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Abstract. Consider the semilinear parabolic equation
−ut(x, t) + uxx + q(u) = f(x, t),

with the initial condition
u(x, 0) = u0(x),

Dirichlet boundary conditions
u(0, t) = ϕ0(t), u(1, t) = ϕ1(t)

and a sufficiently regular source term q(·), which is assumed to be known a priori

on the range of u0(x). We investigate the inverse problem of determining the
function q(·) outside this range from measurements of the Neumann boundary
data

ux(0, t) = ψ0(t), ux(1, t) = ψ1(t).
Via the method of Carleman estimates, we derive global uniqueness of a solution
(u, q) to this inverse problem and Hölder stability of the functions u and q with
respect to errors in the Neumann data ψ0, ψ1, the initial condition u0 and the
a priori knowledge of the function q (on the range of u0). These results are
illustrated by numerical tests. The results of this paper can be extended to more
general nonlinear parabolic equations.

1. Introduction

For some diffusion processes, e.g., heat transfer problem, linear equations are a
sufficiently accurate model for the underlying physical system. However, in many
technical and industrial applications, in particular for large ranges of temperatures,
nonlinear effects, which may be due to temperature dependence of material parameters
or radiation, have to be taken into account. Nonlinear heat transfer laws appear, e.g.,
in the modelling of cooling processes for steel or glass in liquids and gases, e.g., in
the continuous casting of steel [13]. Nonlinear diffusion equations also arise in furnace
reactions (see, e.g., [40]).

‡ supported by the the Austrian National Science Foundation FWF under grant SFB F013/08



2 H Egger, H W Engl and M V Klibanov

Prominent examples for inverse problems in diffusion processes are backwards
or sideways heat equation, and a variety of parameter identification problems (for
an account of some important inverse problems in diffusion see the Proceedings
[9], or Beck, Blackwell and Clair [2] and Alifanov [1] for an overview over inverse
heat conduction problems). Note, that most of these inverse problems are ill-posed,
i.e. their solution depends unstably on the data, and thus have to be solved via
regularization techniques.

Stable identification of space or/and time dependent parameters or source terms
leads to (nonlinear) inverse problems typically governed by linear parabolic equations,
see, e.g., [11]. An analysis and stable numerical treatment of unknown parameters
depending on the the physical state, i.e., identification of nonlinearities, see e.g.
[32, 33], is more involved, since already the underlying equation is nonlinear (nonlinear
parameters in boundary conditions have been treated for instance in [39]).

An important issue is also the availability of data: While for some applications,
e.g., inverse problems in groundwater filtration, see, e.g., [14], it is reasonable to
assume distributed measurements (measurements of the state u on the whole domain),
in many cases measurements will be possible only at the boundary. Thus, identification
from a single set of or possibly multiple boundary measurements is of special interest.

In this paper we consider a simple model problem (1.1) for a nonlinear diffusion
process (we think of heat transfer and thus call u the ”temperature”), and show that
under reasonable assumptions the nonlinearity, in our case a nonlinear source term,
can be uniquely and stably identified over a wide range of temperatures by a single
experiment in a simple setup from one set of boundary measurements. We point out
possible extensions of our result to more general equations later in this section. Note,
that a parameter q depending on the physical state u can be determined only on the
range of states, which are actually reached; in general, this range is unknown and
depends on the parameter q. However, in an experimental setup, we have in mind,
this range is known a priori. We give a short description of the experimental setup:

The experiment is started at low temperature, where material parameters are
usually known (or in some cases even constant), with the initial temperature decreasing
from the left to the right. Then we start heating the left boundary, while the right
one is kept cooler than the left (for example at constant temperature) and measure
the heat flux over the boundaries.

Heating on the left boundary is continued until the temperature range, on which
we want to determine q(u), is exhausted. In order to guarantee stable reconstruction
of the nonlinear parameter, the temperature on the left boundary has to be increased
even slightly more (see Theorem 2 below).

By the method of Carleman estimates, we show that with such an experiment,
q(u) in (1.1) can be uniquely and stably determined and illustrate this by numerical
tests. With this setup in mind, we now state our problem and assumptions in detail:

Let Ω := (0, 1), QT := Ω × (0, T ) for some T > 0. We consider the quasilinear
parabolic equation

−ut + uxx + q(u) + f(x, t) = 0, (x, t) ∈ QT (1.1)

with sufficiently regular functions q and f , initial condition

u(x, 0) = u0(x), x ∈ Ω (1.2)
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Figure 1. Isolines in a typical experiment

and Dirichlet boundary conditions

u (0, t) = ϕ0(t), u (1, t) = ϕ1(t), t ∈ (0, T ). (1.3)

The Neumann boundary data

ux(0, t) = ψ0(t), ux(1, t) = ψ1(t), t ∈ (0, T ) (1.4)

(given by measurements) are to be used to identify the function q(u). Motivated by
the experimental setup as described above, we make the following assumptions on the
functions q, ϕi and solutions u of (1.1)-(1.3)

(A) There exists a constant γ > 0, such that

ϕ′
0(t) ≥ γ, ϕ′

1(t) ≥ 0, for t ∈ (0, T ), i = 0, 1,

(B) u ∈ C4+θ,2+θ/2(QT ) for some 0 < θ < 1, and

(C) there exists a constant γ1 > 0 such that ux(x, t) < −γ1 on QT .

Assumption (A) simply requires to control the temperature at the boundary in an
appropriate way. Condition (C), which is a key ingredient in the proof of our
results, is reasonable, if the temperature difference between the two boundaries is
kept sufficiently large. Sufficient conditions for (C) can be derived by differentiating
(1.1)-(1.3) with respect to x and using maximum principles (see [12, 34]), e.g., ψ0(t),
ψ1(t), u

′
0(x) ≤ −C and f(x, t) = 0 would be sufficient, if |q(u)| is bounded, which is

again reasonable to assume. The conditions on the measurements ψi can be checked
during the experiment. Note that under assumptions (A) and (C), u(x, t) takes values
in

D := [ϕ1(0), ϕ0(T )]

only. Hence we may assume q to be a function on D only. We further assume that q
is sufficiently smooth, i.e.,

(D) q ∈ C2+θ(D).
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For existence and regularity of solutions u to (1.1)-(1.3) (assumption (B)), and the
necessary compatibility conditions for boundary and initial conditions, we refer to
Ladyzhenskaya, Solonikov and Ural’ceva [34] or Friedman [12].

In the sequel we will assume that

(E) ϕ1(T ) ≤ ϕ0(0),

which is satisfied, if the temperature on the right boundary ϕ1(t) is kept constant.
Otherwise, this assumption can be made without loss of generality, since one always
can find a finite number n and time horizons 0 < τ = T0 < T1 < . . . < Tn = T such
that on each subdomain Qi := (0, 1) × [Ti − τ, Ti+1], i = 0, . . . , n− 1 the condition

ϕ1(Ti+1) ≤ ϕ0(Ti)

is satisfied. Theorems 1 and 2 below then can be applied iteratively to the subdomains
Qτ

i := (0, 1) × [Ti − τ, Ti+1]. Now consider the following

Inverse Problem 1

Assume that

ux(0, t) = ψ0(t), ux(1, t) = ψ1(t), t ∈ (0, T )

are given and the function q (y) is known for y ∈ D0, where

D0 := [ϕ1(0), ϕ0(0)]

Determine the functions u and q satisfying (1.1)-(1.3).

The assumption that q is known on D0 is essential for our proofs, but not
too restrictive, since D0 can be an arbitrarily small interval and the temperature
is assumed to be low there (see the remarks on the experimental setup above).

In this paper we investigate uniqueness and stability of solutions to this Inverse
Problem under assumptions (A)-(E). Obviously, by (A) and (C), and since q is assumed
to be known on D0, it is sufficient to determine q on

D1 := {y : ϕ0(0) < y ≤ ϕ0(T )}.

Inverse coefficient and source problems for parabolic equations are well studied in
the literature. Uniqueness results for 1-D inverse problems for quasilinear parabolic
equations with single boundary measurements have previously been derived by
Muzylev [37] (for a piecewise analytic coefficient q(u) in a parabolic equation), Pilant
and Rundell [38]. Kügler [32] and Kügler and Engl [33] investigated uniqueness
and stability via regularization for quasilinear parabolic and elliptic equations. Note
that there is a close connection between stability estimates and convergence rates for
regularization methods for inverse problems (see, e.g., [8, 6, 22]).

The method of Carleman estimates for inverse problems (introduced by Klibanov
[24], Bukhgeim [3], Bukhgeim and Klibanov [4]) has been extensively used for studying
uniqueness of inverse coefficient problems for partial differential equations by single
boundary measurements. Klibanov [28], for instance, proved global uniqueness for
a general nonlinear 1-D parabolic equation (under the assumption that the solution
is measured at n + 1 interior points, where n is the number of coefficients to be
determined). The method of Carleman estimates was also applied for the proof
of global uniqueness in a multidimensional inverse problem for nonlinear elliptic



Uniqueness and Stability for Recovering a Nonlinear Source Term 5

equations [26, 29]. However, the unknown coefficient there does not depend on the
solution of the equation. In other publications, Carleman estimates were applied to
inverse problems for linear parabolic equations, see, e.g., Imanuvilov and Yamamoto
[19], Imanuvilov, Isakov and Yamamoto [18], Klibanov [25, 27, 29], Lin and Wang
[36] and references cited there. Recently, Klibanov [30] proved global uniqueness of a
nonlinear source term in a multidimensional parabolic problem.

For an overview of the method of Carleman estimates applied to inverse coefficient
problems, see the recently published monograph [31]; on inverse source problems see,
e.g., the book by Isakov [20].

In Engl, Scherzer, Yamamoto [10], controllability arguments have been used
to identify source terms in linear parabolic and hyperbolic equations. The
question of controllability of linear and quasilinear parabolic equations by boundary
measurements has further been considered in Chae, Imanuvilov and Kim [5] and
Imanuvilov [16, 17].

Stability for an inverse source problem for a linear parabolic equation has
previously been investigated by Imanuvilov and Yamamoto [19], also by the method
of Carleman estimates.

More results concerning uniqueness and stability of multidimensional inverse
problems for nonlinear parabolic or elliptic equations are available for data obtained
by multiple measurements, e.g., in case of availability of (part of ) the Dirichlet-to-
Neumann map. A series of publications started from the paper of Isakov [21], in which
a linearization method was used; see also [22, 23] and the references cited there.

This paper investigates uniqueness and stability of a source term in a nonlinear
parabolic pde by a single measurement of the Neumann boundary data. For proving
the main theorems below, we will also apply Carleman estimates. However, the results
cited above are not applicable to our problem, due to the nonlinearity of the equation
or the available data. In particular, also for practicability of the experiment we have in
mind, we do not assume u(x, θ) to be known for some θ > 0, which is a key assumption
in some of the previous results on uniqueness (e.g. in [20]) and also in the stability
result [19]. Here, we assume only single boundary measurements and knowledge of
the initial condition.

With the aim of simplifying the presentation, we are not concerned here with
minimal regularity assumptions or the maximal class of problems, to which our results
are applicable. We only mention, that with minor modification of the proofs, our
results below can also be applied to

−ut + (a2(x)ux)x + a1(x)ux + a0(x)u+ q(u) = f

or
−ut + uxx + q(u)ux = f

In Klibanov [30] more general nonlinear parabolic equations (in 3-D) of the form

ut = F (∆u,∇u, u, ~x, t, q(u))
are investigated and uniqueness in the corresponding inverse problems is shown.

Our first result is concerned with global uniqueness of solutions (u(x, t), q(u(x, t)))
to the Inverse Problem 1:
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Theorem 1 Let ui, i = 1, 2 denote the solutions of (1.1)-(1.3) with q replaced by qi,
i = 1, 2. Suppose that qi, ui satisfy (A)-(D) and q1(y) = q2(y) for y ∈ D0. If

u1x(0, t) = u2x(0, t), u1x(1, t) = u2x(1, t) for t ∈ (0, T ),

then u1 = u2 in QT and q1 = q2 in D.

Theorem 2 is concerned with stability of solutions to the above inverse problem
with respect to error in the Neumann data (1.4), the initial condition (1.2) and the a
priori knowledge of the nonlinear parameter q(y) for y ∈ D0:

Theorem 2 Let ui, i = 1, 2 denote the solutions of (1.1),(1.3) with q replaced by qi,
i = 1, 2 and initial condition

ui(x, 0) = ui,0(x), x ∈ [0, 1].

Suppose that qi, ui satisfy (A)-(D), ‖qi‖C2+θ ≤M and the following error bounds hold

‖q1|D0
− q2|D0

‖L2(D0), ‖u01 − u02‖L2(0,1) ≤ ε (1.5)

‖u1x(0, ·) − u2x(0, ·)‖L2(0,T ), ‖u1x(1, ·) − u2x(1, ·)‖L2(0,T ) ≤ ε. (1.6)

Then for any sufficiently small ζ > 0 there exist a constant C > 0 and a number
η = η(ζ) > 0 independent of ui, qi and ε such that

‖q1 − q2‖H2(D(ζ)) ≤ C εη ,

where D(ζ) := [ϕ1(0), ϕ0(T ) − ζ] ⊂ D.

The stability result of Theorem 2 is ”almost global” in the sense that for any
sufficiently small ζ > 0 the conclusion holds true on domains [ϕ1(0), ϕ0(T ) − ζ],
but the corresponding Hölder exponents η(ζ) might approach 0 as ζ → 0. Thus in
order to stably identify q on [ϕ1(0), ϕ0(T )], we have to continue our experiment and
measurements a bit beyond T .

The outline of the paper is as follows: In Section 2, we introduce a new variable
and transform (1.1) to a nonlinear equation over a domain with curvilinear boundaries,
where the coefficient q only depends on the new variable. By another transformation,
we derive a corresponding integro-differential inequality. The main result of Section
3 is the proof of a new pointwise Carleman estimate. For a general outline of the
method of Carleman estimates for Cauchy problems we refer to, e.g., Hörmander [15]
or Lavrent’ev, Romanov and Shishatskii [35]. In constructing the Carleman weight
function we take into account the special features of the problem under consideration.
The main difficulty with the Carleman estimate in our case is that only Dirichlet
data are available on a part of the curvilinear boundary, which is not a level set of
the Carleman weight function, whereas in previous works, Dirichlet and Neumann
data were available on such a part of the boundary. The crucial point in our proof is
positivity of certain integrals over this part of the boundary (see Lemma 2). Based
on the estimates of Section 3, we prove the uniqueness result and the Hölder estimate
in Section 4. We conclude with numerical test examples illustrating the theoretical
results in Section 5.
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2. The Transformed Problem

Employing the monotonicity (see assumption (C)) of a solution u, we now transform
(1.1) - (1.3) to a problem, where the unknown function q does no longer depend on
the solution u, but on a new spatial variable:

Let v (y, t) be defined by

u (v (y, t) , t) = y, (2.1)

which is possible since by assumption (C)

ux(x, t) < −γ for (x, t) ∈ QT .

The variable y serves as a new spatial variable and corresponds to the isolines of the
function u(x, t). Application of the chain rule yields

ux =
1

vy
< −γ, uxx = −vyy · 1

v3
y

, ut = − vt

vy
. (2.2)

Substitution into (1.1) - (1.3) yields,

v2
y · vt = vyy − q (y) v3

y − f (v (y, t) , t) · v3
y (y, t) ∈ G, (2.3)

v(y, 0) = v0(y) y ∈ D0, (2.4)

v(ϕ1(t), t) = 1, v(ϕ0(t), t) = 0 t ∈ [0, T ]. (2.5)

where G = {ϕ1(t) < y < ϕ0(t), t ∈ (0, T )} has curvilinear boundaries and the
function v0(y) is the inverse of u0(x), i.e. u0(v0(y)) = y. The Neumann data (1.4) are
transformed to

vy(ϕ1(t), t) =
1

ψ1(t)
, vy(ϕ0(t), t) =

1

ψ0(t)
, t ∈ (0, T ). (2.6)

Because of (C), we have ψi(t) < −γ and hence the boundary values for v are well-
defined.

In a next step, we will differentiate (2.3) with respect to t in order to eliminate q
from the equation. Before we do that, we describe in more detail the domain where
(2.3)-(2.5) are valid.

2.1. The Carleman Weight Function

For the proof of the Carleman estimate in Section 3, certain subdomains of G, which
are bounded at the top by the level set of a Carleman weight function, will play a role.
Let 0 < δ < T be sufficiently small and define

s(y, t) := α · (y − ϕ1(0)) + β · t+
1

2
, α, β > 0, (2.7)

where α = α(δ), β = β(δ) are defined by

α =
δ

2
[(ϕ0(T − δ) − ϕ1(0)) · T − (ϕ1(T ) − ϕ1(0)) · (T − δ)]−1, (2.8)

β =
1

2
(ϕ0(T − δ) − ϕ1(T )) (2.9)

× [(ϕ0(T − δ) − ϕ1(0)) · T − (ϕ1(T ) − ϕ1(0)) · (T − δ)]−1.(2.10)

By (A), (C) , (E) and 0 < δ < T it follows that α, β > 0 (see also Figure 2).
Furthermore, define the domains Gδ ⊂ G via

Gδ := {(y, t) ∈ G : s(y, t) < 1} . (2.11)
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By (2.7) - (2.11), s(y, t) ∈ (1/2, 1) on Gδ .
In the domain Gδ ⊂ G, we consider the Carleman Weight Function (CWF) (see

[12] and Figure 2)

Cλ,ν(y, t) = exp
(

λs−ν
)

. (2.12)

The boundary of the domain Gδ consist of four parts, ∂Gδ =
3
⋃

i=0

∂iGδ,

∂0Gδ = {(y, t) : y = ϕ0(t), t ∈ [0, T − δ]}
∂1Gδ = {(y, t) : y = ϕ1(t), t ∈ [0, T ]}
∂2Gδ = {(y, t) : t = 0, y ∈ (ϕ1(0), ϕ0(0))}
∂3Gδ = {(y, t) : s(y, t) = 1, y ∈ (ϕ1(T ), ϕ0(T − δ))}

2.2. An Integro Differential Inequality

Suppose, there exist two pairs of functions (u1, q1) and (u2, q2) satisfying (1.1) - (1.4)
and assumptions (A) - (D). Let v1, v2 be defined via (2.1) and denote q̃ = q1 − q2 and
ṽ = v1 − v2. Then

Lṽ = v2
1y · ṽt − ṽyy − c (y, t) · ṽy − d (y, t) · ṽ (2.1)

= q̃ (y) v3
1y , (y, t) ∈ G,

ṽ = ṽy = 0, (y, t) ∈ ∂0G ∪ ∂1G, (2.2)

ṽ = ṽt = 0, (y, t) ∈ ∂2G. (2.3)

In the case of inexact Neumann boundary data, which we consider for the stability
result, ṽy = 0 and ṽt has to be replaced by |ṽy|, |ṽt| ≤ ε in (2.2), (2.3). By the regularity
assumption (B), the coefficients c (y, t) , d (y, t) in (2.2) are in C1

(

G
)

. By the Implicit
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Function Theorem we have v ∈ C4+θ,2+θ/2
(

G
)

, because of (C). Furthermore, by (2.2)

and (C), v1y 6= 0 in G. Hence, we can choose a positive constant M1 such that

M1 ≥ max

[

∥

∥

∥

∥

1

v1y

∥

∥

∥

∥

C(G)
, ‖v1y‖C2,1(G) , ‖c‖C1(G) , ‖d‖C1(G)

]

.(2.4)

Note that by (2.2), ṽ (ϕi(t), t) = 0 for i = 0, 1. Differentiation yields with (2.2)

ṽt(y, t) = 0, (y, t) ∈ ∂0G ∪ ∂1G. (2.5)

Dividing (2.2) by v3
1y, we obtain

q̃ (y) =
Lṽ

v3
1y

.

and consequently

∂

∂t

[

Lṽ

v3
1y

]

= 0, in G.

The latter yields

[Lṽ]t −
[

v3
1y

]

t

v3
1y

· Lṽ = 0. (2.6)

Now we derive an integro-differential equation for the function

w := ṽt −
[

v3
1y

]

t

v3
1y

· ṽ : (2.7)

(2.7), (2.2) and (2.3) imply

ṽ (y, t) =

t
∫

k(y)

K (y, t, τ)w (y, τ) dτ, for (y, t) ∈ G, (2.8)

with

K (y, t, τ) =
v3
1y (y, t)

v3
1y (y, τ)

,

and

k(y) =

{

0, y ∈ (0, ϕ (0))
ϕ̃0(y), y ∈ (ϕ (0) , ϕ0 (T )) .

Using (2.8) and (2.7) in (2.6) yields

Lw+

t
∫

k(y)

K1 (y, t, τ)wy (y, τ) dτ +

t
∫

k(y)

K2 (y, t, τ)w (y, τ) dτ = 0,(2.9)

for (y, t) ∈ G with kernels K1, K2 ∈ C(G). By (2.2), (2.3), (2.5) and (2.7),

w = 0, wy = 0, (y, t) ∈ ∂1G (2.10)

w = 0, (y, t) ∈ ∂0G, (2.11)

w = 0, wt = 0, (y, t) ∈ ∂2G. (2.12)
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The second condition in (2.10) follows from (2.2) and (2.2) by

d

dt
[ṽy(ϕ1(·), ·)] = ṽty + ϕ′

1 · ṽyy

= ṽty + ϕ′
1 · [ṽ2

1y · ṽt − c · ṽy − d · ṽ − v3
1y · q̃]

= ṽty,

and since q(y) is assumed to be known on ∂1G and consequently q̃ = 0 there. (2.12)
follows similarly. In the case of error in the Neumann data, only bounds for the
left-hand sides in (2.10)-(2.12) are be available.

Instead of (2.9) we will only work with the following integro-differential inequality,
which is implied by (2.9):

∣

∣v2
1y · wt − wyy

∣

∣ ≤M2






|wy| + |w| +

t
∫

k(y)

(|wy (y, τ)| + |w (y, τ)|) dτ






(2.13)

in G, where the constant M2 depends on M1 of (2.4). Below we will work with the
inequality (2.13) only, supplied by conditions (2.10)-(2.12). The main difficulty in
the the following calculations is that only Dirichlet data are available on the right
curvilinear boundary ∂0G, see (2.11).

3. A Pointwise Carleman Estimate

We now establish a pointwise Carleman estimate for the parabolic operator appearing
in the left-hand side of

L0 := a · ∂
∂t

− ∂2

∂y2

for coefficients a = a(y, t) ∈ C1. The additional difficulty and novelty in this estimate,
as compared with the one in [12], Chapter 4, Section 1 are:

(i) the part ∂0Gδ of the boundary of Gδ is curvilinear and only Dirichlet data is
given on this part, see (2.11), whereas in the conventional case, both Dirichlet
and Neumann boundary conditions would be given on such a part of the boundary,
which is not a level set of the Carleman weight function.

(ii) the proof of non-negativity of certain integrals over the curvilinear boundary ∂0G
(see Lemma 2).

Lemma 1 below represents a modification of Lemma 2 in [12, Chapter 4, Section 1],
which is needed to take into account the above differences to the conventional case.
We present the proof in details in the appendix, since certain terms will be needed
explicitly for Lemma 2 and the proof of the uniqueness result.

Lemma 1 Let s(y, t), α, β, δ and Gδ be defined as above (2.7)-(2.11). Additionally,
let

a(y, t) ∈ C1(Gδ), a ≥M3 > 0, ‖a‖C1 ≤M4. (3.1)

Then there exists a constant

ν0 = ν0 (M3,M4, δ) > 1,
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such that for all ν ≥ ν0, for all λ ≥ 2 and for all functions u ∈ C2,1(Gδ) the following
pointwise Carleman estimate is valid:

(a · ut − uyy)
2 · C2

λ,ν

≥ C
(

λν2s−ν−2 · u2
y + λ3ν4s−3ν−4u2

)

· C2
λ,ν +

∂U

∂y
+
∂V

∂t
,

where the positive constant C depends on α, β, ν0, and the functions U and V satisfy
the estimate

|U | + |V |
≤ C̃

[

λναs−ν−1 ·
(

u2
y + u2

t

)

+ λ3ν3α3s−3ν−3 · u2
]

· C2
λ,ν (y, t) .

(3.2)

with C̃ depending on ν0, α, β.

The function U and V are defined by (A.18), (A.19) in the proof of Lemma 1, which
is very technical and given in the appendix. Lemma 1 is valid only on subdomains
Gδ ( G, in particular, C will tend to zero when δ does.

The main theorems of Section 1 will now essentially be proved by integrating the
estimate of Lemma 1 over the domain Gδ . The terms involving U and V will appear
in integrals over parts of the boundary of Gδ. As already indicated in the beginning
of this section, in contrast to [[35], Chapter 4, Section 1] only Dirichlet data are
available on an essential part of the boundary, where the Carleman weight function is
not minimal. The following Lemma establishes (almost) positivity of certain integrals
over this part of the boundary:

Lemma 2 Let U , V as in Lemma 1 (see (A.18), (A.19) in the appendix) and let
ϕ0(t), Gδ and ∂0Gδ as above, in particular ϕ′

0(t) ≥ γ by (D). Denote the outward
directed unit normal vector on ∂0Gδ by

n :=
(1,−ϕ′

0(t))
√

1 + [ϕ′
0(t)]

2
.

If h(t) := u(ϕ0(t), t) satisfies

‖h‖H1(0,T−δ) ≤ ε (3.3)

then the following estimate holds with a positive constant C independent of λ:
∫

∂0Gδ

[U cos(n, y) + V cos(n, t)] ds

≥ C̃λνα

∫

∂0Gδ

[s−ν−1 u2
y C2

λ,ν ] ds− ε · Cλ3ν3α3

∫

∂0Gδ

[s−3ν−3 (|uy| + |ut| + ε) C2
λ,ν ] ds

Proof.

U · cos(n, y)

=
[

2λναs−ν−1 · u2
y − 2a · ut · uy + λ3ν3α3s−3ν−3 · r(u)

]

· exp(2λs−ν) · c(t)
where c(t) := 1√

1+[ϕ′(t)]2
and r(u) ∼ ε by (3.3). Using h′ = ut + ϕ′

0 · uy we obtain

uy · ut = uy · (ϕ′ · uy + h′)

= ϕ′
0 · u2

y + uy · h′



12 H Egger, H W Engl and M V Klibanov

Together with (3.3) this yields for ν0 large enough and ν ≥ ν0

U · cos(n, y)

≥ c(t) · [λναs−ν−1 · u2
y − Cλ4ν3α3s−3ν−3(|uy| + |ut| + ε) · ε] · C2

λ,ν

and

|V · cos(n, t)| ≤ |V | ≤ C [u2
y + λ2ν2α2s−2ν−2(|uy| + ε) · ε] · C2

λ,ν .

Summarizing, we obtain

|U · cos(n, y) + V · cos(n, t)|
≥ C̃λναs−ν−1 · u2

y − εCλ4ν3α3s−3ν−3(|uy| + |ut| + ε) · C2
λ,ν

with an appropriate positive constant C independent of λ and ν, as long as ν ≥ ν0.

Before we prove Theorem 2, we use regularity of functions u and q (see assumption
(B),(D)) to lift the error bounds (1.5), (1.6) to higher Sobolev norms:

Lemma 3 Let the assumptions of Theorem 2 hold. Then

‖q1 − q2‖H2(D0), ‖u01 − u02‖H2(0,1) ≤ Cεγ

‖u1x(0, ·) − u2x(0, ·)‖H2(0,T ), ‖u1x(1, ·) − u2x(1, ·)‖H2(0,T ) ≤ Cεγ .

Proof. q̃ ∈ C2+θ(D) implies q̃ ∈ H2+θ′

(D) for 0 < θ′ < θ. Applying the interpolation
inequality, we get

‖q̃‖H2+θ∗ (D) ≤ C‖q̃‖1/p

H2+θ′ (D)
‖q̃‖1/p′

L2(D)

for 0 < θ∗ < θ′ and p = (2 + θ′)/(2 + θ∗), p′ = p/(p− 1). The other estimates follow
in the same way.

Since we will not explicitly refer to the Hölder exponents of the above estimates,
we may assume (for ease of notation) that

‖q1 − q2‖H1(D0), ‖w(·, 0)‖L2(D0) ≤ ε (3.4)

‖w(ϕ1(·), ·)‖H1(0,T ), ‖wy(ϕ1(·), ·)‖H1(0,T ) ≤ ε (3.5)

‖w(ϕ0(·), ·)‖H1(0,T ),≤ ε (3.6)

holds. The estimates for w follow directly by applying the transformations of Section
2 (u→ v → w).

With similar arguments as above and due to the regularity assumption (B) on
solutions u, any L2 estimate on u can be lifted to an estimate in W 2,1

2 :

Lemma 4 There exist 0 < l1, l2 < 1 and a constant C such that

‖u‖H2,1(QT ) ≤ C‖u‖l1
C2+θ,1+θ/2(QT )

‖u‖l2
L2(QT ),

for any u ∈ C2+θ,1+θ/2(QT ).
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4. Proof of the Main Theorems

Proof of Theorem 2. The differential inequality (2.13) implies
∫

Gδ

(a · wt − wyy)2 · C2
λ,νdy dt ≤M5

∫

Gδ

(w2
y + w2) · C2

λ,νdy dt

+M6

∫

Gδ

t
∫

ϕ̃0(y)

[w2
y(y, τ) + w2(y, τ)]dτ · C2

λ,ν(y, t) dy dt

where the constant M5, M6 depend on M1, M2 and δ. The last term can be estimated
by interchanging the order of time integrals,

b
∫

a

t
∫

a

f(τ)dτ g(t) dt =

b
∫

a

b
∫

τ

g(t) dt f(τ)dτ,

which we apply with f = w2
y + w2 and g = C2

λ,ν . Observe that by (2.8), β ≥ 0 and
hence Cλ,ν(y, t) is decreasing in t. Thus

Cλ,ν(y, t) ≥ Cλ,ν(y, τ), for t ≤ τ

and consequently

T
∫

τ

C2
λ,ν(y, t) dt ≤ T C2

λ,ν(y, τ).

This implies in turn that
∫

Gδ

(a · wt − wyy)2 · C2
λ,ν dy dt ≤M7

∫

Gδ

(w2
y + w2) · C2

λ,ν dy dt (4.1)

In a second step, we estimate the left-hand side of (4.1) from below. By Lemma 1,
∫

Gδ

(a · wt − wyy)2 · C2
λ,νdy dt

≥ C

∫

Gδ

[(λν2s−ν−2 · w2
y + λ3ν4s−3ν−4 · w2) · C2

λ,ν ] dy dt

+

∫

∂Gδ

[U cos(n, y) + V cos(n, t)] ds,

for all ν ≥ ν0 with ν0 sufficiently large, for all λ ≥ 2 and a positive constant C not
depending on ν or λ.

By (3.4), (3.5) and Lemma 1,

|U |, |V | ≤ Cε on ∂1Gδ ∪ ∂2Gδ.

On ∂0Gδ , we use Lemma 2, which yields,
∫

∂0Gδ

U cos(n, y) + V cos(n, t) ds
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≥ −ε · Cλ4ν3α3

∫

∂0Gδ

s−3ν−3 (|wy | + |wt| + ε) C2
λ,ν ds

≥ −ε · C̃λ4ν3α3

∫

∂0Gδ

s−3ν−3 C2
λ,ν ds.

‖u‖H2,1 is bounded on ∂3Gδby assumption and s = 1. Thus

∫

∂3Gδ

P cos(n, y) +Qcos(n, t) ds ≤ Cλ3ν3 exp(2λ).

Summarizing, we get, by fixing ν = ν0 large enough, that
∫

∂Gδ

U cos(n, y) + V cos(n, t) ds ≥ −C λ3[exp(2λ) + ε · exp(λ2ν+1)]

Together with (4.1) and Gδ,ξ := {(y, t) ∈ Gδ : s(y, t ≤ 1 − ξ)}, this yields

exp(2λ(1 − ξ)−ν)

∫

G(δ,ξ)

[λu2
y + λ3u2] dy dt

≤ Cλ3 [exp(2λ) + ε exp(λ2ν+1)],

(4.2)

where the constant C does not depend on λ.
Now we proceed as in the proof of the Hölder estimate in [12], Section 4, by

balancing the terms on the right-hand side, i.e., choosing λ such that exp(2λ) =
ε · exp(λ2ν+1). This yields

λ =
1

2[2ν − 1]
ln(

1

ε
) (4.3)

Inserting in (4.2) and omitting the term w2
y, we get

∫

Gδ,ξ

w2dy dt ≤ 2Cλ exp(−2λ[(1 − ξ)−ν − 1])

≤ C̃ · ln(
1

ε
) · εη0 ,

where η0 = (1−ξ)−ν
−1

2ν−1 . For 0 < ξ < 1
2 , it follows that 0 < η0 < 1. Hence, for ε

sufficiently small, and by Lemma 4,

‖w‖2
H2,1(Gδ,ξ) ≤ Cεη̃,

for some η̃ > 0. The estimate for ṽ now follows via (2.8) and implies ‖u1 −
u2‖2

H2,1(Gδ,ξ) ≤ Cεη, and, via (2.2), ‖q1 − q2‖2
L2(D(ξ)) ≤ Cεη̃.

Proof of Theorem 1 . Applying Theorem 2 with ε = 0 we get u1(x, t) =
u2(x, t) on Gδ,ξ for arbitrary positive δ, ξ (small enough). Hence by continuity of
solutions ui it follows that u1(x, t) = u2(x, t) on G and similarly q1(y) = q2(y) on D.
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5. Numerical Tests

For the sake of brevity, we consider here only the case of error in the Neumann data
(1.4). Error in the initial condition u0 and in the a priori knowledge of the parameter
q(y) for y ∈ D0 can be treated in a similar way. Let ε denote the noise level of our
measurements, i.e.,

‖ψε
i − ψ0

i ‖L2(0,T ) ≤ ε,

with the error free data ψ0
i (t) = ux(xi, t; q

0), xi = 0, 1 and exact solution solution q0.
The existence of attainable, error-free data ψ0

i has to be assumed. Furthermore, let
ψ0

i (t) ≤ −γ1 < 0 for (t ∈ [0, T ]). For measured (noisy) data ψε
0, ψ

ε
1, the existence of a

parameter qε, such that ψε
0, ψ

ε
1 are Neumann boundary values of a solution uε(qε) to

(1.1)-(1.3) corresponding to the parameter qε, cannot be assumed in general. In order
to be able to apply Theorems 1, 2, we restrict the set of admissible parameters to the
compact set

KM := {q ∈ C2+θ(D) : ‖q‖C2+θ ≤M, q(y) = q0(y) on D0}, (5.1)

which regularizes the ill-posed problem (see Tikhonov and Arsenin[41]), and minimize
the least squares functional

f(q, ψε) := ‖ux(0, ·; q) − ψε
0‖2

L2(0,T ) + ‖ux(1, ·; q) − ψε
1‖2

L2(0,T ). (5.2)

Due to the restriction to a compact set KM, no further regularization is needed.
Instead of minimizing (5.2), we require only quasi-minimizers qε, i.e.,

f(qε, ψε) ≤ inf
q∈KM

f(q, ψε) + C ε2. (5.3)

Let qεk ∈ KM denote a sequence of quasi-minimizers of (5.2), then the stability
estimate of Theorem 2 implies

‖qεk − q0‖H2(D(ζ)) ≤ CM εη

where D(ζ) := {y : ϕ1(0) ≤ y ≤ T − ζ.

5.1. The Test Problem

Let Q := (0, 1) × (0, 1). We discretize the parabolic equation (1.1)-(1.3) by a finite
difference method on a uniform 100 × 100 grid. Minimization of the least-squares
functional (5.2) is performed by a descent algorithm, in our case Landweber iteration
(see [7]). The iteration is stopped after 100 loops. The right and left boundary
conditions are chosen such that u ∈ [0, 2]. Thus q(u) is defined and identifiable only
on the interval [0, 2]. In our tests, q is discretized on a uniform grid with 100 nodes.

Some data noise in all of our examples is due to numerical errors, which are rather
small when the solution u is smooth (Examples 1-4) but not negligible, if the solution
u does not satisfy assumption (B), in particular, if the compatibility conditions are
not satisfied (see comparison of Example 5 and 6). At the end of Example 2, we will
also investigate the influence of (added) data noise.

In the first two examples, we try to identify different (smooth) functions q, where
(u, q) satisfy conditions (A) - (D). We compare the reduction of the output error and
the error in the parameter. The numerically observed Hölder exponents, which we
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compare to those predicted by Theorem 2, are the slopes in the log-log plots (error in
ux vs. error in q) and are represented by the following approximations below:

ηi,j =
log(ei) − log(ej)

log(fi) − log(fj)
,

where ei = ‖qi−q‖2 is the error in the parameter and fi = ‖ux(qi)(0, ·)−ux(q)(0, ·)‖2+
‖ux(qi)(1, ·) − ux(q)(1, ·)‖2 denotes the residual.

Example 1 Let q(u) = u2, u0(x) = 1 − x, ϕ0(t) = 1 + t, ϕ1(t) = 0 and
f(x, t) = x − 1 + (1 − x)2 · (1 + t2). The corresponding solution to (1.1) - (1.3)
is u(x, t) = (1−x) · (1+ t). We assume the parameter q(u) to be known for u ∈ (0, 1).
The iteration is started with

q0(u) =

{

u2, u ∈ [0, 1]
1, u ∈ (1, 2]

Table 1. Residual, error and Hölder rate; left: Example 1, right: Example 2

fi ei ηi,50 iteration fi ei ηi,50

0.238474 1.127917 1 0.157570 0.477502
0.011876 0.293605 10 0.003831 0.047151
0.005128 0.197503 20 0.002078 0.023137
0.003477 0.153841 30 0.001274 0.013552
0.002518 0.124354 40 0.000883 0.009683
0.001910 0.103638 50 0.000681 0.007976
0.001500 0.088368 0.659656 60 0.000562 0.006991 0.687285
0.001211 0.076722 0.659892 70 0.000482 0.006272 0.693555
0.001002 0.067591 0.662144 80 0.000421 0.005686 0.703555
0.000848 0.060271 0.667042 90 0.000373 0.005188 0.715020
0.000732 0.054291 0.674391 100 0.000334 0.004759 0.726070

As we expected from the theory (see Theorem 2), numerical Hölder exponents
ηi,j , listed in the left part of Table 1, can be observed also numerically. Figure 3(a)
plots the initial guess, the true parameter q0 and the reconstruction q100 after 100
iterations. The parameter is identified not very well at high temperature, which is
mainly due to the slow performance of the minimization algorithm used and the low
sensitivity of the problem on values of q there. This behaviour is also indicated by the
estimate of Theorem 2 and the subsequent remark.

In Example 2 we test the performance on more oscillating functions q0:

Example 2 Let q(u) = sin(π · u), u0(x) = 1 − x, ϕ0(t) = 1 + t, ϕ1(t) = 0 and
f(x, t) = x− 1+ sin(π · (1−x) · (1+ t)). The corresponding solution to (1.1) - (1.3) is
u(x, t) = (1 − x) · (1 + t). We assume the parameter q(u) to be known for u ∈ (0, 1).
The iteration is started with

q0(u) =

{

sin(πu), u ∈ [0, 1]
0, u ∈ (1, 2]
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Again, the theoretically predicted Hölder rate is also observed numerically.
Adding 1% artificial data noise in Example 2, the iteration can be stopped after

less than 40 iterations (due to a discrepancy principle, see [7], or similar due to (5.3)
), with a reconstruction of q comparable to that without noise. For more strongly
oscillating parameters, we have to perform a higher number to reach the stopping
criterion (5.3).

Table 2 and Figure 3(c),(d) show the corresponding results for q(u) = sin(2π · u)
and q(u) = sin(5π · u) in the above example:

Table 2. Residual, error and Hölder rate; Example 2; left: q(u) = sin(2π · u),
right: q(u) = sin(5π · u); the number of iterations for the latter example has to
be increased in order to get good approximations.

fi ei ηi,50 iteration fi ei ηi,50

0.091398 0.499491 1 0.035974 0.490008
0.001716 0.025625 50 0.017557 0.320115
0.000763 0.010497 100 0.011346 0.234746
0.000489 0.007484 150 0.007730 0.175079
0.000359 0.005947 200 0.005453 0.127945
0.000282 0.004965 250 0.003933 0.091493
0.000232 0.004297 0.740335 300 0.002888 0.065183 1.097758
0.000197 0.003828 0.725940 350 0.002164 0.047773 1.087352
0.000172 0.003484 0.712032 400 0.001659 0.037206 1.042551
0.000152 0.003217 0.701634 450 0.001308 0.031091 0.980245
0.000137 0.002999 0.695169 500 0.001061 0.027318 0.922719

The fact that the observed rates ηi for Example 2 with q(u) = sin(5π · u) on the
right side of Table 2 are large is surprising at the first glimpse. Note, however, that the
residual f500 and the error e500 are much larger than for the case q(u) = sin(2π · u),
which means that the iterates are still relatively far away from the solution. In fact,
if the iteration is continued, the observed rates are approximately the same as for
q(u) = sin(2π · u), for instance, η2000,1000 = 0.728.

The above examples confirm the theoretical results of Section 1, in particular,
Hölder rates concerning parameter convergence with respect to data noise are observed
also numerically. The Landweber iteration method used to minimize (5.2) produces
smooth iterates qk, and the results are very stable with respect to the number of
iterations, in particular the restriction to the compact set KM does not become active
in our numerical examples.

The following two examples are concerned with identifying parameters q, which
do not satisfy the regularity assumption (D), whereas the solution u still satisfies (B).

Example 3 Set q(u) = max(u− 3/2, 0), u0(x) = 1− x, ϕ0(t) = 1 + t, ϕ1(t) = 0 and
f(x, t) = x− 1 +max((1 − x) · (1 + t) − 3/2, 0). The corresponding solution to (1.1)
- (1.3) is u(x, t) = (1 − x) · (1 + t). We assume the parameter q(u) to be known for
u ∈ (0, 1). The iteration is started with

q0(u) =

{

0, u ∈ [0, 1]
u− 1, u ∈ (1, 2]
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Table 3. Residual, error and Hölder rate; left: Example 3, right: Example 4.

fi ei ηi,50 iteration fi ei ηi,50

0.079624 0.282840 1 0.028191 0.203091
0.001911 0.045573 10 0.007425 0.131571
0.001114 0.035972 20 0.005616 0.118141
0.000853 0.029988 30 0.004802 0.109577
0.000660 0.025272 40 0.004219 0.103910
0.000514 0.021502 50 0.003794 0.099994
0.000404 0.018499 0.625561 60 0.003478 0.097090 0.338932
0.000322 0.016114 0.615853 70 0.003239 0.094815 0.336334
0.000261 0.014218 0.608901 80 0.003053 0.092927 0.337719
0.000216 0.012705 0.605831 90 0.002906 0.091308 0.340894
0.000183 0.011489 0.607363 100 0.002785 0.089892 0.344677

400 0.001778 0.075214 0.397804
500 0.001675 0.073570 0.388723

The oscillations in the parameter around the kink are an expected feature in
approximation by smooth functions. The relatively large error at high temperature is
again in accordance to Theorem 2, where convergence rates are guaranteed only on
subdomains Dξ ⊂ D.

Example 4 Set q(u) = H(u − 3/2), with H(·) denoting the Heavyside function.
Additionally, let u0(x) = 1−x, ϕ0(t) = 1+t, ϕ1(t) = 0 and f(x, t) = x−1+H((1−x)·
(1 + t)− 1/2). The corresponding solution to (1.1) - (1.3) is u(x, t) = (1−x) · (1 + t).
We assume the parameter q(u) to be known for u ∈ (0, 1). The iteration is started
with

q0(u) =

{

0, u ∈ [0, 1]
u− 1, u ∈ (1, 2])

As expected, identification of discontinuous parameters is harder than in the
smooth case. Additionally, the observed Hölder rate is smaller and a higher number
of iterations is needed to get a good approximation.

The next series of numerical test cases is concerned with examples, where the
regularity assumption (B) on the solution u, in particular the compatibility conditions,
or the condition on a priori information of the parameter are violated. The data for
these examples are calculated numerically (to avoid an inverse crime on a 500 × 500
grid). In these examples, the numerical (data) error is relatively high, since the
compatibility conditions are not satisfied.

Example 5 Let q(u) = sin(π · u), u0(x) = 1 − x, ϕ0(t) = 1 + t, ϕ1(t) = 0 and
f(x, t) = 0. Note that the compatibility conditions are not satisfied, in particular
u /∈ C4+θ,2+θ/2(Q). The iteration is started with

q0(u) =

{

sin(πu), u ∈ [0, 1]
0, u ∈ (1, 2]

The residuals fi as well as the errors in the parameter are about 5 times larger
than in Example 2, which can be explained by the fact that the true solution u has a
weak singularity at the edges x = 0, 1, t = 0. The iteration becomes almost stationary
after about 30 iterations, where it would have been stopped (due to (5.3) respectively
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Figure 3. Initial guess, true parameter and reconstruction after 100 iterations;
(a) Example 1; (b) Example 2; (c) and (d): Example 2 with q(u) = sin(2π ·u) and
q(u) = sin(5π · u); (e) and (f) corresponding to Examples 3, 4 with non-smooth
parameters; Examples 5 (g) and 6 (h) with violation of the regularity assumption
on u respectively the a priori knowledge of parameters q.
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Table 4. Residual, error and Hölder rate; left: Example 5, right: Example 6

fi ei ηi,50 iteration fi ei ηi,50

0.153879 0.477502 1 0.279313 0.703562
0.004271 0.059052 10 0.017265 0.092826
0.003017 0.036199 20 0.003359 0.021781
0.002467 0.025534 30 0.001457 0.020092
0.002248 0.021747 40 0.001174 0.019128
0.002162 0.020620 50 0.001089 0.018361
0.002127 0.020339 0.841669 60 0.001054 0.017996 0.615239
0.002112 0.020267 0.737597 70 0.001037 0.017884 0.535413
0.002104 0.020219 0.722490 80 0.001027 0.017903 0.430561
0.002099 0.020156 0.772016 90 0.001021 0.017996 0.310299
0.002095 0.020088 0.838390 100 0.001017 0.018102 0.206074

a discrepancy principle). In view of the large residuals fi, it is surprising that still a
good Hölder rate is observed numerically.

Example 6 Let q(u), u0(x), ϕi(t), f(x, t) as in Example 5 and set q0(u) = 0
(violating the condition on the a-priori knowledge on q).

The result using no a priori information on q seems to be better than in the
previous example, with respect to residual and error in the parameter. Note, that
omitting the a priori information on q yields additional freedom in q (q is not fixed
on the interval D0) and thus the numerical error (especially at t=0) can be reduced
more effectively. The fact that the observed Hölder rates ηi,j are decreasing (and
lower than above) is not surprising, since a comparison with Example 5 suggests that
the noise level should be around δ2 ≈ 0.002, which means, the iteration would have
been stopped already after about 24 iterations (using a discrepancy principle, or (5.3))
with f25 ≈ 0.0021 and e24 ≈ 0.020. Thus in view of possible errors also in the a priori
knowledge of q, it seems advantageous to minimize (5.2) over the set

KM := {q ∈ C2+θ(D) : ‖q‖C2+θ ≤M, ‖q|D0
− q0|D0

‖L2 ≤ ε},

or add a penalty term C‖q|D0
− q0|D0

‖2 to the functional (5.2).

6. Conclusion

Under reasonable smoothness and monotonicity assumptions, a nonlinear parameter
q(u) in the parabolic equation

−ut + uxx + q(u) = f

can be identified uniquely and stably (with Hölder rates) from a single set of boundary
measurements (of the Neumann data). For heat transfer problems, the conditions (A)-
(D) can be realized in a simple experimental setup. As indicated in Section 1, the
results generalize to slightly more general problems, in particular to the important
case −ut + (a(x)ux)x + q(u) = f . Numerical tests confirm the theoretical results and
indicate, that the assumption on a priori information of q can possibly be relaxed.
Also non-smooth parameters seem to be identifiable in a Hölder-stable way, although
the theory does not apply.
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Appendix

Proof of Lemma 1

Throughout the following proofs, C, C̃ will denote positive constants, which do not
depend on λ and ν, as soon as λ ≥ λ0, ν ≥ ν0, which is particulary important since
the lower bound ν0 will be increased subsequently.

Denote

w := u · exp(λs−ν) = u · Cλ,ν ,

hence, u = w · exp(−λs−ν), and

uy = [wy + λναs−ν−1 · w] · exp(−λs−ν), (A.1)

uyy = [wyy +2λναs−ν−1 ·wy +λ2ν2α2s−2ν−2c1 ·w] ·exp(−λs−ν),(A.2)

ut = [wt + λνβs−ν−1 · w] · exp(−λs−ν), (A.3)

with c1 = 1 − ν+1
λν s

ν . Observe, that for ν ≥ 2 by (2.11) c1 ∈ ( 1
4 , 1), in particular, for

large ν, c1 ∼ 1.
Now (A.1)-(A.3) imply that for all λ, ν ≥ 2, the left-hand side of (3.2) is

(a · ut − uyy)
2 · C2

λ,ν

= {a · wt − wyy − 2λναs−ν−1 · wy − c2λ
2ν2α2s−2ν−2 · w}2,

(A.4)

with c2 = 1 − ν+1
λν s

ν − 1
λν

β
α2 as

ν+1. Again for ν ≥ ν0, ν0 sufficiently large, c2 ∼ 1.
Denote

z1 = a · wt (A.5)

z2 = −wyy (A.6)

z3 = −2λναs−ν−1 · wy (A.7)

z4 = −c2λ2ν2α2s−2ν−2 · w. (A.8)

Then (A.4) can be rewritten as

(a · ut − uyy)2 · C2
λ,ν (y, t) = (z1 + z2 + z3 + z4)

2

≥ z2
1 + 2z1z2 + z2

3 + 2z1z3 + 2z1z4 + 2z2z3 + 2z3z4.
(A.9)

Now, we estimate all terms in the last line of (A.9) from below.

Step 1. Estimate 2z1z2 :

2z1z2 = − 2a · wt · wyy

=
∂

∂y
(−2a · wt · wy) + 2a · wty · wy + 2ay · wt · wy

= 2ay · wt · wy − at · w2
y +

∂

∂y
(−2a · wt · wy) +

∂

∂t

(

a · w2
y

)

Thus, with (A.5) and (3.1),

2z1z2

≥ 2z1 ·
ay

a
· wy −M4 · w2

y +
∂

∂y
(−2a · wt · wy) +

∂

∂t

(

a · w2
y

)

.
(A.10)
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Step 2. Estimate z2
1 + z2

3 + 2z1z2 + 2z1z3: Using (A.5), (A.10), we obtain

z2
1 + z2

3 + 2z1z2 + 2z1z3

≥ z2
1 + z2

3 + 2z1

[

z3 +
ay

a
· wy

]

−M4 · w2
y

+
∂

∂y
(−2a · wt · wy) +

∂

∂t
(a · wy) .

Application of the Cauchy-Schwarz inequality to the third term on the right-hand
side leads to

z2
1 + z2

3 + 2z1z2 + 2z1z3

≥ −2z3 ·
ay

a
· wy − [(

ay

a
)2 +M4] · w2

y

+
∂

∂y
(−2a · wt · wy) +

∂

∂t

(

a · w2
y

)

Hence, using (A.7) and choosing a sufficiently large ν0 > 1, we obtain for all
ν ≥ ν0, λ ≥ 2 and some constant C depending on M3, M4, ν0, α that

z2
1 + z2

3 + 2z1z2 + 2z1z3

≥ −[4
M4

M3
λναs−ν−1 + (

M4

M3
)2 +M4] · w2

y

+
∂

∂y
(−2a · wt · wy) +

∂

∂t

(

a · w2
y

)

≥ −Cλναs−ν−1 · w2
y +

∂

∂y
(−2a · wt · wy) +

∂

∂t

(

a · w2
y

)

.

(A.11)

Step 3. Estimate 2z2z3: By (A.6), (A.7)

2z2z3 = 4λναs−ν−1 · wy · wyy (A.12)

= 2λν (ν + 1)α2s−ν−2 · w2
y +

∂

∂y

(

2λναs−ν−1 · w2
y

)

.

It is essential for the whole estimate that w2
y enters both terms in the last line

with positive, large parameters λ, ν.

Step 4. Estimate 2z3z4 : Inserting (A.7), and (A.8) yields

2z3z4 = 4λ3ν3α3c2s
−3ν−3 · wy · w

= 2λ3ν3α3c3 · w2 +
∂

∂y

(

2λ3ν3α3c2s
−3ν−3 · w2

)

,

where

c3 = − ∂

∂y
(c2s

−3ν−3) = (3ν + 3)αc2s
−1 − c2y

= (ν + 1)αs−3ν−4

[

3 − 2ν + 3

λν
sν − 2

λν

β

α2
asν+1 +

β

α3

1

λν(ν + 1)
ays

ν+2

]

Note that for ν0 large enough, c3 ∼ 3(ν + 1)αs−3ν−4. Thus, with some positive
constant C depending on α, β, M3, M4, ν0,

2z3z4 ≥ C λ3ν4α4s−3ν−4·w2+
∂

∂y

(

2λ3ν3α3s−3ν−3c2 · w2
)

.(A.13)

Again it is important that w2 enters both terms on the right hand side with large
parameters λ, ν.



Uniqueness and Stability for Recovering a Nonlinear Source Term 23

Step 5. Estimate 2z1z4 :

2z1z4 = − 2λ2ν2α2 a c2 s
−2ν−2 · wt · w

= 2λ2ν2α2c4 · w2 +
∂

∂t

(

−λ2ν2α2 a c2 s
−2ν−2 · w2

)

with

c4 = − ∂

∂y
[a c2 s

−2ν−2] = (ν + 1)αa s−2ν−3 ×

× [2 − ν + 2

λν
sν − 1

λν

β

α2
asν+1 +

1

λν(ν + 1)

β

α3
ays

ν+2

− 1

ν + 1

1

α

ay

a
s(1 − ν + 1

λν
− 1

λν

β

α2
sν+1)]

Note that for ν large enough, c4 ∼ 2ν α a s−2ν−3. Hence, with a constant C
depending on ν0, α, β, M3, M4

2z1z4 ≥ Cλ2ν3α3s−2ν−3·w2+
∂

∂t

(

−λ2ν2α2 a c2 s
−2ν−2 · w2

)

.(A.14)

Summing up (A.11) - (A.14), keeping in mind that 1
2 ≤ s < 1 in Gδ and using (A.9),

we obtain

(z1 + z2 + z3 + z4)
2

≥ C λν2α2s−ν−2 · w2
y + C λ3ν4α4 s−3ν−4 · w2 +

∂Ũ

∂y
+
∂Ṽ

∂t
,

(A.15)

where Ũ , Ṽ are defined by

Ũ = 2λναs−ν−1 · w2
y − 2a · wt · wy + 2λ3ν3α3 c2 s

−3ν−3 · w2, (A.16)

Ṽ = a · w2
y − λ2ν2α2 a c2 s

−2ν−2 · w2; (A.17)

(A.15) is valid for all λ ≥ 2 and ν ≥ ν0, where ν0 has to be chosen sufficiently large.
C denotes some positive constant depending on α, β, M3, M4 and ν0. Now we have
to back-substitute for w in (A.15) - (A.17) using

wy = [uy − λναs−ν−1u] · exp(λs−ν),

wt = [ut − λνβs−ν−1u] · exp(λs−ν),

and consequently,

w2
y = [uy − λναs−ν−1 · u]2 · C2

λ,ν

= [u2
y + λ2ν2α2s−2ν−2 · u2 − λν(ν + 1)α2s−ν−2 · u2

+
∂

∂y
(−λναs−ν−1 · u2)] · C2

λ,ν

≥ [u2
y + λν2α2s−2ν−2 · u2] · C2

λ,ν +
∂

∂y
[−λναs−ν−1 · u2] · C2

λ,ν ,

where the last inequality follows by λ ≥ 2. Substituting into (A.15) yields

(z1 + z2 + z3 + z4)
2

≥ C
(

λν2α2s−2ν−2u2
y + λ3ν4α4s−3ν−4u2

)

· C2
λ,ν +

∂U

∂y
+
∂V

∂t
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with

U = [2λναs−ν−1u2
y − 2auy · ut

+(2aλνβs−ν−1 − 4λ2ν2α2s−2ν−2)uyu+ 2aλναs−ν−1utu

+2λ3ν3α3s−3ν−3(c2 + 1 − 1
1

λν

β

α2
asν+1) · u2] · C2

λ,ν

(A.18)

and

V = [au2
y−2λναas−ν−1uyu+aλ2ν2α2s−2ν−2(1−c2) ·u2] ·C2

λ,ν .(A.19)

The estimate (3.2) follows directly.
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