1 with

θi ∈ (−π, π] for i = 0, . . . , n.
In the method described below, the fundamental

step of the construction consists in fitting a circle
to a pair of neighboring points and associated nor-
mals. The newly generated points are then picked
from it. The normal is determined as an appropri-
ately oriented normal of the segment formed by
those neighboring points. In each step, the total
number of points is (roughly) doubled.

For any vector ~n = (nx, ny), let ~n⊥ =



2

r(−ny, nx) be the vector obtained by a rotation
of 90◦.

III. FUNDAMENTAL CONSTRUCTION STEP

Consider two points a,b ∈ R
2, a 6= b with

associated normals ~na, ~nb ∈ S
1. We assume that

||a−b|| = 2r, where r > 0. We construct a circle

f(x, y) = 0 (1)

where

f(x, y) = a(x2 +y2)+bx+cy+d, a, b, c, d ∈ R

(2)
which minimizes the objective function

F (a, b, c, d) = f(a)2 + f(b)2 + (3)
‖∇f(a)− ~na‖

2 + ‖∇f(b)− ~nb‖
2.

Hence, the task is to solve

min
a,b,c,d∈R

F (a, b, c, d). (4)

Clearly, the solution of (4) is invariant with respect
to Euclidean transformations. Therefore, we sup-
pose the following choice of the coordinate system
(see Figure 1)

a = (−r, 0)>, b = (r, 0)> (5)

and

~na = (cos θ, sin θ)>, ~nb = (cosφ, sin φ)> (6)

for θ, φ ∈ (−π, π]. Similarly, all angles will be
considered in this interval. Hence, θ

2 ∈ (−π
2 , π

2 ].
Note that – using a Euclidean similarity transfor-

mation (rigid body motion plus scaling) – any two
non–identical points with associated normals can
be mapped to this situation. Clearly, the length of
the normals may change; it has to be renormalized
after the mapping.

Let

α =
θ + φ

2
and β =

θ − φ

2
(7)

The angles in (7) will be often referred to as
functions

α(a,b, ~na, ~nb) and β(a,b, ~na, ~nb) (8)

of the given data.
The following lemma shows that the circle fit

exists always, except for pathological cases.

Lemma III.1
(i) The problem (4) has a unique solution.

(ii) Let

Z(f) = {x ∈ R
2 : f(x) = 0} (9)

a = (−r, 0)> b = (r, 0)>

~na = (cos θ, sin θ)> ~nb = (cosφ, sinφ)>

θ φ

Fig. 1: Local coordinates for analyzing the circle
fit (Lemma III.1)

be the zero set of the solution of (4). The
set (9) is a real conic section unless θ =
−φ = π

2 + kπ for k ∈ Z. Moreover, if θ =
φ+2kπ or θ = −φ+2kπ it is a double line.
Otherwise it is a circle.

Proof: The minimization of the function (3)
can be done by solving of the 4 × 4 linear (inho-
mogeneous) system given by Jacobi matrix

∂F (a, b, c, d)

∂(a, b, c, d)
= ~0. (10)

One can easily check that the coefficient matrix has
a non–zero determinant.

Now consider the set (9). Solving the system
(10), we get

a =
cos θ − cosφ

4
, b =

cos θ + cosφ

4
, (11)

c =
sin θ + sin φ

2
, d = −

(cos θ − cosφ)

4
.

The coefficient a vanishes iff

cos θ − cosφ = 0. (12)

This condition is equivalent to

θ = φ + 2kπ (13)

or
θ = −φ + 2kπ for k ∈ Z. (14)

Clearly, the coefficient d vanishes as well, if (12)
holds. In the first case (13), either the coefficient
b 6= 0 or c 6= 0, depending on the angles α and β.
Therefore, the solution is a line

bx + cy = 0. (15)

In the second case (14), we get the non-trivial
solution unless the angles θ = π

2 + kπ and φ =
−π

2 + kπ, since then at least the coefficient b 6= 0.
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If a 6= 0, the solution is a circle. The radius of
the circle is

rf =
√

Df with Df =
b2 + c2 − 4ad

4a2
. (16)

Clearly, there exists a real point on the circle if and
only if

Df ≥ 0. (17)

The case Df = 0 represents a singular real solution
– a point.

Substituting the solution (11) into the numerator
of (17) and using trigonometric identities, we get
an expression discriminating the existence of a real
solution

sin2 α +
1

(r2 + 1)2
cos2 α cos2 β ≥ 0. (18)

Clearly, it is always non-negative. Moreover, the
strict inequality condition holds iff θ 6= π

2 + kπ or
φ 6= −π

2 + kπ for any k ∈ Z. Thus, we get a real
circle in the generic case.

Assuming Z(f) is a circle, the newly generated
point is taken from

l ∩ Z(f), (19)

where the line l is the bisector of the points a and
b

l : x =
1

2
a +

1

2
b + t(b− a)⊥, t ∈ R. (20)

Using the choice of coordinates from Figure 1,
it is the y-axis (see also Figure 2). After a short
calculation, the new point turns out to be one of
the two possible solutions

q =

(

0,−r
cosβ + 1

sin β

)>

(21)

and

q′ =

(

0,−r
cosβ − 1

sin β

)>

. (22)

Clearly, the distance of each of the possible new
points to the points a, b is the same (due to the
choice of line l) and we get

‖q′ − a‖2 = ‖q′ − b‖2 =
r2

sin2 β

2

(23)

and

‖q− a‖2 = ‖q− b‖2 =
r2

cos2 β

2

. (24)

We expect the new point to be in the vicinity
of the existing ones. For neighboring points, β is
expected to be small. Consequently, we choose the
point q as the appropriate one.

a b

~na
~nb

sf

q′

q

Z(f)

l

Fig. 2: A new point generated from the fitted circle
Z(f) and the line l.

If Z(f) = ∅ or the intersection of l and Z(f)
(see (13) and (14)) contains more than finite num-
ber of points, we set

q =
1

2
a +

1

2
b (25)

Next, we need to determine an appropriate nor-
mal ~nq associated with the new point q. We as-
sume that the normals ~na and ~nb point to the same
halfplane of the line ab. We take the normal of that
line pointing in the same halfplane. This choice is
invariant under all Euclidean transformations (not
only special ones) 1.

Note that the normal can be calculated as an
appropriately oriented normal of the circle passing
through the points a,b,q, when they are non-
collinear due to (24). Hence, the construction will
reproduce circles.

Summarizing, we have the following

Algorithm 1 (New Point and Normal) Given
two points a, b and two associated (unit) normals
~na, ~nb.

If 〈~na, ~nb〉 > −1, compute the new point from

q =
1

2
a +

1

2
b−

1

2
tan

β

2
(b− a)⊥ (26)

where β is given by (7) and the corresponding
normal as

~nq = ±
(b− a)>

‖b− a)‖
(27)

such that 〈~nq, ~na〉 > 0 and 〈~nq, ~nb〉 > 0.
We denote these functions as q(a,b, ~na, ~nb) and
~n(a,b, ~na, ~nb).

1Another choice would be to use simply the normalized
vector (b − a)>. This works for all configurations of data,
but it is not invariant under reflections.
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Fig. 4: Zoom of the behavior of the normal for the
Figure 3, (ix)

Lemma III.2 The choice of the new point and
the new normal in Algorithm 1 is invariant under
the group of Euclidean similarities (including rigid
body transformations and scaling) of the plane.

Proof: The proof of invariance is obvious
from (26) and (27).
An example of the iteration of the refinement
process can be seen in the Figure 3. Starting with
set of points and normals shown in part (i), it shows
eight iterations of the refinement. Figure 4 shows a
closer look at the behavior of the generated normals
after the eighth iteration.

IV. ALGEBRAIC SUBDIVISION OF CURVE

After introducing the notation and basic algo-
rithm to refine a polygon, we will now prove some
properties of the generated sequence of points. Let

P 0 = {p0
0, ...,p

0
n0
} (28)

and
V 0 = {~n0

0, ..., ~n
0
n0
} (29)

be the sequence of associated normals with the
points in P 0 for n0 ∈ Z, n0 > 0. Using Algo-
rithm 1, we obtain iteratively a system of sequences

P j = {pj
0, ...,p

j
nj
} (30)

and
V j = {~nj

0, ..., ~n
j
nj
} (31)

such that

p
j+1
2k+1 = q(pj

k,p
j
k+1, ~n

j
k, ~n

j
k+1) (32)

for j = 0, 1, 2, . . . , k = 0, . . . , nj−1 − 2,

p
j+1
2k = p

j
k (33)

for j = 0, 1, 2, . . . , k = 0, . . . , nj−1 − 1, are the
newly generated points and

~n
j+1
2k+1 = ~n(pj

k,p
j
k+1, ~n

j
k, ~n

j
k+1) (34)

for j = 0, 1, 2, . . . , k = 0, . . . , nj−1 − 2,

~n
j+1
2k = ~n

j
k, (35)

for j = 1, 2, . . . , k = 0, . . . , nj−1 − 1 are
the newly generated vectors associated with the
corresponding points, where

nj+1 = 2nj (36)

for j = 0, 1, 2, . . ..
Associated with the sequences (30) and (31), we

have also the sequences of local angles

{θj
i }

nj−1
i=0 and {φj

i}
nj−1
i=0 (37)

such that
~n

j
i = (cos θ

j
i , sin θ

j
i )

⊥ (38)

and
~n

j
i+1 = (cosφ

j
i , sinφ

j
i )

⊥ (39)

in local coordinate system determined by the points
p

j
i , p

j
i+1 (see Figure 1). Using (7), we also have

an equivalent description

{αj
i}

nj−1
i=0 and {βj

i }
nj−1
i=0 (40)

of the parameter angles for j = 0, 1, 2, . . ., where

α
j
i = α(pj

i ,p
j
i+1, ~n

j
i , ~n

j
i+1) (41)

and
β

j
i = β(pj

i ,p
j
i+1, ~n

j
i , ~n

j
i+1). (42)

Note, that the angles α
j
i and β

j
i are also consid-

ered in the local coordinate systems defined by the
neighboring points. Clearly, we may consider the
sequences (30), (31) as sets and then

P j ⊂ P j+1 and V j ⊂ V j+1 (43)

for j = 0, 1, 2, . . .. Let

P∞ =

∞
⋃

j=0

P j and V ∞ =

∞
⋃

j=0

V j (44)

be the limit set of the generated points resp. vec-
tors. We prove several properties of these sets.

Each of the sequences P j defines a polygon
in R

2. We denote it with poly(P j). It can be
piecewise linearly parameterized. For P 0, we use

p0(t) =
ti+1 − t

ti+1 − ti
p0

i +
t− ti

ti+1 − ti
p0

i+1 (45)
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(i) (ii) (iii)

(iv) (v) (vi)

(vii) (viii) (ix)

Fig. 3: The sequence of eight subdivision steps for refining the data given in the part (i). The behavior
in part (ix) is shown in Figure 4

for t ∈ [ti, ti+1], where ti = i for i = 0, 1, . . . , n0.
Now, we can continue inductively with the param-
eterization of poly(P j) as

pj(t) = 2j(t− t
j
i )p

j
i + 2j(tji+1 − t)pj

i+1 (46)

for t ∈ [tji , t
j
i+1], where t

j
i = i

2j for i =

0, 1, . . . , nj . The parameters t
j
i are called dyadic

knots. Note, that due to (33)

pj+1(tj+1
2i ) = pj(tji ) (47)

for j = 0, 1, . . .; i = 0, 1, . . . , nj . Similarly, we
parameterize the corresponding vector function as

~nj(t) = 2j(t− t
j
i )~n

j
i + 2j(tji+1 − t)~nj

i+1 (48)

for t ∈ [tji , t
j
i+1].

Once we have accomplished this, we can con-
sider the sequence (40) as a sequence of piecewise
constant functions, each defined on the interval
[0, n0] with uniform binary refinement (see Fig-
ure 5).

Clearly, the values p(tji ) of the set P∞ and ~n(tji )
of the set V ∞ depend locally on the initial values.
Hence, it suffices to consider a pair of neighboring
points and normals to reveal local properties of the
generated sets.

In the sequel we assume that

〈~nj
i , ~n

j
i+1〉 > −1 (49)
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0 1 2 3 t

α

level j = 0

level j = 1

Fig. 5: Change of the step function α during
the refinement over the parameterization interval
[0, n0] for n0 = 4.

holds for j = 0, 1, . . ., i = 0, . . . , nj − 1.

V. PROPERTIES OF ALGEBRAIC SUBDIVISION
CURVE SEGMENT

Consider the set P 0 = {a,b} for a 6= b as in
(5) and V 0 = {~na, ~nb} as defined in (6). Hence,
n0 = 1 in this section.

We will prove that the generated set P∞ is
a dense subset of G1 curve and, moreover, the
normals of that curve are those in V ∞ for the
corresponding points.

The proof consists of the following steps.

1) First, we prove the technical Lemma V.1,
which preserves certain configurations of
data during the subdivision.

2) Second, we show that the polygons generated
by our algorithm are convex, provided the
initial data are in certain configurations, and
form a Cauchy sequence in C0[0, 1] space
with maximum norm.

3) As the last step, we show that the limit of that
sequence of C0 functions is in fact G1, by
considering the existence of tangent in each
generated point.

The following technical lemma is a key tool for
the proof of the properties of the limit sets (44).

Lemma V.1 If the following conditions

β0
0 > 0 (50)

0 < α0
0 ≤

π

2
(51)

−
β0

0

2
< α0

0 −
π

2
(52)

hold for P 0 and V 0, then the similar conditions

β
j
i > 0 (53)

0 < α
j
i ≤

π

2
(54)

−
β

j
i

2
< α

j
i −

π

2
(55)

hold in P j and V j for j = 0, 1, . . ., i =
0, 1, . . . , nj − 1.

As a geometrical interpretation, the conditions of
this lemma are satisfied in the gray region on the
Figure 6.

[π
2
, 0] α

β

Fig. 6: Area of parameters for the Lemma V.1

Proof: We prove the statement by induction
on j. Clearly, for j = 0

α0
0 −

π

2
<

β0
0

2
(56)

β0
0

2
< α0

0 + β0
0 (57)

and
α0

0 − β0
0 < π −

β0
0

2
, (58)

see Figure 7, where indices of α and β were
omitted in order to simplify the figure.

a b

~na
~nb

q

~nq

β

2

β

2

β

2

β

2

β

2α+ β

α − β

Fig. 7: Angles in a subdivision step

Then, the new angles in the local coordinates
determined by points a,q are θ1

0 = α0
0 +

β0

0

2 and
φ1

0 = π
2 −

β0

0

2 . Similarly, θ1
1 = π

2 +
β0

0

2 and
φ1

1 = α0
0 +

β0

0

2 are angles for the coordinate system
determined by points q,b. After a short calculation,
using (7), we get
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a = p0
0

b = p0
1

c0
0
= c

c1
0

c1
1

~na = ~n0
1

~nb = ~n1
1

q = p1
1

p2
1

p2
3

~nq = ~n1
1

~n2
1

~n2
3

la

lb

β

2
=

β0
0

2

β

2
=

β0
0

2

α+ β
α − β

Fig. 8: The convex generation of the new point

α1
1 −

π

2
= α1

0 −
π

2
=

1

2

(

α0
0 −

π

2

)

(59)

β1
0 =

1

2

(

α0
0 −

π

2

)

+
1

2
β0

0 (60)

β1
1 = −

1

2

(

α0
0 −

π

2

)

+
1

2
β0

0 . (61)

Clearly, the inequality (54) holds using (59). Using
(56) in (60) we get β1

0 > 0 and since both terms
on the right-hand side of (61) are positive, we get
β1

1 > 0. Hence, (53) is true for this case. Finally,
using (52) in (60) respectively (61), we get

−
β1

0

2
= −

1

2

(

α0
0 −

π

2

)

−
β0

0

2

<
1

2

(

α0
0 −

π

2

)

= α1
0 −

π

2
(62)

−
β1

1

2
=

1

2

(

α0
0 −

π

2

)

−
β0

0

2

<
3

2

(

α1
1 −

π

2

)

< α1
1 −

π

2
. (63)

Hence, (55) is true for j = 1. Now, we can proceed
inductively to finish the proof for j > 1.

The following lemma proves convexity of the
generated sequence of points.

Lemma V.2 If the conditions (50), (51), (52) and
∣

∣

∣
α0

0 −
π

2

∣

∣

∣
≤

π

4
(64)

|β0
0 | <

π

4
(65)

hold, then each of the polygons poly(P j) for j =
0, 1, . . . is convex.

Proof: Using Lemma V.1 and assumptions of
this lemma we get

|βj
i | <

π

4
. (66)

From |α0
0 −

π
2 | ≤

π
4 and (59) we get

∣

∣

∣
α

j
i −

π

2

∣

∣

∣
≤

π

4
. (67)

Hence,

0 < α
j
i + β

j
i < π (68)

0 < α
j
i − β

j
i < π (69)

for j = 0, 1, . . ., i = 0, . . . , nj − 1.
Further, using (55) we get

α
j
i + β

j
i −

π

2
>

β
j
i

2
(70)

and via (56) we get

α
j
i − β

j
i +

π

2
< π −

β
j
i

2
. (71)

Let la : 〈(x − a), ~na〉 = 0 and the lb : 〈(x −
b), ~nb〉 = 0 (see also Figure 8). Since 0 < β =
β0

0 < π
2 , there is a unique intersection c = la ∩ lb.

Due to (68), (69), (70) and (71) it must lie over the
line ab (local x-axis). Moreover, the new point lies
strictly within the triangle abc.

Continuing by induction, we suppose that
poly(P j) is a convex polygon. Each newly gen-
erated point in P j+1 is an inner point of triangle
p

j
ip

j
i+1c

j
i , where

c
j
i = l

j
i ∩ l

j
i+1 (72)
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and
l
j
i : 〈(x − p

j
i ), ~n

j
i 〉 = 0. (73)

Clearly, the new polygon is again locally convex.
Due to the convexity of the poly(P j), we can find
a point xj such that each newly generated point
lies in the wedge p

j
ix

jp
j
i+1 (see Figure 9). Hence,

the polygon poly(P j+1) has no self-intersections
and, therefore, is also convex.

x

p
j

i+1

p
j

i

·
·
·

·
·
·

Fig. 9: Splitting of a convex polygon into wedges

Corollary V.1 The inequality

min
i,k∈{0,...,nj}

i6=k

‖pj
i − p

j
k‖ > 0 (74)

holds for every j = 0, 1, . . ..

The result of the previous corollary means that we
generate a sequence in each refinement step, where
no two points are identical.

Lemma V.3 If the conditions (50), (51), (52), (64)
and (65) hold, the sequence of polygons

{pj(t)}∞j=0 (75)

converges to a convex C0 curve.

Proof: The assumptions and Lemma V.2 im-
ply that we get a convex polygon pj(t) in each step
of the refinement. Considering the parameterization
(46) and using (24), we get

‖pj+1(t)− pj(t)‖ ≤ rj
max

1

cos β
j
max

2

, (76)

for sufficiently large j, where

rj
max =

1

2
max

i=0,...,nj−1
‖pj

i+1 − p
j
i‖ (77)

and
βj

max = max
i=0,...,nj−1

|βj
i |. (78)

Using (24), we get

rj+1
max ≤

1

2| cos β
j
max

2 |
rj
max . (79)

By induction using (59), (60) and (61), we get

|βj
i | ≤

|β0
0 |

2j
+

j|α0
0 −

π
2 |

2j
. (80)

Clearly, βj
max → 0 as j → ∞. Hence, there is an

constant D, 0 < D < 1 and an integer j0 ∈ Z+

such that

0 <
1

2| cos β
j
max

2 |
< D < 1 (81)

holds for all j > j0. Summing up,

‖pj+1(t)− pj(t)‖ ≤ 2r0
max Dj+1 (82)

for j > j0 and therefore (75) is a Cauchy sequence
of globally bounded C0 convex polygons. There-
fore, it converges uniformly to a convex C0 curve.

Corollary V.2 The sequence of vector functions

{~nj(t)}∞j=0 (83)

converges to a continuous vector function ~n(t)
along the curve p(t).

Proof: Applying (80), we get the result.
Now, we need to prove the existence of tangent

for each generated point in P∞. We consider
the sequences of the points in P∞. We use the
local coordinate system described in Section II, see
Figure 1. Such a coordinate system exists, iff the
considered points are distinct. Corollary V.1 proves
the existence of such local coordinate system for
any two generated points.

Lemma V.4 If the conditions (50), (51) and (52)
hold, the system of sequences (40) has the follow-
ing properties:

1) For k = 0, 1, . . ., j = 0, 1, . . ., i =
0, . . . , nj − 1

α
j
i −

π

2
=

2k(i+1)−1
∑

l=2ki

(

α
j+k
l −

π

2

)

(84)

β
j
i =

2k(i+1)−1
∑

l=2ki

β
j+k
l (85)

2) Let {qk}∞k=0 be a convergent sequence of
points qk = p

jk

ik
∈ P∞ and limk→∞ qk =

q, where q = pJ
I , for some J ∈ Z+ and

I ∈ {0, . . . , nj}. Suppose, qk 6= q for any
k ∈ Z+. Then

lim
j→∞

α(qk ,q, ~nqk
, ~nq) =

π

2
(86)

lim
j→∞

β(qk ,q, ~nqk
, ~nq) = 0. (87)
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Proof: The (84) and (85) can be proven by
induction using (59), (60) and (61).

For the second part, we can assume without loss
of generality that q = p0

0. Further, let {tk}∞k=0 be
the sequence of the dyadic parameters correspond-
ing to {qk}. Since the limit curve P∞ is convex,
we have tk → 0.

First, we prove the second part for special se-
quences. Let qk = pk

ik
be such that ik+1 =

2ik or ik+1 = 2ik + 1 for k = 0, . . .. Then
α(qk ,q, ~nqk

, ~nq) = αk
ik

for k = 0, 1, . . .. Us-
ing (59), we get (86) by induction. Similarly,
β(qk ,q, ~nqk

, ~nq) = βk
ik

and using (80), we get
(87) for the special case.

Now, let the sequence {qk}∞k=0 of points be
arbitrary. Let tk = ik

2mk
. Then, using (51) and (84),

we have

0 ≥ α(qk ,q, ~nqk
, ~nq)−

π

2

=

lk
∑

l=0

(

αik

l −
π

2

)

≥ αmk

0 −
π

2
, (88)

for some lk ∈ {0, . . . , nk − 2} and

mk = max{m ∈ Z+; 2−m > tk}. (89)

Since tk → 0 for mk → ∞, using (86) for the
special case proved above, we get the convergence
in general case.

In order to prove (87) in the general case, we
have via (50) and (85)

0 ≤ β(qk ,q, ~nqk
, ~nq) =

lk
∑

l=0

βik

l ≤ βmk

0 . (90)

Using (87) for the special case, we get the result
for all sequences.

The last step is the proof of G1 continuity of
the limit curve. Since we know the curve is C0

according to the Lemma V.3, we prove the exis-
tence of the tangent line for every generated points.
The normal of this line will be the corresponding
generated normal vector at the point.

Lemma V.5 If the conditions (50), (51), (52), (64)
and (65) hold, then the set P∞ is a convex curve
with a well defined tangent and is therefore G1

everywhere.

Proof: Let {qk}
∞
k=0 be a convergent sequence

of points in P∞ and qk → q ∈ P∞. Let the
unit normal of the line ←→qqk be denoted as ~mk.
We prove, that ~mk → ~nq as k → ∞. In order to

prove this, we prove the convergence of the angles
between the vectors ~mk and ~nq converges to 0,

lim
k→∞

〈

qk − q

‖qk − q‖
, ~nq

〉

= 0. (91)

Since the function ~n(t) is continuous according to
Corollary V.2, we suppose, that ~mk is in a the
neighborhood of ~nq. Let {αk}∞k=0 and {βk}∞k=0

be the sequences, where

αk = α(qk ,q, ~mk, ~nq) (92)

and
βk = β(qk,q, ~mk, ~nq). (93)

Using Lemma V.4 we get (see also Figure 10)
〈

qk − q

‖qk − q‖
, ~nq

〉

= cos δk = cos(π−αk+βk)→ 0

(94)
when δk > 0 and similarly
〈

qk − q

‖qk − q‖
, ~nq

〉

= cos δk = cos(αk + βk)→ 0

(95)
when δk ≤ 0. This completes the proof for the
sequences from P∞. Using completion and the fact
that ~n is C0, we conclude that the P∞ is locally
G1 with well defined normal in V ∞.

qk q

~mk ~nq

δk

αk + βk

αk − βk

q qk

~mk ~nq

−δk = αk + βk

αk − βk

Fig. 10: The convergence of the tangent for positive
and negative δk

Summing up, we have

Theorem V.1 Let

0 < β0
i <

π

4
(96)

∣

∣

∣
α0

i −
π

2

∣

∣

∣
≤

π

4
(97)

−
β0

i

2
< α0

i −
π

2
(98)



10

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2 4 6 8
x

(a)

–2

–1

0

1

2

3

2 4 6 8

x

(b)

Fig. 11: (a) The graph of the normal angle; (b)
Graph of the approximating the curvature of the
curve

for i = 0, . . . , n0−1. Then the set P∞ is a convex
curve with a well defined tangent, hence it is G1

everywhere.

Note, that the result of Theorem V.1 means,
that the generated curve is C1 after an appropriate
reparameterization.

In order to visualize this result, we have checked
the quality of the generated curve, as follows. First,
we have generated the graph of the normal angle
for the generated curve in Figure 3, see Figure 11,
(a). Clearly, it is a continuous function of the
dyadic parameter.

In Figure 11, (b), the approximation of the
curvature (the inverse of the radius of the circle
passing through three consecutive generated points)
is shown. Both figures are from the level (ix) of
the refinement in Figure 3. The limit curve does
not seem to have a well–defined curvature.

VI. CONCLUSION AND FUTURE WORK

We have presented a novel method for refine-
ment of the sequence of points in plane associated
with a unit normal vectors. The method is invariant

Fig. 12: Smoother normal approximation after 5
and 8 subdivision steps

under Euclidean similarities. It produces a G1

curve, provided certain conditions are satisfied by
the initial data. The initial data (points with asso-
ciated normals) are interpolated by the generated
curve. Since we used circle fits to generate new
points, it is clear, that this construction reproduces
a circle, if the initial data are taken from the circle.

In order to improve the local behavior of the
generated set of points, we have developed an
experimental method with smoother normal (see
Figure 12). The initial data are taken those from
Figure 3, (i). In this case, we fit to the set of
four consecutive points and their normals a general
conic section. The new point and the corresponding
normal are picked from this conic. The construction
provides interpolation of the initial points, whereas
the normals are adapted during the refinement.

The graph of the normals (see Figure 13, (a))
and the corresponding graph of the curvature radius
(see Figure 13, (b)) show a promising behavior. The
generated curve and the normal field can be seen
on Figure 12. The properties of these curves will
be analyzed in the future.

The method can also be extended to the surface
case. In this context, we have consider triangular
meshes with given normals in the vertices. The new
point can be taken as a suitable point picked up
from a quadric fitted to certain neighborhood of
the triangle.
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