
MACMAHON’S PARTITION ANALYSIS X:
PLANE PARTITIONS WITH DIAGONALS

GEORGE E. ANDREWS, PETER PAULE, AND AXEL RIESE

Abstract. We examine two-rowed plane partitions with a new diagonal con-

straint between the rows. The related generating function is an infinite prod-

uct; surprisingly the numerator factors of the product are not cyclotomic poly-
nomials.

1. Introduction

In his pioneering book “Combinatory Analysis” [10, Vol. II, Sect. VIII, pp. 91–
170] MacMahon introduced Partition Analysis as a computational method for solv-
ing combinatorial problems in connection with systems of linear diophantine in-
equalities and equations. He devotes Chapter II of Section IX to the study of plane
partitions as a natural application domain for his method. MacMahon starts out
with the “most simple case” [10, Vol. II, p. 183], namely where non-negative in-
tegers ai are placed at the corner of a square such that the order relations shown
in Figure 1 are satisfied. It is understood that an arrow pointing from ai to aj is
interpreted as ai ≥ aj .
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c ca1 a2
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Figure 1.

By using Partition Analysis MacMahon then derives that

D1 :=
∑

xa1
1 xa2

2 xa3
3 xa4

4

=
1− x2

1x2x3

(1− x1)(1− x1x2)(1− x1x3)(1− x1x2x3)(1− x1x2x3x4)
,

where the summation ranges over all non-negative integers ai satisfying the relations
from Figure 1. Furthermore, he observes that if all xi are set to q, the resulting
generating function reduces to

1
(1− q)(1− q2)2(1− q3)

.

Subsequently MacMahon turns to a more general situation and tries to derive
the full generating function for plane partitions of m rows, l columns and each part
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not exceeding n. However, his exploration culminates in the conclusion [10, Vol. II,
p. 187]: “Our knowledge of the Ω operation is not sufficient to enable us to establish
the final form of result. This will be accomplished by the aid of new ideas which
will be brought forward in the following chapters.”

Despite this negative statement, it turns out that Partition Analysis nevertheless
is a powerful tool for investigating new variations of plane partitions, as it has been
demonstrated for instance by the authors in [7]. Our object here is to study yet
another variant of plane partitions, namely one with additional constraints on the
diagonals, for which the full generating function may be computed.

Furthermore, we want to point out that MacMahon’s method has been turned
into an algorithm [4, 5]. Many of the results shown below have been verified, some
even found, with the help of the Omega package1.

2. Plane Partitions with Diagonals

First of all we need to recall the key ingredient of MacMahon’s method, the
Omega operator Ω=.

Definition 1. The operator Ω= is given by

Ω
=

∞∑
s1=−∞

· · ·
∞∑

sr=−∞
As1,...,srλ

s1
1 · · ·λsrr :=

∞∑
s1=0

· · ·
∞∑
sr=0

As1,...,sr ,

where the domain of the As1,...,sr is the field of rational functions over C in several
complex variables and the λi are restricted to a neighborhood of the circle |λi| = 1.
In addition, the As1,...,sr are required to be such that any of the series involved is
absolute convergent within the domain of the definition of the As1,...,sr .

We emphasize that it is essential to treat everything analytically rather than
formally because the method relies on unique Laurent series representations of
rational functions; see also the discussion in [4].

We start with the base case where

h0 = h0(x1, x2) =
∑

a1,a2≥0
a1≥a2

xa1
1 xa2

2 .

Then by geometric series summation,

(1) h0(x1, x2) =
1

(1− x1)(1− x1x2)
.

Note that by using the Ω= operator, the h0 series can be rewritten as

(2) h0 = Ω
=

∑
a1,a2≥0

xa1
1 xa2

2 λa1−a2
1 = Ω

=

1
(1− x1λ1)

(
1− x2

λ1

) .
Expressions like the one on the right-hand side of (2) are called “crude generating
functions” in [10]. Using this representation, relation (1) turns into

(3) Ω
=

1
(1− x1λ1)

(
1− x2

λ1

) =
1

(1− x1)(1− x1x2)
,

which can be interpreted as a rule to eliminate the variable λ1 from the crude gen-
erating function. Informally, MacMahon’s method can be described as follows. Let

1Available at http://www.risc.uni-linz.ac.at/research/combinat/risc/software/Omega/
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f(x1, . . . , xn) be defined by
∑
xa1

1 · · ·xann , where the summation is over all nonneg-
ative integers ai satisfying a given system of r linear Diophantine inequalities. It
is a well-known fact that such generating functions have a closed form representa-
tion as a rational function. In order to compute it via Partition Analysis one first
transforms f into its crude generating function, i.e.,

f(x1, . . . , xn) = Ω
=
g(x1, . . . , xn;λ1, . . . , λr).

Then in the next step one successively applies elimination rules like (3) until one
arrives at a rational function expression which is free of all λi. Elementary examples
can be found in [4]; see also the articles [1, 2, 3, 5, 6, 7, 8, 9].

We generalize the h0 as follows. Let

H1 := {(a1, . . . , a6) ∈ N6 : the ai satisfy the order relations in Figure 2}.

c c c
c c c
�
��
�
��

a1 a3 a5

a2 a4 a6

- -

- -

?
?

?*

Figure 2.

Define
h1 := h1(x1, . . . , x6) :=

∑
(a1,...,a6)∈H1

xa1
1 · · ·x

a6
6 .

Obviously,

h1 = Ω
=

1
(1− x1λ1λ2)

(
1− x2λ3λ5

λ1

)(
1− x3λ4λ6

λ2

)
· 1(

1− x4λ7
λ3λ6

)(
1− x5λ8

λ4λ5

)(
1− x6

λ7λ8

) .(4)

The following elimination rules are special instances of the base cases (2.4) and
(2.2) used in [5]. In fact, (6) is explicitly given by MacMahon [10, Vol. II, p. 102].

Lemma 1.

Ω
=

1
(1− aλ)

(
1− b1

λ

)(
1− b2

λ

)(
1− b3

λ

)
=

1
(1− a)(1− ab1)(1− ab2)(1− ab3)

;
(5)

Ω
=

1(
1− a

λ

)
(1− b1λ)(1− b2λ)

=
1− ab1b2

(1− b1)(1− b2)(1− ab1)(1− ab2)
.

(6)

In order to keep expressions as simple as possible it will be convenient to in-
troduce the following short-hand notation which will be used for the rest of the
paper.

Definition 2. For k ≥ 1, we define

Xk := x1x2 · · ·xk.
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Proposition 1.

h1 =
(1− x1X3)(1−X5X3)

(1−X1)(1−X2)
(
1− X3

x2

)
(1−X3)

· 1
(1−X4)

(
1− X5

x4

)
(1−X5)(1−X6)

.

(7)

Proof. We start with the crude generating function representation of h1 as in (4)
and apply rule (5) to it with respect to λ8, λ7, λ6, λ5, and λ2 in exactly this order
and arrive at

h1 = Ω
=

1
(1−X6)(1− x1λ1)

(
1− x2λ3

λ1

)
· 1(

1− x2x5λ3
λ1λ4

)
(1− x1x3λ1λ4)

(
1− x1x3x4λ1λ4

λ3

) .
Applying to this expression rule (6) with respect to λ4, λ3, and λ1, in this order
gives (7). �

Definition 3. For n ≥ 1 define

Hn := {(a1, . . . , a4n+2) ∈ N4n+2 : the ai satisfy the order relations in Figure 3}

and

hn := hn(x1, . . . , x4n+2) :=
∑

(a1,...,a4n+2)∈Hn

xa1
1 · · ·x

a4n+2
4n+2 .

c c c c c c c c
c c c c c c c c
��
��
��

��
��
��

��
��
��

a1 a3 a5 a7 a9 a4n−3 a4n−1 a4n+1

a2 a4 a6 a8 a10

. . .

a4n−2 a4n a4n+2

- - - - - -

- - - - - -

?
?

?
?

? ?
?

?* * *

Figure 3.

The two following crude generating function representations are obvious:

Proposition 2.

h2 = Ω
=

1
(1− x1λ1λ2)

(
1− x2λ3λ5

λ1

)(
1− x3λ4λ6

λ2

)
· 1(

1− x4λ7
λ3λ6

)(
1− x5λ8λ9

λ4λ5

)(
1− x6λ10λ11

λ7λ8

)
· 1(

1− x7λ12λ13
λ9

)(
1− x8λ14

λ10λ13

)(
1− x9λ15

λ11λ12

)(
1− x10

λ14λ15

) .
(8)
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Proposition 3. For n ≥ 3,

hn = Ω
=

1
(1− x1λ1λ2)

(
1− x2λ3λ5

λ1

)(
1− x3λ4λ6

λ2

)
· 1(

1− x4λ7
λ3λ6

)(
1− x5λ8λ9

λ4λ5

)(
1− x6λ10λ11

λ7λ8

)
...

· 1(
1− x4n−5λ7n−9λ7n−8

λ7n−12

)(
1− x4n−4λ7n−7

λ7n−11λ7n−8

)(
1− x4n−3λ7n−6λ7n−5

λ7n−10λ7n−9

)
· 1(

1− x4n−2λ7n−4λ7n−3
λ7n−7λ7n−6

)(
1− x4n−1λ7n−2λ7n−1

λ7n−5

)(
1− x4nλ7n

λ7n−4λ7n−1

)
· 1(

1− x4n+1λ7n+1
λ7n−3λ7n−2

)(
1− x4n+2

λ7nλ7n+1

) .

(9)

The next proposition is immediately implied by the previous representations (8)
and (9).

Proposition 4. For n ≥ 1,

hn+1 = Ω
=
hn(x1, . . . , x4n, x4n+1λ7n+2, x4n+2λ7n+3λ7n+4)

· 1(
1− x4n+3λ7n+5λ7n+6

λ7n+2

)(
1− x4n+4λ7n+7

λ7n+3λ7n+6

)(
1− x4n+5λ7n+8

λ7n+4λ7n+5

)(
1− x4n+6

λ7n+7λ7n+8

) .
In the next section we shall use this proposition to prove the following theorem.

Theorem 1. For n ≥ 0, X−1 := 1, and x0 := 1,

hn+1

hn
=

1−X4n+5X4n+3

1− X4n+5
x4n+4

Pn(x1, . . . , x4n+3)(
1− X4n+3

x4nx4n+2

)(
1− X4n+3

x4n+2

)
· 1

(1−X4n+3)(1−X4n+4)(1−X4n+5)(1−X4n+6)(1−X4n+1X4n−1)
,

(10)

where

Pn(x1, . . . , x4n+3) = 1−X4n−1X4n+1 −
X4n−1X4n+3

x4n+2
− X4n+1X4n+3

x4nx4n+2

− X4n+1X4n+3

x4n
−X4n+1X4n+3 +

X4n−1X4n+1X4n+3

x4nx4n+2

+
X4n−1X4n+1X4n+3

x4n+2
+X4n−1X4n+1X4n+3 +

X2
4n+1X4n+3

x4n

+
X4n+1X

2
4n+3

x4nx4n+2
−
X4n−1X

2
4n+1X

2
4n+3

x4nx4n+2
.

(11)
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Setting xi = q for all i ≥ 1 and x0 = 1, X−1 = 0, we observe that
1−X4n+5X4n+3(

1− X4n+5
x4n+4

)
(1−X4n+1X4n−1)

Pn(x1, . . . , x4n+3)(
1− X4n+3

x4nx4n+2

)(
1− X4n+3

x4n+2

)
=

1 + q4n+4

1− q8n

(1− q4n+3)(1− q8n)− q(1− q4n)(1− q8n+1)
1− q

=
1 + q4n+4

1 + q4n

(1− q4n+3)(1 + q4n)− q(1− q8n+1)
1− q

=
1 + q4n+4

1 + q4n
(1 + q4n + q4n+1 + q4n+2 + q8n+2).

(12)

If we define for n ≥ 0,

Qn := 1 + q4n + q4n+1 + q4n+2 + q8n+2,

then due to (12), equation (10) reduces to

hn+1(q)
hn(q)

=
1 + q4n+4

1 + q4n

Qn
(1− q4n+3)(1− q4n+4)(1− q4n+5)(1− q4n+6)

for all n ≥ 1, where
hn(q) = hn(q, q, . . . , q).

We summarize in the form of a corollary.

Corollary 1. For n ≥ 1,

hn(q) = (1 + q2)(1 + q4n)
Q1Q2 · · ·Qn−1

(q; q)4n+2
.

For n→∞ we obtain the following.

Corollary 2.

h∞(q) = (1 + q2)
∞∏
n=1

1 + q4n + q4n+1 + q4n+2 + q8n+2

1− qn
.

3. Proof of Theorem 1

We shall prove Theorem 1 in the following equivalent form.

Theorem 2. Let gn = gn(x1, . . . , x4n+6) denote the right-hand side of equality (10).
Then for n ≥ 0,

hn+1 = gngn−1 · · · g0h0.

Proof. We proceed by induction on n. The case n = 0 is immediate from (1)
and (7). For the step from n to n+ 1 we invoke Proposition 4, namely

(13) hn+1 = Ω
=
hn(x1, . . . , x4n, x4n+1λ7n+2, x4n+2λ7n+3λ7n+4)Tn,

where

Tn =
1(

1− x4n+3λ7n+5λ7n+6
λ7n+2

)(
1− x4n+4λ7n+7

λ7n+3λ7n+6

)(
1− x4n+5λ7n+8

λ7n+4λ7n+5

)(
1− x4n+6

λ7n+7λ7n+8

) .
According to the induction hypothesis,

hn(x1, . . . , x4n+2) = gn−1(x1, . . . , x4n+2)gn−2(x1, . . . , x4n−2) · · · g0(x1, . . . , x6)

· h0(x1, x2).

(14)
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Consequently, (13) and (14) give

hn+1 =

hn−1︷ ︸︸ ︷
gn−2 · · · g0h0

· Ω
=

µ1,...,µ7

gn−1(x1, . . . , x4n, x4n+1µ1, x4n+2µ2µ3)

· 1(
1− x4n+3µ4µ5

µ1

)(
1− x4n+4µ6

µ2µ5

)(
1− x4n+5µ7

µ3µ4

)(
1− x4n+6

µ6µ7

)︸ ︷︷ ︸
T (µ1,...,µ7)

.

(15)

So our task is to show that the Ω= expression in (15) is indeed gngn−1, which
corresponds to showing that

gngn−1 = Ω
=

1−X4n+1X4n−1µ1

1−X4n−3X4n−5

Pn−1(x1, . . . , x4n−1)(
1− X4n−1

x4n−4x4n−2

)(
1− X4n−1

x4n−2

)
· 1

(1−X4n−1)(1−X4n)(1−X4n+1µ1)(1−X4n+2µ1µ2µ3)

· 1

1− X4n+1µ1
x4n

T (µ1, . . . , µ7).

The right-hand side equals

Pn−1(x1, . . . , x4n−1)(
1− X4n−1

x4n−4x4n−2

)(
1− X4n−1

x4n−2

) 1
(1−X4n−3X4n−5)(1−X4n−1)(1−X4n)

· Ω
=

(1−X4n+1X4n−1µ1)T (µ1, . . . , µ7)

(1−X4n+1µ1)(1−X4n+2µ1µ2µ3)
(
1− X4n+1µ1

x4n

) ,
so in other words, by Ω= elimination we have to derive that

L := Ω
=

(1−X4n+1X4n−1µ1)T (µ1, . . . , µ7)

(1−X4n+1µ1)(1−X4n+2µ1µ2µ3)
(
1− X4n+1µ1

x4n

)
= gn

1−X4n+1X4n−1

(1−X4n+1)(1−X4n+2)
(
1− X4n+1

x4n

) .(16)

To this end we apply rule (5) to eliminate from the left-hand side of (16) the
variables µ7, µ6, µ5, and µ3, in this order, and arrive at

L =
1

1−X4n+2x4n+3x4n+4x4n+5x4n+6

· Ω
=

1−X4n−1X4n+1µ1

(1−X4n+1µ1)(1−X4n+2µ1µ2)
(
1− X4n+1µ1

x4n

)
· 1(

1− x4n+3µ4
µ1

)(
1− x4n+3x4n+4µ4

µ1µ2

)(
1− X4n+2x4n+5µ1µ2

µ4

) .
In the next step we apply rule (6) to eliminate µ2 and µ4, in this order, which gives

(17) L = C · Ω
=

1− µ1X4n−1X4n+1

(1−X4n+1µ1)(1−X4n+2µ1)
(
1− X4n+1µ1

x4n

)(
1− x4n+3

µ1

)
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with

C =
1−X4n+3X4n+5

(1−X4n+4)
(
1− X4n+5

x4n+4

)
(1−X4n+5)(1−X4n+6)

.

For the final elimination step let us denote the Ω= expression in (17) by L′. In
order to eliminate µ1 from it, we need to extend rule (6) by one more term and
with 1 or λ in the numerator.

Lemma 2. We have

Ω
=

1(
1− a

λ

)
(1− b1λ)(1− b2λ)(1− b3λ)

=
1 + (b1b2b3 − b1b2 − b1b3 − b2b3)a+ b1b2b3a

2

(1− b1)(1− b2)(1− b3)(1− ab1)(1− ab2)(1− ab3)

(18)

and

Ω
=

λ(
1− a

λ

)
(1− b1λ)(1− b2λ)(1− b3λ)

=
1 + (1− b1 − b2 − b3)a+ b1b2b3a

2

(1− b1)(1− b2)(1− b3)(1− ab1)(1− ab2)(1− ab3)
.

(19)

Proof. Rule (18) is an entry in MacMahon’s list [10, Vol. 2, Art. 348]. Rule (19) is
proved in [5]. �

Applying rules (18) and (19), to the first, resp. second, part of L′ results in

Ω
=

1

(1−X4n+1µ1)(1−X4n+2µ1)
(
1− X4n+1µ1

x4n

)(
1− x4n+3

µ1

)
= D ·

(
1−X4n−1X4n+1 −

X4n+1X4n+3

x4nx4n+2
− X4n+1X4n+3

x4n
+
X2

4n+1X4n+3

x4n

+
X4n+1X

2
4n+2

x4nx4n+2

)
(20)

and

−Ω
=

µ1X4n−1X4n+1

(1−X4n+1µ1)(1−X4n+2µ1)
(
1− X4n+1µ1

x4n

)(
1− x4n+3

µ1

)
= D ·

(
−X4n−1X4n+1 −

X4n−1X4n+3

x4n+2
+
X4n−1X4n+1X4n+3

x4n+2

+X4n−1X4n+1X4n+3 +
X4n−1X4n+1X4n+3

x4n+2x4n
−
X4n−1X

2
4n+1X

2
4n+2

x4nx4n+2

)
,

(21)

where

D =
1

(1−X4n+1)(1−X4n+2)
(
1− X4n+1

x4n

)(
1− X4n+3

x4n+2

)
· 1

(1−X4n+3)
(
1− X4n+3

x4n+2x4n

) .
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Finally, combining (20) and (21) with (17), and recalling the definition of Pn
from (11), gives

L = C ·D · Pn

= gn
1−X4n+1X4n−1

(1−X4n+1)(1−X4n+2)
(
1− X4n+1

x4n

) ,
which proves (16). This completes the proof of Theorem 2, and hence the proof of
Theorem 1. �

4. Conclusion

Once again we find that MacMahon’s Partition Analysis implemented in the
Omega package is a powerful exploratory tool. The generating function in Corol-
lary 2 is totally unexpected from past experience. All of the previous infinite prod-
uct generating functions for ordinary and plane partitions consisted of products of
cyclotomic polynomials. Now for plane partitions with diagonals we discover the
lovely product in Corollary 2.

Naturally, we are led to plane partitions with other diagonals and with more
rows. We have found further partitions that are related to those considered here
and that have striking infinite product generating functions. These will be the
subject of a subsequent paper.
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