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Abstract. We present a general algorithmic framework that allows not only to deal with
summation problems over summands being rational expressions in indefinite nested sums and
products (Karr 1981), but also over ∂-finite and holonomic summand expressions that are given
by a linear recurrence. This approach implies new computer algebra tools implemented in Sigma

to solve multi-summation problems efficiently. For instance, the extended Sigma package has
been applied successively to provide a computer-assisted proof of Stembridge’s TSPP theorem.

1. Introduction

Gosper’s indefinite summation algorithm [Gos78] and Zeilberger’s method of creative telescop-
ing [Zei90a] for hypergeometric terms can be seen as a major breakthrough in symbolic summa-
tion [PWZ96]. These ideas have been generalized in various directions.

Based on Karr’s difference field theory of ΠΣ-fields [Kar81, Kar85] and ideas from [Bro00] al-
gorithms have been developed [Sch01, Sch02c, Sch02a, Sch02b, Sch04b] and implemented in the
summation package Sigma [Sch00, Sch04a] that not only can deal with telescoping and creative
telescoping in (q–)hypergeometric terms, as shown in [Sch03], but more generally in so-called
ΠΣ-fields. ΠΣ-fields allow to describe rational expressions involving indefinite nested sums and
products. The wide applicability of this approach is illustrated for instance in [PS03, DPSW04a,
DPSW04b, Sch04a].

Another general approach is [Chy00] that extends hypergeometric to general holonomic creative
telescoping and, in particular, to ∂-finite functions. A crucial observation is that the difference field
machinery [Sch01] can be embedded in this general approach [CS98, Chy00] based on [Zei90b].
More precisely, we are able to develop a common framework in Sigma in which both, Karr’s
summation theory [Kar81] and ideas of the ∂-finite algorithms [CS98, Chy00] are combined. This
combined approach enables one to treat indefinite and definite summation problems that could not
be treated so far. In particular, by restricting the input class of [Chy00], we were able to simplify
and streamline ideas in [Chy00] which results in algorithms which are free of any Gröbner bases
computations. Another new feature concerns the fact that no uncoupling algorithm for systems
of difference equations is needed.

All these ideas allow to derive a new computer assisted proof [APS04a] of Stembridge’s TSPP The-
orem [Ste95]. These highly non-trivial applications, together with other examples, will illustrate
our results throughout this paper.

The general structure is as follows. At the end of this section we introduce the paradigms on which
all our summation algorithms are based. In Section 2 we supplement the discussion of the key
problem (GPTRT) by various illustrative examples. In Section 3 we present the algorithms that
allow to solve our problem in general difference fields. In Section 4 we apply these techniques by
showing how a huge class of multi-sum identities can be proven. In Section 5 we describe the usage
of our extended Mathematica package Sigma which contains implementations of all the algorithms
described.

Supported by the Austrian Academy of Sciences, the SFB-grant F1305 of the Austrian FWF and by grant
P16613-N12 of the Austrian FWF.
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2 C. SCHNEIDER

Subsequently N denotes the non-negative integers and n denotes a vector of variables (n1, . . . , nr)
ranging over the integers. All our summation algorithms are based on the paradigm of

Generalized Parameterized Telescoping (GPT).

• Given fi(n, k) for 0 ≤ i ≤ d;
• find c0(n), . . . , cd(n), free of k and not all zero, and g(n, k) such that

g(n, k + 1) − g(n, k) = c0(n) f0(n, k) + · · · + cd(n) fd(n, k) (1)

holds for all n and k in a certain range.

Summing (1) over all k from a to b gives

c0(n)
b∑

k=a

f0(n, k) + · · · + cd(n)
b∑

k=a

fd(n, k) = g(n, b + 1) − g(n, a), b − a ≥ 0 (2)

which specializes to indefinite and definite summation as follows. For the special case d = 0 one
obtains a representation for the indefinite sum, namely

b∑

k=a

f0(n, k) =
g(n, b + 1) − g(n, a)

c0(n)
. (3)

In order to arrive at definite summation, one specializes fi(n, k) := f(n+γi, k) for a given f(n, k)
and where the γi ∈ Nr specify the non-negative integer shifts. This reduces GPT to

Specialized Parameterized Telescoping (SPT).

• Given f(n, k) and {γ0, . . . , γd} ⊆ Nr;
• find c0(n), . . . , cd(n), free of k and not all zero, and g(n, k) such that

g(n, k + 1) − g(n, k) = c0(n) f(n + γ0, k) + · · · + cd(n) f(n + γd, k) (4)

holds for all n and k in a certain range.

We say that α is integer linear in n, if α =
∑r

i=1 γi ni + γ0 for integers γi. Defining

S(n) =

β
∑

k=α

f(n, k), α and β integer linear in n, (5)

and summing (4) over all k from a sufficiently large interval, one obtains a not necessarily homo-
geneous recurrence relation

c0(n)S(n + γ0) + · · · + cd(n)S(n + γd) = h(n). (6)

Observe that all methods based on the SPT-paradigm, like [Zei90a, PR97, Chy00], not only deliver
recurrence relations of the type (6) but provide all the information needed to verify the computed
result independently of the steps of the algorithm. Namely, given the solutions ci(n) and g(n, k)
for problem SPT, one verifies the summand equation (4). This implies the correctness of the
recurrence (6) itself.

2. The basic mechanism

We are interested in the following summation problem. Given S(n) =
∑β

k=α f(n, k) as in (5)
where for the summand f(n, k) the following properties hold: For a fixed non-negative integer s,

f(n, k) = h0(n, k)T (n, k) + · · · + hs(n, k)T (n, k + s) + hs+1(n, k); (7)

in addition, T (n, k) satisfies a recurrence of order s + 1 of the form

T (n, k + s + 1) = a0(n, k)T (n, k) + . . . as(n, k)T (n, k + s) + as+1(n, k) (8)

and recurrences of the form

T (n + ei, k) = b
(i)
0 (n, k)T (n, k) + · · · + b(i)

s (n, k)T (n, k + s) + b
(i)
s+1(n, k) (9)
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for any unit vector ei. Find a recurrence of the type (6) with given γi. Moreover, deliver proof
certificates that allow to verify the derived recurrence (6).

Subsequently we try to tackle this problem by developing tools that allow to solve

SPT with a Recurrence System (SPTRS).

• Given {γ0, . . . , γd} ⊆ Nr and f(n, k) as in (7) for a fixed non-negative integer s where T (n, k) satisfies
a recurrence of the form (8) and recurrences of the form (9) for any unit vector ei;
• find c0(n), . . . , cd(n), free of k and not all zero, and g(n, k) of the form

g(n, k) = g0(n, k)T (n, k) + · · · + gs(n, k)T (n, k + s) + gs+1(n, k)

such that (4) holds for all n and k in a certain range.

Observe that in our specification of problem SPTRS the term T (n, k) stands for any sequence that
satisfies (8) and (9). Therefore, solving a concrete problem of SPTRS actually means to provide
solutions for a whole class of sequences that is represented by f(n, k) in terms of T (n, k).

Example 1. Our methods deliver a direct proof of the double sum identity

n∑

k=0

n∑

s=0

(−1)n+k+s

(
n

k

)(
n

s

)(
n + k

k

)(
n + s

s

)(
2n − s − k

n

)

︸ ︷︷ ︸

= T (n, k)

=
n∑

k=0

(
n

k

)4

(10)

from [PWZ96, page 33]. Namely, with the summation package Sigma, see Subsection 5.2, or any
implementation of Zeilberger’s algorithm [Zei90a], like [PS95], one can derive the recurrence

T (n, k + 2) =
(n − k)3(1 + k + n)(2 + k + n)

(1 + k)2(2 + k)2(k − 3n)
T (n, k)

+
(1 + k)2(2 + k + n)(k + 2k2 − 3n − 6kn + 3n2)

(1 + k)
2
(2 + k)

2
(k − 3n)

T (n, k + 1) (11)

for the inner sum T (n, k) on the left hand side of (10). Similarly, with Sigma, see Subsection 5.2,
or an extended version of Zeilberger’s algorithm [Pau04] one can compute the recurrence

T (n + 1, k) = −(1 + k + n)(−5k + 12k2 − 10k3 + 3k4 + 3n − 32kn + 42k2n − 16k3n

+ 15n2 − 57kn2 + 33k2n2 + 21n3 − 30kn3 + 9n4)
/

((1 − k + n)
3
(1 + n)

2
)T (n, k)

+
(1 + k)

2
(−1 + k − 3n)(6− 8k + 3k2 + 12n − 8kn + 6n2)

(1 − k + n)3(1 + n)2
T (n, k + 1). (12)

Note that all these approaches [Zei90a, Pau04, Sch01] are based on the SPT-paradigm and therefore
allow to verify independently the correctness of the recurrence relations (11) and (12) for 0 ≤ k ≤ n.
Taking those recurrences as input, our algorithm computes c0(n) = −4(1 + n)(3 + 4n)(5 + 4n),

c1(n) = 2(3 + 2n)(7 + 9n + 3n2), c2(n) = (2 + n)
3

and

g(n, k) = g0(n, k)T (n, k) + g1(n, k)T (n, k + 1) + g2(n, k)T (n, k + 2) (13)

for some rational functions gi(n, k) in n and k such that

g(n, k + 1) − g(n, k) = c0(n)T (n, k) + c1(n)T (n + 1, k) + c2(n)T (n + 2, k) (14)

holds for all 0 ≤ k ≤ n. The expressions gi(n, k) can be found explicitly in Subsection 5.2. Finally,
summing equation (14) over the summation range gives the recurrence

−4(1 + n)(3 + 4n)(5 + 4n)S(n) − 2(3 + 2n)(7 + 9n + 3n2)S(1 + n) + (2 + n)
3
S(2 + n) = 0 (15)

for the double sum on the left hand side of (10). Applying Zeilberger’s algorithm in its standard
form returns the same recurrence (15) for the right hand side of (10). Checking that both sides
are equal for n = 0, 1 proves the identity.
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Verification of (14). Observe that so far our proof relies on the fact that the computed ci(n) and
g(n, k) satisfy (14) for all 0 ≤ k ≤ n. For the verification of this fact we proceed as follows. First
note that f1(n, k) := T (n + 1, k) can be expressed as

f1(n, k) = h
(1)
0 (n, k)T (n, k) + h

(1)
1 (n, k)T (n, k + 1) + h

(1)
2 (n, k)T (n, k + 2) (16)

where the h
(1)
i (n, k) denote the coefficients in (12). Similarly, the expression f2(n, k) := T (n+2, k)

can be expressed by a linear combination in T (n + 1, k), T (n + 1, k + 1) and T (n+ 2, k + 2) which
itself can be expressed by a linear combination in terms of T (n, k), T (n, k + 1), T (n, k + 2) by
using the “rewrite rules” (11) and (12). In other words, we can write f2(n, k) in the form

f2(n, k) = h
(2)
0 (n, k)T (n, k) + h

(2)
1 (n, k)T (n, k + 1) + h

(2)
2 (n, k)T (n, k + 2) (17)

for some rational functions h
(2)
i (n, k) in n and k. Moreover, the expression g′(n, k) := g(n, k + 1)

can be rewritten to the expression

g′(n, k) = g′
0(n, k)T (n, k) + g′

1(n, k)T (n, k + 1) + g′
2(n, k)T (n, k + 2)

by using (11). Hence, after setting f0(n, k) := T (n, k), (14) holds for all 0 ≤ k ≤ n if and only if

g′(n, k) − g(n, k) − (c0(n)f0(n, k)(n, k) + c1(n)f1(n, k) + c2f2(n, k)) = 0

holds in the same range. Finally, we are able to verify this last equation by elementary polynomial
arithmetic. �

THE KEY PROBLEM: The crucial idea in our approach is that problem SPTRS can be reduced
to a simpler problem. Namely, as illustrated in the previous example, any expression f(n + γi, k)
given by (7) and γi ∈ Nr can be equivalently written in the form (18) by using the recurrence
relations (8) and (9). Hence, in order to solve problem SPTRS, it suffices to develop methods that
can solve the problem

GPT over a Recurrence Term (GPTRT).

• Given fi(n, k) for 1 ≤ i ≤ d with

fi(n, k) := h
(i)
0 (n, k)T (n, k) + · · · + h(i)

s (n, k)T (n, k + s) + h
(i)
s+1(n, k), (18)

where T (n, k) satisfies a recurrence of order s + 1 of the form (8);
• find ci(n) for 1 ≤ i ≤ d and g(n, k) of the type

g(n, k) = g0(n, k)T (n, k) + · · · + gs(n, k)T (n, k + s) + gs+1(n, k) (19)

such that (1) holds.

Summarizing, any solution of SPTRS is also a solution of GPTRT, and vice versa — under the
assumption that the recurrence relations (8) and (9) are valid in the required range. In this context
it is important to mention that the way in which we will solve GPTRT, see problem GPTHO
(page 7), gives always a recipe to verify (19). Namely, as in Example 1, represent g ′(n, k) :=
g(n, k + 1) in the form

g′(n, k) = g′
1(n, k)T (n, k) + · · · + g′

s(n, k)T (n, k + s) + g′
s+1(n, k)

by using (8); then verify by coefficient comparison w.r.t. the T (n, k + i) that the expression

g′(n, k) − g(n, k) −
[
c0(n, k)f0(n, k) + · · · + cd(n, k)fd(n, k)

]

collapses to 0.

Besides definite summation (SPTRS) also indefinite summation is covered in GPTRT:

Example 2 (TSPP). Within our computer assisted proof [APS04a] of the TSPP-Theorem [Ste95]

there arises the following problem in Lemma 4. Given the triple sum S(n) =
∑2n

k=0 T (n, k) with

T (n, k) =

b 2n−k

2
c

∑

s=0

((
n − s − 1

2n − 2s − k

)

+

(
n − s

2n − 2s − k

))(−1)s+k

2n 4s

s∑

r=0

(n − r)(n)r(−3n − 1)r

r!( 1
2 − 2n)

r

, (20)
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eliminate the outermost summation quantifier of S(n). To accomplish this task, we first com-
pute with Sigma a recurrence for T (n, k) with shifts in k. Namely, by solving the corresponding
problem SPT in the ΠΣ-field setting we obtain the recurrence1

T (n, k + 3) = a0(n, k)T (n, k) + a1(n, k)T (n, k + 1) + a2(n, k)T (n, k + 2), (∀n, k ≥ 0) (21)

where the coefficients ai(n, k) ∈ Q(n, k) can be found in Subsection 5.1; see In[2]. In the next
step we solve the GPTRT problem for the case d = 0 and f0(n, k) := T (n, k), i.e., we try to find
a g(n, k) = g0(n, k) T (n, k) + g1(n, k) T (n, k + 1) + g2(n, k) T (n, k + 2) with

g(n, k + 1) − g(n, k) = T (n, k).

Sigma returns

g(n, k) = −2(k(1 + k)(2 + k) − (3 + k)n − 2(3 + k)n2)T (n, k)

+ (3k(1 + k)(2 + k) − 2(1 + 2k)n − 4(1 + 2k)n2)T (n, k + 1)

− k(1 + k − 2n)(2 + k + 2n)T (n, k + 2)
/

(2(1 + k)n(1 + 2n)) (22)

which allows to verify that

S(n) =
2n + 5

2n + 1
T (n, 2n + 1) −

2

2n + 1
T (n, 2n + 2) − (3T (n, 0)− T (n, 1)) (n ≥ 1); (23)

see [APS04a, Subsection 5.2]. Evaluation of T (n, k) at its bounds gives
∑2n

k=0 T (n, k) = −T (n, 0).
This proves Lemma 4 in [APS04a] �

So far we considered examples of GPTRT only for the rational case, i.e., where the ai(n, k)

and h
(i)
j (n, k) are given in Q(n, k), and ci(n) and gi(n, k) are searched in Q(n) and Q(n, k)

respectively. More generally, we will be able to solve problem GPTRT in the algebraic domain of

ΠΣ-fields [Kar81], see Section 3.3, which means that ai(n, k), h
(i)
j (n, k), ci(n) and gi(n, k) may

be represented by rational expressions involving indefinite nested sums and products.

Example 3. Consider a sequence T (k) for k ≥ 1 that satisfies the recurrence relation

T (k + 2) =
−3(3 + 2k + Hk(2 + 3k + k2))

Hk(1 + k)(2 + k)
T (k) −

4(3 + 2k + Hk(2 + 3k + k2))

(2 + k)(1 + Hk(1 + k))
T (k + 1)

where Hk denotes the harmonic numbers
∑k

i=1
1
i
. In this example the goal is to find a re-

currence for the sum expression S(n) =
∑n

k=1

(
n
k

)
T (k). To accomplish this task, we com-

pute for problem GPTRT with d = 2 and fi(n, k) = f(n + i, k) =
∏i

j=1
n+j

n+j−k

(
n
k

)
T (k) the

solution c0(n) = 4n2(1 + n)
2
, c1(n) = 2n2(1 + n)(3 + 2n), c2(n) = n2(1 + n)(2 + n), and

g(n, k) = g0(n, k) T (k) + g1(n, k) T (k + 1) where

g1(n, k) = −(1 + k)(2k2(1 + n)2 + n(2 + 8n + 9n2 + 3n3) − k(2 + 8n + 13n2 + 6n3)

+ kn(1 + n)(−2 − 6n − 3n2 + 2k(1 + n))Hk)

(
n

k

)/(
(−1 + k − n)(1 + (1 + k)Hk)

)

and g0(n, k) = −3(3+2k+Hk(2+3k+k2))
Hk(1+k)(2+k) g1(n, k+1)−

∑2
i=0 ci(n)

(
n+i

k

)
. Finally, with these ingredients

one can derive (together with a correctness proof as in Example 1) the recurrence

12n(1 + n)
2
S(n) + 6n(1 + n)(3 + 2n)S(1 + n) + 3n(1 + n)(2 + n)S(2 + n)

= 3(6 + 22n + 13n2)T (1) + 2(2 + 7n + 4n2)T (2).

Remark. Given this information, one can discover the identity

S(n) =
27 T (1) + 6 T (2)

18n
+

1

18

(
3T (1) + 2T (2)

)
(−2)n

[

Hn −
n∑

i=1

1

i(−2)i

]

, n ≥ 1 (24)

by using the tool box of Sigma described in [Sch01, Sch04a]. �

1For the explicit creative telescoping solution and a rigorous correctness proof we refer to [APS04b, Remark 6].
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3. A Method for the GPTRT Problem in Difference Fields

As motivated in the previous section, a huge class of summation problems (SPTRS) can be handled
if one knows how to solve GPTRT. In this section we will present algorithms working in general
difference fields that solve problem GPTRT under the assumption that one can solve parameterized
linear difference equations. This will result in a new summation algorithm in the difference field
setting of ΠΣ-fields by applying algorithms developed in [Bro00, Sch02c, Sch02a, Sch02b].

3.1. Translation to difference fields. In a first step we reformulate problem GPTRT by intro-
ducing the shift operator Sk with respect to k and denoting xi := T (n, k + i) for 0 ≤ i ≤ s. Then
we have Sk xi = xi+1 for 1 ≤ i < s and (8) reads as

Sk xs = a0(n, k)x0 + · · · + as(n, k)xs + as+1(n, k). (25)

Moreover, (18) and (19) can be expressed in the form

fi(n, k) = h
(i)
0 (n, k)x0 + · · · + h(i)

s (n, k)xs + h
(i)
s+1(n, k), (26)

g(n, k) = g0(n, k)x0 + · · · + gs(n, k)xs + gs+1(n, k). (27)

Now the essential step consists in representing the sequences in (25), (26), (27) in terms of a field
F where the shift operator Sk acting on those sequences can be described by a field automorphism
σ : F → F. More precisely, we shall describe our sequences in difference fields (F, σ), i.e., a field2

F together with a field automorphism σ. The constant field of (F, σ) is defined as constσF =
{c ∈ F |σ(c) = c}.

Example 4 (TSPP cont.). For Example 2 this translation can be carried out as follows. Consider
the field of rational functions F := Q(n)(k)(x0, x1, x2) and the field automorphism σ : F → F with
σ(p) = p for all p ∈ Q(n), σ(k) = k + 1, σ(x0) = x1, σ(x1) = x2 and σ(x2) = a0x0 + a1x1 + a2x2

where the ai are taken from (21). Then problem GPTRT can be stated in the difference field
(F, σ) as follows. Find g = g0 x0 + g1 x1 + g2 x2 with gi ∈ Q(n)(k) such that

σ(g) − g = x0. (28)

With our algorithm, given below, we are able to compute the solution

g(n, k) = −2(k(1 + k)(2 + k) − (3 + k)n − 2(3 + k)n2)x0 + (3k(1 + k)(2 + k)

− 2(1 + 2k)n − 4(1 + 2k)n2)x1 − k(1 + k − 2n)(2 + k + 2n)x2

/

(2(1 + k)n(1 + 2n))

Reinterpreting this result as a sequence g(n, k) gives the solution (22). �

Example 5. For Example 1 we can construct the following difference field (F, σ). Take the field
of rational functions F := Q(n)(k)(x0, x1) where the automorphism σ is defined as σ(p) = p for
all p ∈ Q(n), σ(k) = k + 1, σ(x0) = x1 and

σ(x1) =
(n − k)3(1 + k + n)(2 + k + n)

(1 + k)
2
(2 + k)

2
(k − 3n)

x0+
(1 + k)2(2 + k + n)(k + 2k2 − 3n − 6kn + 3n2)

(1 + k)
2
(2 + k)

2
(k − 3n)

x1.

Observe that Q(n) is the constant field of (F, σ). In this algebraic domain F we define

f0 = x0, f1 = h(1)x0 + h
(1)
1 x1 + h

(1)
2 x2, f2 = h(2)x0 + h

(2)
1 x1 + h

(2)
2 x2

where the coefficients h
(i)
j are taken from (16) and (17). Then with our algorithms, see below, we

find constants ci ∈ Q(n) and a g = g0 x0 + g1 x1 with gi ∈ Q(n)(k) such that

σ(g) − g = c0 f0 + c1 f1 + c2 f2. (29)

Reinterpreting ci and g as sequences gives the solutions ci(n) and g(n, k) from (13). �

2Throughout this paper all fields will have characteristic 0.
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Example 6. For Example 3 consider first the field of rational functions F := Q(n)(k)(B)(H), and
define the difference field (F, σ) with constant field Q(n) where σ(k) = k + 1, σ(B) = n−k

k+1 B and

σ(H) = H + 1
k+1 . Note that the shift Sk

(
n
k

)
= n−k

k+1

(
n
k

)
and Sk Hk = Hk + 1

k+1 is reflected by the

action of σ on H and B. Now consider the rational function field extension E = F(x0, x1, x2) of F

and extend σ to a field automorphism σ : E → E which acts on F as in (F, σ) and where we have
σ(x0) = x1, σ(x1) = x2 and σ(x2) = a0x0 + a1x1 with

a0 =
−3(3 + 2k + H(2 + 3k + k2))

H(1 + k)(2 + k)
and a1

4(3 + 2k + H(2 + 3k + k2))

(2 + k)(1 + H(1 + k))
. (30)

In this difference field extension (E, σ) of (F, σ) we define fi =
∏i

j=1
n+j

n+j−k
B x0 for 0 ≤ i ≤ 2.

Then we compute with our algorithms, see below, ci ∈ Q(n) and g = g0 x0 + g1 x1, gi ∈ F such

that σ(g) − g =
∑2

i=0 cifi holds. The found solution, translated back in terms of Hn and
(
n
k

)
,

gives the solution in Example 3. �

More generally, suppose that for a problem of the type GPTRT we managed to construct a

difference field (F, σ) in which the sequences ai(n, k) and h
(i)
j (n, k) can be described with ai, h

(i)
j ∈

F. Then we try to solve GPTRT in so-called higher order linear extensions, in short h.o.l. extension.
Namely, in the rational function field extension E := F(x0, . . . , xs) of F with the field automorphism
σ : E → E that is canonically defined as follows: σ acts on F like in the difference field (F, σ),
σ(xi) = xi+1 for 0 ≤ i < s and

σ(x1) = a0 x0 + · · · + as xs + as+1, ai ∈ F. (31)

Then, given such an h.o.l. extension (E, σ) of (F, σ), we represent fi(n, k) in the form

fi = h
(i)
0 x0 + · · · + h(i)

s xs + h
(i)
s+1 ∈ F x0 ⊕ · · · ⊕ F xs ⊕ F ⊆ E (32)

and we try to solve problem

GPT in higher order extensions (GPTHO).

• Given: A h.o.l. extension (F(x0, . . . , xs), σ) of (F, σ) with (31) where K := constσF, V :=
(
F x0 ⊕ · · · ⊕

F xs ⊕ F
)

and f0, . . . , fd ∈ V;
• find c0, . . . , cd ∈ K, not all zero, and a g ∈ V such that σ(g) − g = c0f0 + · · · + cdfd.

3.2. Our method in general difference fields. Finally, we develop an algorithm that allows
to solve problem GPTHO under the assumption that one knows how to solve

Parameterized Linear Difference Equations (PLDE).

• Given a difference field (F, σ) with constant field K, a0, . . . , am ∈ F, and f0, . . . , fd ∈ F;
• find all g ∈ F and all c0, . . . , cd ∈ K with am σm(g) + · · · + a0 g = c0 f0 + · · · + cd fd.

For simplicity let us consider first the special case d = 0 of problem GPTHO, i.e., given f ∈ V,
find a g ∈ V such that

σ(g) − g = f. (33)

Example 7 (TSPP cont.). Consider the TSPP problem (28) from Example 4. Then with the
ansatz g = g0 x0 + g1 x1 + g2 x2 ∈ Q(n)(k)(x0, x1, x2) and matching coefficients one obtains the
equations

a0 σ(g2) − g0 = 1 σ(g0) + a1 σ(g2) − g1 = 0 σ(g1) + a2 σ(g2) − g2 = 0. (34)

Note that any g0, g1, g2 with (34) will produce a solution g = g0 x0+g1 x1+g2 x2 with σ(g)−g = x.
Now applying σ to the second equation of (34) gives σ(g1) = σ2(g0) + σ(a1) σ2(g2) which allows
to transform the third equation of (34) to

σ2(g0) + σ(a1) σ2(g2) + a2 σ(g2) − g2 = 0. (35)
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Finally, applying σ2 to the first equation of (34) gives σ2(g0) = σ2(a0) σ3(g2) − 1 which turns
equation (35) into

σ2(a0) σ3(g2) + σ(a1) σ2(g2) + a2 σ(g2) − g2 = 1.

The crucial point is that we derived a linear difference equation in g2 with known coefficients σ2(a0),
σ(a1) and a2 in Q(n)(k) with σ(k) = k + 1. Hence we can apply a refined version of the algo-

rithm [Abr89], which is a sub-algorithm in Sigma, and derive the solution g2 = k(2n−k−1)(2n+k+2)
2(k+1)n(2n+1) ∈

Q(n)(k). Now observe that the first equation in (34) tells us how to compute g0 from the already
computed g2. Moreover, the second equation of (34) allows us to compute g1 from the already
computed g0. Furthermore observe that g0, g2 ∈ F satisfy the first equation of (34). Summarizing,
the derived g = g0 x0 + g1 x1 + g2 x2, given in (22), is a solution of (28). �

The following two lemmas give us a general recipe how the above problem (33) can be solved.

Lemma 1. Let (F(x0, . . . , xs), σ) be a h.o.l. extension of (F, σ) with (32) and let f, g ∈ F x0⊕· · ·⊕
F xs ⊕F with f = h0 x0 + · · ·+ hs xs + hs+1 and g = g0 x0 + · · ·+ gs xs + gs+1. Then σ(g)− g = f

if and only if

σ(gs+1) − gs+1 = hs+1 − as+1 σ(gs), (36)

g0 = a0 σ(gs) − h0, (37)

and for 1 ≤ i ≤ s we have

gi = σ(gi−1) + ai σ(gs) − hi. (38)

Proof: Define L := σ(g) − g − f . Then

L =

s−1∑

i=0

[
σ(gi) xi+1 − gi xi

]
+ σ(gs)

[
s∑

i=0

ai xi + as+1

]
− gs xs + σ(gs+1) − gs+1 −

s∑

i=0

hi xi − hs+1

and therefore L = ds+1 + d0 x0 + · · ·+ ds xs with d0 = a0 σ(gs)− g0 −h0, di = σ(gi−1)+ai σ(gs)−
gi−hi for 1 ≤ i ≤ s, and ds+1 = σ(gs+1)−gs+1+as+1 σ(gs)−hs+1. Since the xi are transcendental
over F, the lemma is immediate. �

The crucial observation is that this system of first order linear difference equations (37) and (38)
can be brought in an uncoupled (triangulated) form by the following

Lemma 2. Let (F, σ) be a difference field, hi ∈ F for 1 ≤ i ≤ e and ge ∈ F. Then
s∑

j=0

σs−j(aj)σ
s−j+1(gs) − gs =

s∑

j=0

σs−j(hj) (39)

if and only if there are g0 . . . , gs−1 ∈ F with (37) and (38) for 0 < i ≤ s.

Proof: Let h0, . . . , hs ∈ F and gs ∈ F. We show by induction on k for 1 ≤ k ≤ s with gk ∈ F the
following: there exist g0, . . . , gk−1 ∈ F with (37) and (38) for 0 ≤ i < k if and only if

gk =
k∑

j=0

σk−j(aj)σ
k−j+1(gs) −

k∑

j=0

σk−j(hj). (40)

Then for the particular choice k = s the lemma is proven. First note that for k = 0 equation (37)
is equivalent to (40), which proves the base case. In particular, if s = 0, we are already done. Now
suppose that 0 ≤ k < s, let gk ∈ F and assume that we have shown already that equation (40)
holds if and only if there are g0, . . . , gk ∈ F with (37) and (38) for 0 ≤ i ≤ k. First suppose
that there are g0, . . . , gk+1 ∈ F with (37) and (38) for 0 ≤ i ≤ k + 1. Then by the induction
assumption we may assume that (40) holds. Then plugging in the right hand side of (40) into
σ(gk) + ak+1 σ(gs) − gk+1 = hk+1 gives

k∑

j=0

σk−j+1(aj)σ
k−j+2(gs) −

k∑

j=0

σk−j+1(hj) + ak+1 σ(gs) − gk+1 = hk+1 (41)
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which is equivalent to

gk+1 =

k+1∑

j=0

σk−j+1(aj)σ
k−j+2(gs) −

k+1∑

j=0

σk−j+1(hj). (42)

Contrary suppose that we are given a gk+1 ∈ F with (42) or equivalently (41). We can construct
g0, . . . , gk ∈ F such that equations (37) and (38) for 1 ≤ i ≤ k hold. Hence by the induction
assumption (40) follows. (40) and (41) imply σ(gk) + ak+1 σ(gs) − gk+1 = hk+1. �

Example 8 (TSPP cont.). Essential use of Lemma 2 has been made in [APS04a] to prove hyper-
geometric multi-sum identities. �

Consequently the telescoping equation (33) for g = g0 x0 + · · ·+ gs xs + gs+1 ∈ V holds if and only
if we have (39), (36),(37), and (38) for 0 < i < s. This fact produces immediately an algorithm to
find such a g ∈ V with (39) if an algorithm is given that can solve linear difference equations.

Algorithm 1. Indefinite summation (telescoping).

Telescoping((F(x0, . . . , xs), σ), f)
Input: A h.o.l. extension (F(x0, . . . , xs), σ) of (F, σ) and f = h0 x0 + . . . hs xs + xs+1 ∈ V where

V = F x0 ⊕ · · · ⊕ F xs ⊕ F.
Output: A solution g ∈ V with σ(g) − g = f if it exists.

(1) Decide constructively3 if there is a solution gs ∈ F for (39). If no, RETURN “No solution”.
(2) Otherwise, take such a gs and decide constructively3 if there is a solution gs+1 ∈ F for (36).

If no, RETURN “No solution”.
(3) Otherwise, take such a gs+1 and compute g0 by (37) and derive successively the remaining gi by (38).
(4) RETURN g = g0 x0 + . . . gs xs + gs+1.

Next, we generalize this algorithm to solve Problem GPTHO for the homogeneous case, i.e.,

αs+1 = 0 and h
(j)
s+1 = 0 for 0 ≤ j ≤ d. The main idea is to take indeterminates ci, replace

c0 f0 + · · · + cd fd with f , and to look simultaneously for solutions g ∈ V and ci ∈ K. More
precisely, there is the following algorithm.

(1) Write fi ∈ V as in (32) with h
(i)
j ∈ F. Then compute3 all solutions (c0, . . . , cd, g) ∈ Kd+1 × F s.t.

s∑

j=0

σs−j(aj)σ
s−j+1(g) − g =

d∑

i=0

ci

s∑

j=0

σs−j(h
(i)
j ). (43)

(2) If there are only solutions where all ci = 0, there is no solution for problem GPTHO.

(3) Otherwise we take such a solution, say (c0, . . . , cd, gs), with some ci 6= 0 and set f :=
∑d

i=0 ci fi ∈
F x0 ⊕ · · · ⊕ F xs. Now we compute a g ∈ V with (33) by applying4 Algorithm 1.

Example 9. Take the difference field (F(x0, x1, x2), σ) with F := Q(n)(k)(B)(H) and the fi =

h
(0)
i x0 + h

(1)
i x1 ∈ F x0 ⊕ F x1 from Example 6, i.e., h

(0)
i =

∏i
j=1

n+j
n+j−k

B and h
(1)
i = 0. In order

to obtain ci ∈ Q(n) and g ∈ F x0 ⊕ F x1 with σ(g) − g =
∑2

i=0 cifi, we compute the solution

c0(n) = 4n2(1 + n)2, c1(n) = 2n2(1 + n)(3 + 2n), c2(n) = n2(1 + n)(2 + n), and

g1 = −(1 + k)(2k2(1 + n)
2
+ n(2 + 8n + 9n2 + 3n3) − k(2 + 8n + 13n2 + 6n3)

+ kn(1 + n)(−2 − 6n − 3n2 + 2k(1 + n))H)B
/(

(−1 + k − n)(1 + (1 + k)H)
)
∈ F

for σ(a0)σ
2(g1) + a1σ(g1) − g1 =

∑3
i=0 ciσ(h

(0)
i ) where the ai are given in (30). Now define

f =
∑2

i=0 ci fi = x0

∑2
i=0 ci h

(0)
i . Then by Lemma 1 and 2 it follows that g = g0 x0 + g1 x1 with

g0 = a0σ(g1) −
∑2

i=0 ci h
(0)
i is a solution for σ(g) − g = f =

∑2
i=0 ci fi; see Example 3. �

3By assumption this is possible by solving a specific instance of problem PLDE in the difference field (F, σ).
4The solution is guaranteed: we can skip step (1) in Algorithm 1, since the already computed gs ∈ F satisfies (39).

With gs+1 = 0 in step (2) the computed output g = g0x0 + · · · + gsxs gives the desired solution.
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Remark 1. If αs+1 and h
(j)
s+1 are not 0, we can extend these ideas by using reduction techniques

from [Kar81] based on linear algebra. More precisely, by following the ideas from above one first

computes all h = g0 x0 + · · · + gs xs with gi ∈ F and all ci ∈ K s.t. σ(h) − h −
∑d

i=0 ci fi ∈ F; all
those solutions (c0, . . . , cd, h) form a finite dimensional vector space over K. After computing a
basis, say {(ci0, . . . , cid, hi)}1≤i≤u, one looks for all constants k1, . . . , ku ∈ K and all gs+1 ∈ F s.t.

σ(k1h1 + . . . kuhu + gs+1) − (k1h1 + . . . kuhu + gs+1) = k1

d∑

j=0

c1jfj + · · · + ku

d∑

j=0

cujfj

⇔ σ(gs+1) − gs+1 = k1

[
d∑

j=0

c1jfj − σ(h1) + h1

]
+ · · · + ku

[
d∑

j=0

cujfj − σ(hu) + hu

]
(44)

holds. More precisely, one solves a certain instance of problem PLDE with m = 1. Then any
solution ki ∈ K and gs+1 ∈ F of (44) gives a solution ci :=

∑u
j=1 kjcji ∈ K and g := k1h1 + · · · +

kuhu + gs+1 ∈ V for GPTRT. Note that with linear algebra arguments one can show that this
ansatz gives us all solutions for GPTRT. ♦

Summarizing, we obtain the following

Theorem 1. There is an algorithm that solves problem GPTHO if one can solve problem PLDE.

Observe that this theorem is contained in [Chy00] if one restricts to h.o.l. extensions of the
form (32) with as+1 = 0. The improvement in our result is that we can avoid uncoupling al-
gorithms; see [Ger02]. Instead, in Lemma 2 we provide a generic formula for an uncoupled system
that is equivalent to the given one.

3.3. A new algorithm for special difference fields. So far we have shown that one can handle
problem GPTHO for any difference field in which problem PLDE can be solved. As worked out
in [Chy00] this can be achieved for the rational case (F, σ) with F = K(k) and σ(k) = k + 1 or the
q-case with F = K(q)(x) and σ(x) = q x by extended versions of the algorithms [Abr89, Abr95].

More generally, due to recent algorithmic results [Bro00, Sch02c, Sch02a, Sch02b] one can solve5

problem PLDE and therefore problem GPTHO in ΠΣ-fields. With this algorithmic difference
field machinery, implemented in Sigma, one has new algorithms in hand that allow to solve prob-
lem GPTRT and SPTRS over rational expressions involving indefinite nested sums and products.

Remark 2. Informally, a ΠΣ-field is nothing else than a difference field (F, σ) with constant field
K where F := K(t1) . . . , (te) is a rational function field and the application of σ on the ti’s is
recursively defined over 1 ≤ i ≤ e with σ(ti) = αi ti + βi for αi, βi ∈ K(t1) . . . (ti−1); we omitted
some technical conditions given e.g. in [Kar81, Sch01, Sch03].
For instance, all difference fields (F, σ) in the Examples 4, 5 and 6 form ΠΣ-fields. This means that

sums like Hk =
∑k

i=1
1
i
, products like

(
n
k

)
=

∏k
i=1

n−i+1
i

, or expressions like the summand in (20)
can be expressed in ΠΣ-fields. Observe that all such expressions represented in a ΠΣ-field have
the following property: their sums and products shifted in k can be expressed by their unshifted
sums and products, like Sk Hk = Hk + 1

k+1 or Sk

(
n
k

)
= n−k

k+1

(
n
k

)
. ♦

We emphasize that Karr’ original summation algorithm [Kar81] solves problem PLDE for the
case m = 1 in a given ΠΣ-field, and hence implements problem GPT in the ΠΣ-field setting;
see (47). Since our algorithm can solve Problem GPTRT over such a ΠΣ-field, it completely
covers Karr’s algorithm — actually, Sigma contains a simplified version of Karr’s summation
algorithm; see [Sch04b]. On the other side, our algorithm restricted to the homogeneous case, see
above, can be embedded in the general setting of [Chy00]. In some sense, we have introduced a
common framework that combines both, Karr’s algorithm and big parts of Chyzak’s ∂-finite tool
box [Chy00].

5More precisely, with the techniques introduced in [Sch02c], one eventually finds all solutions of parameterized
linear difference equations by increasing incrementally the search space.
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4. The Recurrence Method for Multi-Summation

Consider the following multi-summation problem. Given S(n) =
∑β

k=α f(n, k)T (n, k) where α

and β are integer-linear in n and where for the summand f(n, k)T (n, k) the following properties
hold. T (n, k) might be a multi-sum of the form

T (n, k) =
∑

k1

h1(n, k, k1)
∑

k2

h2(n, k, k1, k2) · · ·
∑

ku

hu(n, k, k1, . . . , ku)

where we assume that the summation bounds in all the sums
∑

ki
are integer-linear in n and

k, k1, . . . , ki−1; moreover, we suppose that f(n, k) and the hi(n, k, k1, . . . , ki) can be represented
in a ΠΣ-field, i.e., in rational expressions involving indefinite nested sums and products. Find a
recurrence of the type (6) for given γi ∈ Nr.

Example 10 (TSPP cont.). All our summation problems in [APS04a] fit into this problem class;
see for instance (62). The following ideas were crucial to handle all these problems. �

In this section we discuss how such a problem could be attacked using the tools described in
the previous sections. First one tries to derive recurrences of the type (8) and (9) for the sum-
mand T (n, k), then, if necessary, reduces problem SPTRS to the simpler problem GPTRT, and
afterwards applies our algorithms from Section 3 to solve problem GPTRT.

Hence, in order to follow this strategy with our methods, we only have to explain how we can derive
recurrences of the type (8) and (9). For the sake of simplicity we suppress additional parameters
and focus on the following problem. Given S(m, n) =

∑

k f(m, n, k)T (m, n, k) with

T (m, n, k) =
∑

k1

h1(m, n, k, k1)
∑

k2

h2(m, n, k, k1, k2) · · ·
∑

ku

hu(m, n, k, k1, . . . , ku)

where f(m, n, k) and the hi can be expressed in a ΠΣ-field. Find recurrences of the type

S(m, n + d + 1) = a0(m, n)S(m, n) + · · · + ad(m, n)S(m, n + d) + ad+1(m, n) (45)

or

S(m + 1, n) = b0(m, n)S(m, n) + · · · + bd(m, n)S(m, n + d) + bd+1(m, n). (46)

To accomplish this task, we propose the following recurrence method based on recursion.

• Base case: T (m, n) = 1. In this case, the summand f(m, n, k) of S(m, n) can be expressed in
a ΠΣ-field, say (F, σ) with K := constσF. Hence we try to find (45), resp. (46), with SPT in our
ΠΣ-field; i.e., we try to find ci ∈ K and g ∈ F such that

σ(g) − g = c−1 f−1 + c0 f0 + · · · + cd fd (47)

where fi ∈ F stands for f(m, n + i, k), 0 ≤ i ≤ d, and f−1 ∈ F stands for f(m + 1, n, k), or
is 0, respectively. More precisely, starting from d = 0 for our problem (47) one increments the
order d until a non-trivial solution is found, i.e., some ci are non-zero. In this case, RETURN
the resulting recurrence (45) or (46). If d gets too large without any solution, STOP with the
comment “Failure”. — With Sigma we can accomplish this task by using the function call (61).

• Recursion: T (m, n, k) 6= 0. Before we can proceed to find (45), resp. (46), with SPTRS, we
have to derive recurrences for T (m, n, k). For the case (45) we need recurrences of the form

T (m, n, k + δ + 1) = a′
0(m, n, k)T (m, n, k) + · · · + a′

δ(m, n, k)T (m, n, k + δ) + a′
δ+1(m, n, k) (48)

and

T (m, n + 1, k) = b′0(m, n, k)T (m, n, k) + · · · + b′δ(m, n, k)T (m, n, k + δ) + b′δ+1(m, n, k). (49)

For the case (46) we need, besides (48) and (49), a recurrence of the form

T (m + 1, n, k) = b∗0(m, n, k)T (m, n, k) + · · · + b∗δ(m, n, k)T (m, n, k + δ) + b∗δ+1(m, n, k). (50)
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In order to accomplish this task, we apply again our recurrence method on the sub-problems (48),
(49) or (48), (49), (50), respectively. If we fail, STOP with the comment “Failure”. Otherwise we
proceed as follows.

• Solving the problem: We try to solve the corresponding problem SPTRS, namely, find
ci(m, n) and g(m, n, k) such that

g(m, n, k + 1) − g(m, n, k) = c−1(m, n)f(m + 1, n, k)T (m + 1, n, k)

+ c0(m, n)f(m, n, k)T (m, n, k) + · · · + cd(m, n)f(m, n + d, k)T (m, n + d, k) (51)

or

g(m, n, k + 1) − g(m, n, k)

= c0(m, n)f(m, n, k)T (m, n, k) + · · · + cd(m, n)f(m, n + d, k)T (m, n + d, k), (52)

respectively. Now we go on as proposed in Section 2: We reduce problem SPTRS to GPTRT
and try to solve Problem GPTHO — if possible — in an appropriate ΠΣ-field. Namely, given
such a ΠΣ-field (F, σ), we increase d ≥ 0 in our GPTHO problem step by step until a nontrivial
solution for (51), resp. (52), is found. In this case RETURN the resulting recurrence (45) or (46).
Otherwise, if d gets too large without any solution, STOP with the comment “Failure”. — With
Sigma we can accomplish this task by using the function call (60).

Observe that the basic idea of the recurrence method has been applied already in Examples 1
and 2. In particular, looking at Example 1, our method can be specialized to hypergeometric
multi-summation, i.e.,

S(n) =
∑

k1

· · ·
∑

ku

h(n, k1, . . . , ku), (53)

where6 h(n, k1, . . . , ku) is hypergeometric in all parameters, as follows.
• If we run into the base case, we try to compute homogeneous recurrences for the inner most sum
by applying [Zei90a, Pau04] or Sigma.
• Otherwise, we have to solve problem SPTRS of the type (51) or (52). Namely, assuming that
the a′

i(m, n, k), b′i(m, n, k) and b∗i (m, n, k) from (48), (49) and (50) are rational functions in m, n

and k, we have to solve problem GPTHO in a difference field of the type (K(m, n)(k), σ) with
constant field K(m, n) and σ(k) = k + 1. This can be achieved with our algorithm in Section 3.2
by using a variation of algorithm [Abr89], that is contained in Sigma. In [PS04] these ideas are
analysed in further details.

The non-trivial examples in [APS04a] illustrate the successful application of our method. In
particular, we want to emphasize that we managed to find straightforward alternative proofs for
all double sum identities in [Weg97], like identity (10) from Example 1.

Example 11. Following our strategy in Example 1, the recurrence (15) for the double sum given
in (15) can be computed in 12 seconds by using Sigma (Mathematica 5); see Section 5.2.
In comparison, the Wegschaider/Riese package MultiSum [Weg97, LPR02]7 needs about 510 sec-
onds to compute the same recurrence (15) on the same computer platform using Mathematica 5.
Moreover the intermediate result of the summand recurrence fills several pages, see [Weg97, Sec-
tion 5.7.6], whereas our result is rather compact, see Out[12]. �

In [Chy00] another strategy has been developed that allows to tackle hypergeometric multi-
summation. The essential difference to our approach is that in [Chy00] one does not construct a
recurrence system of the form (8) and (9) step by step, but looks simultaneously for a whole system
of recurrences. For instance, one of the strategies in [Chy00] proposes8 to fix d ∈ N and to look for

6For the sake of simplicity we restrict ourselves to sums where all summations are taken over finite summand
supports. With this restriction homogeneous sum recurrences are guaranteed.

7This approach is based on ideas of Sister Celine and Wilf/Zeilberger [WZ92] and supplemented by [Ver74] and
random parameter substitution [RZ04].

8Following this strategy we managed to derive recurrence (15) for the double sum given in (15) in more than
2300 seconds by using the package Mgfun in Maple 8.
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all linear recurrences with shifts in T (n + γ, k + δ) where γ ∈ Nr, δ ∈ N and γ1 + · · ·+ γr + δ ≤ d.
Concerning such strategies the following remarks are in place.

(1) Looking for each recurrence (8) or (9) separately, like in our approach, amounts to keeping the
underlying linear algebra problems as small as possible. But, looking in one stroke for a whole
system of recurrences results in a drastic increase of complexity.

(2) Moreover, one usually does not have any control over the structure of the derived recurrence
system. In particular those systems usually do not allow to represent T (n + γ, k + δ) in a
normalized form. Hence Gröbner basis algorithms [CS98, Chy98] must be used in order to
transform such recurrence systems into an appropriate shape; see [Chy00].

Summarizing, our new, surprisingly simple variant of Chyzak’s method [Chy00] allows to tackle a
huge class of multi-sum problems in a very efficient manner.

We also remark that our recurrence method based on problem SPTRS can be easily carried over
from the shift/difference case to the differential case; this aspect might also improve the multi-
integration approach in [Chy00].

5. The Implementation Within Our Summation Package Sigma

In this section we will describe the usage of our extended Mathematica package Sigma that
not only solves GPT for rational expressions involving indefinite nested sums and products,
see [PS03, DPSW04a, DPSW04b, Sch04a], but the more general Problems SPTRS and GPTRT.
Subsequently, we will illustrate all these new features of Sigma.

First we load our package into the Mathematica system by typing

In[1]:= << Sigma‘

Sigma - A summation package by Carsten Schneider c© RISC-Linz

Sigma splits into two main parts, namely indefinite and definite summation.

5.1. Indefinite summation. As a first introductory example we consider the TSPP problem

from Example 2. Namely, eliminate the outermost summation quantifier in S(n) =
∑2n

k=0 T (n, k)
where the double sum T (n, k) = T[k] given in (20) satisfies the recurrence:

In[2]:= recDS = 2 (2 + k)2 (k− 2 n) (1 + k + 2 n) T[k] +
(
− 12 − 46 k − 58 k

2 − 29 k
3 − 5 k

4

+12 n + 20 k n + 6 k
2

n + 24 n
2 + 40 k n

2 + 12 k
2

n
2
)

T[1 + k]+
(
18 + 55 k + 59 k

2 + 26 k
3 + 4 k

4 − 6 n − 14 k n − 6 k
2

n − 12 n
2 − 28 k n

2−

12 k
2

n
2
)

T[2 + k] − (2 + k− 2 n) (3 + k + 2 n) T[3 + k] == 0;

We set up our summation problem as follows9.

In[3]:= mySum = SigmaSum[T[k], {k, 0,2n}];

Out[3]=

2n∑

k=0

T[k]

Remark 3. Generally, the functions SigmaSum and SigmaProduct are used to define rational
expressions involving indefinite nested sums and products that can be represented in ΠΣ-fields. We
also provide several other functions, like SigmaHNumber, SigmaBinomial or SigmaPower, to define
harmonic numbers, binomials or powers. Internally, these objects are also represented in terms of
sums and products that can be converted into ΠΣ-fields. For instance, SigmaHNumber[k] produces
the kth harmonic number Hk which alternatively could be described by SigmaSum[1/i,{i,1,k}].

♦

Next, our indefinite summation algorithm is applied using the function call

9Note that the initial values T [0], T [1] and T [2] are not specified further. Nevertheless we can evaluate T [k] with

〈T [0], T [1], T [2], 3T [2] − 6(n+1)(2n−1)
(2n+3)(n−1)

T [1] + 8n(2n+1)
(n−1)2n+3)

T [0], . . . 〉 by linear combinations of T [0], T [1] and T [2].
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In[4]:= SigmaReduce[mySum, {recDS,T[k]}]

Out[4]=
−(1 + 2 n) (3 T[0] − T[1]) − 2 T[2 (1 + n)] + (5 + 2 n) T[1 + 2 n]

1 + 2 n

which gives the identity (23). Internally, we solve the corresponding telescoping problem, see
Example 2, by first translating it into the underlying difference field, see Example 4, and afterwards
solving it in this setting with our algorithms, see Example 7.

In the next example we derive a closed form evaluation of the sum

In[5]:= mySum =
n∑

k=2

HE[k] (−2 x + (2 + 3 k + 2 k2 − 2 x) Hk − k (1 + k) (3 + 2 k − 2 x) H2

k)

Hk (−1 + k Hk) (1 + Hk + k Hk)
;

where HE[k] stands for the Hermite polynomials that can be defined as follows.

In[6]:= recHE = HE[k + 2] == 2x HE[k + 1] − 2(k + 1)HE[k]; HE[0] = 1; HE[1] = 2x;

After inserting our summation problem we eliminate the summation quantifier by executing:

In[7]:= SigmaReduce[mySum, {recHE,HE[k]}]

Out[7]= −
2

3

(
− 3 − 8 x + 6 x

2
)

+
HE[1 + n]

Hn
−

2 (1 + n)2 HE[n]

1 + Hn + n Hn

Remark 4. In general, suppose that we are given a recurrence rec of the form

a0T [k] + · · · + asT [k + s] + as+1 == 0 (54)

and a sum

mySum =

β
∑

k=α

(

f0T [k] + · · · + fsT [k + s] + fs+1

)

︸ ︷︷ ︸

= f(k)

(55)

where the ai and fi are rational expressions involving indefinite nested sums and products. In
order to insert such a summation problem, we provide various functions; see Remark 3. Note
that the ai and fi may also depend on extra parameters. Then, after defining such a summation
problem, with the function call

SigmaReduce[mySum, {rec, T[k]}] (56)

one tries to eliminate the outermost summation quantifier by following the strategy as in prob-
lem GPTRT with d = 0; more precisely, one tries to solve problem GPTHO for the underlying ΠΣ-
field. If the summand f(k) of (55) is free of T [k], i.e., fi = 0 for 0 ≤ i ≤ s, one can skip {rec, T[k]}
in (56). In this case our algorithm reduces to the former version of Sigma [Sch01, Sch04a]. ♦

5.2. Definite summation. In our first example we will prove identity (10) by following the
strategy described in Example 1. Namely, we first compute a recurrence for the double sum on
the left hand side of (10) by following our recurrence method; see Section 4. More precisely, we
insert the inner sum T (n, k) of our double sum

In[8]:= sumT =

n∑

s=0

(
n

k

). (
n

s

). (
k + n

k

). (−k + 2 n − s

n

). (
n + s

s

).

(−1)k+n+s. ;

and compute the recurrence (11) with the function call:

In[9]:= rec = GenerateRecurrence[sumT, k,RecOrder → 2]/.SUM → T

Out[9]= (k− n)3 (1 + k + n) (2 + k + n) T[k] − (1 + k)2 (2 + k + n)
(
k + 2 k

2 − 3 n−

6 k n + 3 n
2
)
T[1 + k] + (1 + k)2 (2 + k)2 (k − 3 n) T[2 + k] == 0

This means that T[k] = T (n, k) = sumT satisfies the output recurrence Out[9]. Note that this result
could be also obtained by any implementation of Zeilberger’s algorithm, like for instance [PS95].
Similarly, we derive recurrence (12) either with a variation of Zeilberger’s algorithm [Pau04], or
with Sigma by setting in addition the option OneShiftIn→ n:

In[10]:= recInN = GenerateRecurrence[sumT,k,OneShiftIn → n,RecOrder → 1]/.SUM → T
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Out[10]= −(1 + k + n)
(
− 5 k + 12 k

2 − 10 k
3 + 3 k

4 + 3 n− 32 k n + 42 k
2
n− 16 k

3
n+

15 n
2 − 57 k n

2 + 33 k
2
n
2 + 21 n

3 − 30 k n
3 + 9 n

4
)
T[k]+

(1 + k)2 (−1 + k− 3 n)
(
6− 8 k + 3 k

2 + 12 n − 8 k n + 6 n
2
)
T[1 + k]+

(−1 + k− n)3 (1 + n)2 T[1 + n, k] == 0

Given all these ingredients we finally compute the creative telescoping solution for the double sum

In[11]:= mySum =

n∑

k=0

T[k];

by typing in:

In[12]:= creaSol = CreativeTelescoping[mySum,n, {rec,T[k]}, recInN,RecOrder → 2]

Out[12]=
{
{0, 0, 0, 1},

{
− 4 (1 + n)3 (3 + 4 n) (5 + 4 n),−2 (1 + n)2 (3 + 2 n)

(
7 + 9 n + 3 n

2
)
, (1 + n)2 (2 + n)3,

(
k
2

(
960 − 3192 k + 3680 k

2 − 2042 k
3 + 1248 k

4 − 1112 k
5 + 582 k

6 − 134 k
7 + 10 k

8 + 7536 n−

21720 k n + 21304 k
2
n− 10982 k

3
n + 6404 k

4
n− 4095 k

5
n + 1421 k

6
n− 199 k

7
n + 7 k

8
n+

25804 n
2 − 63504 k n

2 + 52698 k
2
n
2 − 24334 k

3
n
2 + 12025 k

4
n
2 − 5292 k

5
n
2 + 1123 k

6
n
2−

74 k
7
n
2 + 50716 n

3 − 104481 k n
3 + 71985 k

2
n
3 − 28139 k

3
n
3 + 10608 k

4
n
3 − 2905 k

5
n
3+

290 k
6
n
3 + 63175 n

4 − 106032 k n
4 + 58545 k

2
n
4 − 17878 k

3
n
4 + 4469 k

4
n
4 − 578 k

5
n
4+

51793 n
5 − 68088 k n

5 + 28333 k
2
n
5 − 5928 k

3
n
5 + 727 k

4
n
5 + 27970 n

6 − 27054 k n
6+

7556 k
2
n
6 − 804 k

3
n
6 + 9598 n

7 − 6087 k n
7 + 857 k

2
n
7 + 1899 n

8 − 594 k n
8 + 165 n

9
)
T[k]−

k
2 (1 + k)2 (−1 + k− 3 n)

(
− 200 + 952 k− 1182 k

2 + 610 k
3 − 136 k

4 + 10 k
5 − 836 n + 3260 k n−

3183 k
2
n + 1220 k

3
n− 182 k

4
n + 7 k

5
n− 1426 n

2 + 4386 k n
2 − 3174 k

2
n
2 + 808 k

3
n
2−

61 k
4
n
2 − 1271 n

3 + 2901 k n
3 − 1389 k

2
n
3 + 177 k

3
n
3 − 625 n

4+

944 k n
4 − 225 k

2
n
4 − 161 n

5 + 121 k n
5 − 17 n

6
)
T[1 + k]

)
/
(
(−2 + k− n)3 (−1 + k− n)3

)}}

This means that each entry {c0, c1, c2, g} in Out[12] gives one particular solution of (14). After-
wards we sum this telescoping equation (14) over k from 0 to n and obtain the following result.

In[13]:= TransformToRecurrence[creaSol,mySum, n, {rec,T[k]}, recInN]

Out[13]=
{
− 4 (1 + n) (3 + 4 n) (5 + 4 n) SUM[n]−

2 (3 + 2 n)
(
7 + 9 n + 3 n

2
)
SUM[1 + n] + (2 + n)3 SUM[2 + n] == 0

}

If we are not interested in the proof certificate given in Out[12], see Example 1, one could
immediately derive this recurrence by replacing CreativeTelescopingwith GenerateRecurrence

in In[12]. To complete our proof of identity (10) we verify that also the right hand side of (10)
satisfies the recurrence in Out[13] for n ≥ 0; more precisely we compute this recurrence with the
function call GenerateRecurrence[SigmaSum[SigmaBinomial[n, k]4, {k, 0, n}]]. Since both sides
of (10) are equal for n = 0, 1, they represent the same sequence for n ≥ 0.

Remark 5. In general, our recurrence method from Section 4 can be applied using Sigma as
follows. Suppose that we are given a recurrence rec of the form (54), recurrences recInN and
recInM of the forms

T [n + 1, k] == b0T [k] + · · · + bsT [k + s] + bs+1, (57)

T [m + 1, k] == b∗0T [k] + · · · + b∗sT [k + s] + b∗s+1, (58)

respectively, and a definite sum

mySum =

γ1m+γ2n+α
∑

k=γ0

(

f0T [k] + · · · + fsT [k + s] + fs+1

)

︸ ︷︷ ︸

= f(m, n, k)

, γi ∈ Z, (59)

where α is an integer that may depend on other parameters. The ai, bi, b
∗
i , fi can be rational

expressions involving indefinite nested sums and products; to insert such objects see Remark 3.
Moreover, the ai, bi, b

∗
i , fi can depend besides m, n, k on any parameter. Then by calling

CreativeTelescoping[mySum, n, {rec, T[k]},recInN, OneShiftIn→ {recInM, m},

RecOrder→ d] (60)
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one searches for all creative telescoping solutions {c−1(m, n), c0(m, n), . . . , cd(m, n), g(m, n, k)}
such that (51) holds. Note that g may depend on any parameter whereas the ci are free of k.
Similarly, with GenerateRecurrence one computes the corresponding recurrence of the form

SUM[m + 1, n] == e0 SUM[n] + · · · + es SUM[n + d] + ed+1,

where the ei can be usually represented in a ΠΣ-field.
If the option OneShiftIn→ {recInM, m} is skipped in (60), the additional shift in m is not con-
sidered; see for instance In[12]. Moreover, if we have the trivial recurrence relation T[n+1,k] ==
T [n, k] in (57), also the input recInN can be omitted in (60); typical examples are given in In[15]

and In[18].
If the summand f(m, n, k) of (59) is free of T [k+ i], i.e., fi = 0 for 0 ≤ i ≤ s, the function call (60)
reduces to

CreativeTelescoping[mySum, n, OneShiftIn→ m, RecOrder→ d]; (61)

the same holds for GenerateRecurrence; see In[10]. Similarly as above, removing the option
OneShiftIn→ m gives only a recurrence in n; see In[9]. Note that in this case our algorithm
reduces to the former version of Sigma described in [Sch01, Sch04a]. ♦

One of the key steps in our computer algebra proof [APS04a] of the TSPP-Theorem [Ste95] is the
derivation of a recurrence in i for the definite triple sum

S(n, i) =

2n∑

k=0

(
i + k − 2

i − 3

)

T (n, k) (62)

where the double sum T (n, k) defined in (20) satisfies the recurrence In[2]. With Sigma this can
be easily achieved by setting up the summation problem

In[14]:= mySum =

2n∑

k=0

(−3 + i + k

−2 + i

).

T[k];

and calling the Sigma-function:

In[15]:= GenerateRecurrence[mySum, i, {recDS, T[k]},FiniteSupport → True]

Out[15]=
{
−

(
2 + i + i

2
)

(−1 + i + 2 n) (i− 2 (1 + n)) SUM[i]+

(3 + i)
(
− 2 + 2 i − i

2 + i
3 + 2 n + 4 n

2
)
SUM[1 + i]+

(−3 + i)
(
2 + 2 i + i

2 + i
3 − 2 n − 4 n

2
)
SUM[2 + i]−

(
2− i + i

2
)

(1 + i− 2 n) (2 + i + 2 n) SUM[3 + i] == 0
}

With the underlying creative telescoping solution a rigorous correctness proof is given in [APS04b,
Remark 7] which is similar to the proof in [APS04a, Subsection 5.3].

Finally we illustrate Example 3 by deriving a recurrence for the sum

In[16]:= mySum =
n∑

k=1

(
n

k

).

T[k];

where T[k] is defined by the recurrence relation

In[17]:= recT = 3 (1 + (1 + k) Hk)
(
3 + 2 k +

(
2 + 3 k + k

2
)

Hk

)
T[k] + 4 (1 + k) Hk

(
3 + 2 k+

(
2 + 3 k + k

2
)

Hk

)
T[1 + k] + (1 + k) (2 + k) Hk (1 + (1 + k) Hk) T[2 + k] == 0;

and its initial values T[1] and [2]. More precisely, we apply our creative telescoping algorithm,
see Example 3, with respect to the underlying difference field, see Example 9, and obtain the
recurrence relation:

In[18]:= GenerateRecurrence[mySum,n, {recT,T[k]}]

Out[18]=
{
12 n (1 + n)2 SUM[n] + 6 n (1 + n) (3 + 2 n) SUM[1 + n] + 3 n (1 + n) (2 + n) SUM[2 + n] ==

3
(
6 + 22 n + 13 n

2
)
T[1] + 2

(
2 + 7 n + 4 n

2
)
T[2]

}

This finally allows us to discover identity (24) by using the tool box of Sigma described in [Sch04a].
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