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Abstract. We introduce a class of stabilizing Newton-Kaczmarz methods for nonlinear ill-posed
problems and analyze their convergence and regularization behaviour. As usual for iterative methods
for solving nonlinear ill-posed problems, conditions on the nonlinearity (or the derivatives) have to be
imposed in order to obtain convergence. As we shall discuss in general and in some specific examples,
the nonlinearity conditions obtained for the Newton-Kaczmarz methods are less restrictive than those
for previously existing iteration methods and can be verified for several practical applications.

We also discuss the discretization and efficient numerical solution of the linear problems arising in
each step of a Newton-Kacmarz method, and carry out numerical experiments for a model problem.
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1. Introduction. The aim of this paper is to develop and analyze Newton-
Kaczmarz methods for nonlinear inverse problems, focusing in particular on the im-
portant class of identification problems with multiple boundary data. The main idea
of the Kaczmarz method is to split the inverse problem into a finite number of sub-
problems and to approximate its solution by performing a cyclic iteration over the
subproblems.

As a regularized Newton-Kaczmarz method we understand the cyclic iteration
where at each step one iteration of a regularized Newton method is applied to a
subproblem. As we shall discuss in detail in this paper, the benefit from this approach
is twofold:

1. Instead of solving one large problem in each iteration step, we can solve
several smaller subproblems, which might lead to a reduction of the overall
computational effort.

2. Due to the ill-posedness of the problem, conditions on the nonlinearity of
the problem have to be imposed in order to ensure convergence of iterative
methods (cf. [7] for an overview). These conditions are rather restrictive and
cannot be verified for many practical problems, in particular for parameter
identification problems using boundary data related to the solutions of partial
differential equations. As we shall show below for several applications, the
nonlinearity conditions for the Newton-Kaczmarz method are less restrictive
and can be verified in more realistic cases.

The price which one has to pay is that at least theoretically it turns out that
more a priori information has to be contained in the initial values.

Another motivation for the analysis in this paper is that Kaczmarz-type methods
(also called algebraic reconstruction technique) have been used already in several ap-
plications with multiple boundary data (cf. [2, 9, 10, 28, 36]) and performed better
than standard iterative methods. This paper, together with the results of Kowar and
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Scherzer [28] on the Landweber-Kaczmarz method, might serve to provide a theoret-
ical basis.

Many inverse problems can be formulated as nonlinear operator equations

F (x) = y , (1.1)

or as collections of p coupled operator equations

Fi(x) = yi , i = 0, . . . p− 1 (1.2)

with nonlinear operators Fi mapping between Hilbert spaces X and Yi. We will here
assume that a solution x† of (1.2) exists, but need not necessarily be unique.

Note that (1.1) can be seen as a special case of (1.2) with p = 1; on the other
hand defining

F := (F0, . . . , Fp−1), y := (y0, . . . , yp−1), (1.3)

one can reduce (1.2) to (1.1). However, one potential advantage of (1.2) over (1.1) can
be, that it might better reflect the structure of the underlying information (y0, . . . , yp)
leading to the coupled system, than a plain concatenation into one single data ele-
ment y could. The most important feature that we have in mind, though, is that it
enables the definition of Newton type solution methods and to proof their convergence
for certain relevant problems, for which Newton type methods applied to the single
equation formulation (1.1) cannot be shown to converge.

In general we assume that we only have noisy data yδi with some noise level δ
bounding the noise of every measurement by

‖yδi − yi‖ ≤ δ, (1.4)

Note that for p > 0, this assumption on the noise is more restrictive than the frequently
used noise bound

‖yδ − y‖ ≤ δ,

but it reflects the case of multiple measurements, where an individual noise bound is
available for each. If the noise level for each measurement is different, we can make
it equal by using a relative scaling between the operators Fi.

Since we are interested in the situation that (1.2) is ill-posed in the sense that
small perturbations in the data can lead to large deviations in the solution, and since
in practice only noisy data are available, we have to apply suitable regularization
techniques (see, e.g., [12, 15, 27, 29, 33, 34, 41]). Typically, the instability in nonlinear
inverse problems (1.1) corresponds to a smoothing property of the forward operator
F and its linearization F ′(x). In particular, for an ill-posed problem, we cannot
expect that F ′(x) is continuously invertible, and consequently a standard Newton or
Gauss-Newton cannot be used. Modified Newton-type method for solving (1.1) have
been studied and analyzed in several recent publications, see, e.g.[1, 7, 17, 18, 25, 39].
Regularization is here achieved by replacing the in general unbounded inverse of F ′(x)
in the definition of the Newton step by a bounded approximation, defined via a
regularizing operator

Gα(F ′(x)) ≈ F ′(x)† .
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Here, K† denotes the pseudo-inverse of a linear operator K, α > 0 is a small regular-
ization parameter, and Gα satisfies

Gα(K)y → K†y as α → 0 ∀y ∈ R(K) , (1.5)

and

‖Gα(K)‖ ≤ Φ(α) , (1.6)

for any linear operator K within some uniformly bounded set. Note that, especially
in view of operators K with unbounded inverses, the constant Φ(α) has to tend to
infinity as α goes to zero; we assume w.l.o.g. that Φ(α) is strictly monotonically
decreasing.

Choosing a sequence (αn) of regularization parameters and applying the bounded
operators Gαn(F ′(xn)) in place of F ′(xn)−1 in Newton’s method results in the itera-
tion

xn+1 = xn −Gαn(F ′(xn))(F (xn) − yδ) . (1.7)

If Gα is defined by Tikhonov regularization

Gα(K) = (K∗K + αI)−1K∗ , (1.8)

one arrives at the Levenberg-Marquardt method (see [18]; for Gα given by a conjugate
gradient iteration, see [17], further work on this class of methods can be found in [40]).

Bakushinsky in [1] proposes a slightly different class of regularized Newton meth-
ods defined by

xn+1 = x0 −Gαn(F ′(xn))(F (xn) − yδ − F ′(xn)(xn − x0)) ,

using an a priori chosen monotonically decreasing sequence αn
n→∞→ 0 of regulariza-

tion parameters. Note that the additional term [I − Gαn(F ′(xn))F ′(xn)](x0 − xn)
appearing here as compared to (1.7) implies a restart at x0 at each iteration and
therewith suggests additional stability. One observes that in the limiting case αn → 0
(i.e., Gαn(F ′(xn)) → F ′(x)†) also this formulation is equivalent to the usual Newton
method. A prominent example for the regularizing operatorGα is given by Tikhonov’s
method, see (1.8), and leads to the iteratively regularized Gauss-Newton method. But
we will also consider different regularizing operators here, namely iterative regulariza-
tion by the (linear) Landweber iteration or iterated Tikhonov regularization, as well
as regularization by discretization.

In order to make these Newton-type methods applicable to multiple equations
(1.2), we combine them with a Kaczmarz approach (similar to [28]). Starting from
an initial guess x0,i, we perform a Newton step for the equation Fi(x) = yi, for i
from 0 to p − 1, and repeat this procedure in a cyclic manner. Incorporating the
possibility of different regularization methods Gi for each equation in (1.2), and using
the “overloading” notation

x0,n := x0,mod(n,p) , Fn := Fmod(n,p) , yn := ymod(n,p) , Gnα := Gmod(n,p)α

(1.9)
this can be written as

xn+1 = x0,n −Gnαn
(F ′
n(xn))(Fn(xn) − yδn − F ′

n(xn)(xn − x0,n)) . (1.10)
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A combination of the Levenberg-Marquardt method with a Karczmarz approach will
be shortly discussed in Section 3 below.

Our convergence analysis will be a local one, i.e., we will work in a neighborhood
Bρ(x†) of the solution, which we assume to be a subset of the domains of the operators
Fi

Bρ(x†) ⊆ D(Fi) , i = 0, . . . p− 1 .

The remainder of the paper is organized as follows: In Section 2 we discuss con-
ditions on the nonlinearity of the problem and so-called source conditions, which are
abstract smoothness assumptions on the solution. Section 3 contains a convergence
analysis of (1.10) including the case of noisy data and convergence rates under addi-
tional regularity assumptions. In Section 4, we derive some approaches for the efficient
implementation of the proposed methods, and Section 5 provides numerical results.

2. Nonlinearity and Source Conditions. In the following we shall discuss
the basic conditions needed for the subsequent analysis in this paper. In particular
we shall introduce conditions on the nonlinearity of the involved operators Fi and
investigate their applicability to tomography-type problems.

2.1. Nonlinearity Conditions. To make these methods well-defined, we as-
sume the forward operators Fi to be Fréchet differentiable with derivatives being
uniformly bounded in a neighborhood of the solution. This uniform bound has to be
such that applicability of the respective regularization method can be guaranteed

‖F ′
i (x)‖ ≤ CiS ∀x ∈ Bρ(x†) (2.1)

which can always be achieved by a proper scaling. In order to prove convergence of
regularization methods for nonlinear ill-posed problems, one usually needs assump-
tions not only on the smoothness of the forward operator F but also on the type of
nonlinearity it contains, though. Here we shall mainly consider the condition

F ′
i (x̄) = F ′

i (x)Ri(x̄, x) ∀x̄, x ∈ Bρ(x†) (2.2)

which means that the range of the Fréchet derivative of each forward operator Fi is
locally invariant around the solution. The linear operators Ri(x̄, x) (that by the way
need not be known explicitely) should satisfy a Lipschitz type estimate

‖Ri(x̄, x) − I‖ = ‖Ri(x̄, x) −Ri(x, x)‖ ≤ CR‖x̄− x‖ . (2.3)

This corresponds to an analogous assumption in the context of p = 1, i.e., (1.1),

F ′(x̄) = F ′(x)R(x̄, x), ∀x̄, x ∈ Bρ(x†) (2.4)

as it was used, e.g., in the convergence analysis of [25], and is closely related to
the so-called affine covariant Lipschitz condition in [8]. Condition (2.2) seems to be
natural especially in the context of parameter identification in PDEs from boundary
measurements where the forward operator consists of a (typically invertible) solution
operator for the PDE, composed with a linear operator mapping the PDE solution
to the measured boundary values. In fact, by the additional freedom arising from the
possibility of having different operators Ri for each i, it can be verified for important
applications of parameter identification, like ultrasound tomography (see below) and
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impedance tomography, for which other nonlinearity conditions used in literature
cannot be proven to hold.

An alternative nonlinearity condition that can be found in the literature on reg-
ularization methods for nonlinear inverse problems (1.1) is

F ′(x̄) = R(x̄, x)F ′(x) ∀x̄, x ∈ Bρ(x†) (2.5)

with regular operators R(x̄, x), i.e., range invariance of the adjoints of F ′(x), which
is closely related to the tangential cone condition used e.g. in [17, 18, 20, 24, 25], and
to the Newton-Mysovskii conditions dicussed in [7].

We want to mention that the nonlinearity condition (2.2) is less restrictive than
the corresponding nonlinearity condition (2.4) for the operator F defined by (1.3).
If (2.4) holds, we can easily deduce (2.2) by choosing Ri = R for all i. The same
argument applies to

F ′
i (x̄) = Ri(x̄, x)F

′
i (x) ∀x̄, x ∈ Bρ(x†) (2.6)

and the corresponding condition (2.5) for F defined by (1.3), but in this case we actu-
ally obtain equivalence since we can choose R to be the diagonal operator consisting
of all Ri to obtain the range invariance of F ′∗ from (2.6). However, as we shall see in
the examples below, the more realistic condition is (2.2), for which we will obtain a
real extension of the currently available convergence theory.

Finally, we examine a special case of a decomposition of Fi in a linear singular
and a nonlinear regular operator. As we shall see below in several examples, the
operators Fi can often be written as the composition of linear trace-type operators
with nonlinear parameter-to-solution maps for partial differential equations. Thus we
start with a simple observation that allows to verify the nonlinearity condition for the
parameter-to-solution map only. In this context we wish to refer to Section 5 in [21]
where a class of operators satisfying the nonlinearity condition (2.5) is derived.

Lemma 2.1. Let X,Y, Z be Hilbert spaces, and let Li ∈ L(Z, Y ). Moreover, let
Hi : X → Z, i = 1, . . . , p− 1 be continuously Fréchet differentiable operators. Then,

Fi = Li ◦Hi (2.7)

satisfies (2.2), (2.3) if Hi satisfies (2.2), (2.3).
Moreover, if H ′

i(x) is regular for all x ∈ Bρ(x†) with uniformly bounded inverse,
and the map x 7→ H ′

i(x) is Lipschitz continuous, then the condition (2.2), (2.3) is
satisfied by Hi.

Proof. The first assertion follows from

F ′
i (x̄) = Li ◦H ′

i(x̄) = Li ◦H ′
i(x) ◦Ri(x̄, x) = F ′

i (x) ◦Ri(x̄, x).

Moreover, if H ′
i is regular, we may define

Ri(x̄, x) := H ′
i(x)

−1H ′
i(x̄)

which implies (2.2). Due to the regularity of H ′
i(x)

−1 and the Lipschitz-continuity of
x 7→ H ′

i(x), we obtain

‖Ri(x̄, x) − I‖ = ‖H ′
i(x)

−1(H ′
i(x̄) −H ′

i(x))‖ ≤ C0‖H ′
i(x̄) −H ′

i(x)‖ ≤ CR‖x̄− x‖ ,

i.e., (2.3) holds.
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2.2. Examples. In the following we discuss several examples of inverse prob-
lems satisfying the nonlinearity condition including tomography-type problems for
partial differential equations in the above framework, and show that they satisfy the
nonlinearity condition (2.2).

Example 1 (Reconstruction from Dirichlet-Neumann Map). We start with a rather
simple model problem, namely the estimation of the coefficient q ≥ 0 in the partial
differential equation

−∆u+ qu = 0, in Ω ⊂ R
d

from measurements of the Neumann value g = ∂u
∂ν on ∂Ω for several different Dirichlet

values u = f on ∂Ω.
If we denote the different Dirichlet values by fi, i = 0, . . . , p − 1, and the corre-

sponding measurements by gi, we may rewrite the problem as

Fi(q) = gi, i = 0, . . . , p− 1,

where Fi : L2(Ω) → H− 1
2 (∂Ω) is the nonlinear operator mapping q to ∂ui

∂ν , where
ui ∈ H1(Ω) is the weak solution of

−∆ui + qui = 0, in Ω,

ui = fi on ∂Ω.

The decomposition (2.7) is obtained with L : H1(Ω) 7→ H− 1
2 (∂Ω) being the trace

operator that maps a function to its normal derivative on the boundary, and Hi : q 7→
ui is the parameter-to-solution map.

The derivative vi = H ′
i(q)s is given as the unique weak solution of

−∆vi + qvi + sui = 0, in Ω,

vi = 0 on ∂Ω.

Formally, we can write H ′
i(q) = −(−∆ + q)−1(ui.). It can be shown easily, that this

operator is regular between L2(Ω) and H1(Ω), if ui > 0. Due to a standard maximum
principle for second order elliptic differential equations, this is the case if q ≥ 0 and
fi > 0. Moreover, since embedding operators are continuous and regular, the operator
H ′
i(q) is also regular between a Sobolev space Hβ(Ω), β ≥ 0, and H1(Ω). Thus, if

β > d
2 (i.e., Hβ(Ω) ↪→ C(Ω̄)) and there exists a minimum norm solution q† ∈ Hβ(Ω),

which is positive in Ω̄, then q ∈ Bρ(q†) is nonnegative for ρ sufficiently small and due
to the above reasoning Lemma 2.1 implies that the nonlinearity condition (2.2), (2.3)

is satisfied for fi > 0, if we consider Fi as an operator from Hβ(Ω) to H− 1
2 (∂Ω).

Example 2 (Reconstruction from Multiple Sources). In some examples, one rather
tries to estimate coefficients in partial differential equations from boundary measure-
ments for different interior sources rather than from different boundary values. We
consider the estimation of the coefficient q ≥ 0 in

−∆u+ qu = h, in Ω ⊂ R
d

subject to a homogeneous Neumann boundary condition ∂u
∂ν = 0 on ∂Ω, and measure-

ments of the Dirichlet values u = f on ∂Ω for different sources h ∈ H−1(Ω). Problems
of this kind have been discussed by Lowe and Rundell [30, 31] and in an application
to semiconductor devices by Fang and Ito [14].
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Again, we can decompose the corresponding operators Fi into the trace operator
L : H1(Ω) → L2(∂Ω) concatenated with the parameter-to-solution maps Hi : q 7→ ui
defined by the solution of

−∆ui + qui = hi, in Ω,

∂ui
∂ν

= 0 on ∂Ω.

The derivativeH ′
i(q) is almost the same as in the previous example, except for a change

from Dirichlet to Neumann boundary conditions. One can verify the regularity of ui
in the same way as above for hi > 0 (which allows to apply a maximum principle for
ui), and consequently show that the nonlinearity condition (2.2), (2.3) holds.

Example 3 (SPECT). In the application of Single Photon Emission Computed To-
mography (SPECT) one wants to compute the source f and the coefficient a ≥ 0
from

θi · ∇ui + aui = f in Ω ⊂ R
d,

for different values θi on the unit sphere, and the boundary values

ui = 0 on ∂Ω−
i := { x ∈ ∂Ω | ν(x) · θi ≤ 0 },

ui = gi on ∂Ω+
i := { x ∈ ∂Ω | ν(x) · θi ≥ 0 }.

Here, the condition on ∂Ω−
i has to be understood as the boundary condition, while

the values gi on ∂Ω+
i are the measurements. Thus, the operators Fi map (a, f) to gi.

They can be decomposed into the trace operators Li : L2(Ω) → H− 1
2 (∂Ω+

i ) and the
parameter-to-solution maps Hi : L2(Ω)2 → L2(Ω), (a, f) 7→ ui.

It can be shown (cf. [36]) that the derivative vi = H ′
i(a, f)(â, f̂) can be determined

as the unique solution of

θi · ∇vi + avi = f̂ − âui in Ω ⊂ R
d,

subject to vi = 0 on ∂Ω−
i . If a > 0, f > 0, a maximum principle applies also to

the first-order equation and one may conclude ui > 0, which subsequently can be
used to verify the nonlinearity condition (2.2), (2.3) in the same way as for the above
examples.

Example 4 (Ultrasound Tomography). The inverse problem in ultrasound tomogra-
phy consists in finding f ∈ L2(Ω) from boundary measurements gi = ui on ∂Ω for
complex-valued waves ui = eikx·θj + vj , where vj solves the Helmholtz equations

∆vj + k2(1 − f)vj = k2feikx·θj in Ω,

∂vj
∂ν

= Bvj on ∂Ω,

with B being an appropriate operator representing the radiation condition, and k a
real parameter controlling the spatial resoution. Again we can decompose the operator
Fj : f 7→ gj into the trace operator L : H1(Ω) → L2(∂Ω) and the parameter-to-
solution map Hj : L2(Ω) → H1(Ω), f 7→ uj .

One can show (cf. [36]) that the derivative wj = H ′
j(f) is defined by the solution

of

∆uj + k2(1 − f)wj = k2fuj in Ω,

∂wj
∂ν

= Bwj on ∂Ω.
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If f , k are such that the operator ∆+k2(1−f) is regular, and if |uj | 6= 0, then one can
easily verify the nonlinearity condition in the same way as for the examples above.

Example 5 (Nonlinear Moment Estimation). We finally consider a nonlinear moment
estimation problem, which consists in finding u ∈ L2(Ω), Ω ⊂ R

d a bounded domain,
given

gi :=

∫

Ω

ki(x, u(x)) dx ∈ R
m

for given smooth kernel functions ki : Ω × R → R
m (which could e.g. arise from

the discretization of an integral kernel, i.e., ki(x, u(x)) = K(x, u(x), yi)). Here the
operator Fi : L2(Ω) → R

m is the concatenation of the linear integration operator
L : L2(Ω)m → R

m, w 7→
∫

Ω w dx and the Nemitskij-type operator Hi : L2(Ω) →
L2(Ω), u 7→ ki(., u). The derivative of the nonlinear operator Hi is given by

H ′
i(u)v =

∂ki
∂u

(., u)v.

If ki ∈ C(Ω, C1,1
b (R)) and ∂ki

∂u 6= 0, then H ′
i(u) is regular and the map u 7→ H ′

i(u) is
Lipschitz continuous, which implies the nonlinearity condition (2.2), (2.3).

2.3. Source Conditions. Convergence of regularization methods for ill-posed
problems is, as a direct consequence of the instability, in general arbitrarily slow. In
order to obtain convergence rates, additional regularity assumptions on the difference
between an exact solution x† and some initial guess x0 used in the regularization
method, have to be made. These have the form of so-called source wise representation
conditions and in our context read as

x† − x0,i = f(F ′
i (x

†)∗F ′
i (x

†))wi i = 0, . . . p− 1 (2.8)

for some wi, where f is some real function and for the positive semidefinite operator
F ′
i (x

†)∗F ′
i (x

†), f(F ′
i (x

†)∗F ′
i (x

†)) is defined via functional calculus (cf. e.g. [12]).
Condition (2.8) expresses the assumed regularity of x†−x0,i in terms of the smoothing
property of F ′(x†) mentioned above. Typical functions f used here are

f(λ) := fHν (λ) := λν (2.9)

for some Hölder exponent ν, or the weaker, but for exponentially ill-posed problems
more appropriate logarithmic functions

f(λ) := fLµ (λ) = (− ln(λ))−µ . (2.10)

3. Convergence Analysis. In this section we will state a quite general conver-
gence theorem. Its proof is closely related to convergence proofs in [7, 22, 23, 24, 25].
Therefore we shall provide the proof in a somewhat compressed form, but highlight
the important ideas for convenience of the reader. We aim at giving the statements
in a general and comprehensive way so that they might be of interest even for the
special case p = 0, i.e., for (1.1).

3.1. Preliminaries and Assumptions. In order to be able to carry out the
estimates in the proof of Theorem 3.1, we have to make some additional assumptions
on the regularization methods Gi. In view of the nonlinearity condition (2.2), we
assume that

‖Giα(KR)KR−Giα(K)K‖ ≤ C̄G‖R− I‖ (3.1)
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for all K ∈ L(X,Yi), R ∈ L(X,X) with ‖K‖ ≤ CiS , ‖R − I‖ ≤ c < 1, with positive
real constants C̄G, c, and CiS as in (2.1). To yield convergence rates under additional
regularity conditions (2.8), the regularizing operators Giα have to converge to the
inverse of K at some rate on the set of solutions satisfying (2.8), i.e., a condition of
the form

‖(I −Giα(K)K)f(K∗K)‖ ≤ ψ(α) ∀K ∈ L(X,Yi) : ‖K‖ ≤ CiS (3.2)

is needed, with a strictly monotone function ψ that decreases to zero as α → 0.
Moreover, the sequence ψ(αn) must not tend to zero too fast, in the sense that

ψ(αn)

ψ(αn+1)
≤ Cψ ∀n ∈ N , (3.3)

for some constant Cψ ∈ R
+.

In the situation of noisy data, convergence of the reconstructions as the noise
level δ tends to zero is only obtained for appropriate choices of the stopping index
N = N(δ) in dependence of the noise level δ. In the general case, convergence can be
achieved if N(δ) is chosen such that

N(δ) → ∞ and Φ(αN(δ)) · δ → 0 as δ → 0 (3.4)

and

Φ(αn) · δ ≤ τ ∀n ≤ N(δ) , (3.5)

for some τ > 0 sufficiently small. If additional source conditions (2.8) hold, an
appropriate choice is such that

τφ(αN(δ)) ≤ δ < τφ(αn) ∀n ≤ N(δ) (3.6)

where

φ(α) =
τψ(α)

Φ(α)

with some sufficiently small constant τ > 0.

3.2. Main Result. Now we shall state and prove the main convergence result
of this paper, a comprehensive convergence theorem for Newton-Kaczmarz methods:

Theorem 3.1. Let xn be defined by the sequence (1.10) with Fréchet differentiable
operators Fi satisfying (2.1), (2.2) with (2.3), data yδ satisfying (1.4), the regular-
ization methods Giα fulfilling (1.5), (1.6), (3.1) for all K ∈ L(X,Yi), R ∈ L(X,X)
with ‖K‖ ≤ CiS, ‖R − I‖ ≤ c < 1, and (3.2), as well as a sequence αn tending to
zero and satisfying (3.3). Moreover, let τ and ‖x0,i − x†‖ be sufficiently small and
x0,i − x† ∈ N (F ′

i (x
†)⊥, i = 0, . . . , p− 1.

Then, in the noise free case (δ = 0), the sequence xn converges to x† as n→ ∞.
In case of noisy data and with the choice (3.4), (3.5), xN(δ) converges to x† as δ → 0.

If the source conditions (2.8) and (3.2), (3.3) hold, with ‖wi‖ sufficiently small,
then the convergence rates

‖xn − x†‖ = O(ψ(αn))
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in the noise free situation and, with (3.6),

‖xN(δ) − x†‖ = O(ψ(φ−1(δ)))

in the noisy situation, respectively, hold.
Proof. First of all, note that from (1.5), that means

Giα(K)Kv → ProjN (K)⊥v as α → 0 ∀v ∈ X ,

and implies boundedness of the set {Giα(K)Kv | α > 0} by some constant Cv for each
v ∈ X , together with the uniform boundedness principle we can conclude

‖Giα(K)K‖ ≤ CG , ∀K ∈ L(X,Y ) : ‖K‖ ≤ CiS . (3.7)

We will make use of the following Lemma, whose proof can be found in [24]:
Lemma 3.2. Let {an} be a sequence satisfying

0 ≤ an ≤ a and lim
n→∞

an = ã ≤ a .

Moreover, we assume that {γn} is a sequence for which the estimate

0 ≤ γn+1 ≤ an + bγn + cγ2
n , n ∈ N0, γ0 ≥ 0

holds for some b, c ≥ 0. Let γ and γ be defined as

γ :=
2a

1 − b+
√

(1 − b)2 − 4ac
, γ :=

1 − b+
√

(1 − b)2 − 4ac

2c
.

If b+ 2
√
ac < 1 and if γ0 ≤ γ , then

γn ≤ max (γ0, γ) , n ∈ N0

and if ã < a, then

lim sup
n→∞

γn ≤ 2ã

1 − b+
√

(1 − b)2 − 4ãc
.

To derive a recursive error estimate, we assume that the current iterate xn is in
Bρ(x†) and that n < N(δ) (= ∞ if δ = 0). Then

xn+1 − x† =
(

I −Gnαn
(F ′
n(x†))F ′

n(x†)
)

(x0,i − x†)

+
(

Gnαn
(F ′
n(x†))F ′

n(x†) −Gnαn
(F ′
n(xn))F ′

n(xn)
)

(x0,i − x†)

−Gnαn
(F ′
n(xn))(Fn(xn) − Fn(x

†) − F ′
n(xn)(xn − x†))

−Gnαn
(F ′
n(xn))(yn − yδn)

. (3.8)

The third term on the right hand side can be rewritten as

Gnαn
(F ′
n(xn))F ′

n(xn)

∫ 1

0

(

Ri(x† + θ(xn − x†), xn) − I
)

dθ(xn − x†) ,
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with i = mod(n, p), so

‖xn+1 − x†‖ ≤ ξn
+C̄GCR‖x0,i − x†‖ ‖xn − x†‖
+ 1

2CGCR‖xn − x†‖2

+Φ(αn)δ ,

(3.9)

where

ξn := ‖
(

I −Gnαn
(F ′
n(x

†))F ′
n(x†)

)

(x0,i − x†)‖ ≤ ψ(αn)‖wi‖ ,

and

ξn → 0 as n→ ∞ (3.10)

which can be seen by (1.5) together with the following subsequence-subsequence ar-
gument:
Let (ξnm)m∈N be an arbitrary subsequence of (ξn)n∈N. Then there exists an i ∈
{0, . . . , p − 1} such that the set {m ∈ N | mod(nm, p) = i} has infinite cardinality.
Define by (ml)l∈N a numbering of this set in ascending order, then for (ξnml

)l∈N we
get

ξnml
= ‖

(

I −Giαnml
(F ′
i (x

†))F ′
i (x

†)
)

(x0,i − x†)‖ → 0 for l → ∞ ,

since αnml
→ 0 for l → ∞.

Now we can apply induction, together with Lemma 3.2 to the sequence

γn := ‖xn − x†‖ .

The boundedness (3.5) in the stopping rule and our assumption on closeness of x0,i

to x† and on smallness of τ permit to make the constants a and b sufficiently small so
that the assumptions of the Lemma are satisfied, and the bound max{γ0, γ} is smaller

than ρ, so that we can guarantee that the iterates remain in Bρ(x†) for all n ≤ N(δ).
Moreover, by (3.10) as well as the asymptotics (3.4) in the stopping rule, we can set
ã = 0 and conclude and that xn converges to x† as n→ ∞ in the noise free case, and
as δ → 0 in the noisy case, respectively.

To prove convergence rates under source conditions, we consider the sequence

γn :=
‖xn − x†‖
ψ(αn)

,

that satisfies

γn+1 ≤ Cψ

(

‖wi‖ + C̄GCR‖x0,i − x†‖γn +
1

2
CGCRψ(αn)γ2

n +
Φ(αn)

ψ(αn)
δ

)

.

Hence, Lemma 3.2 together with the stopping rule (3.6) implies that xn remains in
Bρ(x†) for all n ≤ N(δ), and that γn is uniformly bounded, i.e.,

‖xn − x†‖ ≤ Cψ(αn) , (3.11)
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for some constant C. This immediately yields the convergence rate result in the
noiseless case. To obtain the error estimate in terms of δ in the noisy case, we make
use of the fact that by (3.6)

δ ≥ φ(αN(δ)) ,

which, since ψ and φ are strictly monotonically increasing, by (3.11) implies

ψ(φ−1(δ)) ≥ ψ(αN(δ)) ≥
1

C
‖xN(δ) − x†‖ .

The assumption

x0,i − x† ∈ N (F ′
i (x

†))⊥, i = 0, . . . , p− 1 , (3.12)

is rather limiting, since the dimensionality of x0 −x† is related to the ”smaller” space
N (F ′

i (x
†)⊥. In the special case p = 0, the difference between x0 and an x0-minimum-

norm-solution x† will automatically lie within N (F ′(x†))⊥ under certain nonlineraity
conditions (see Proposition 2.1 in [24]). However, this does not hold true for general
p > 0 any more. Thus, condition (3.12) requires the choice of appropriate initial
guesses x0,i. To see necessity of condition (3.12) for convergence, consider the linear
case

Fix = yi , i = 0, . . . p− 1 , (3.13)

with Fi ∈ L(X,Yi), yi ∈ Yi, i = 0, . . . p− 1, where the sequence xn is defined by

xn+1 = x0,n −Gnαn
(Fn)(Fnx0,n − yδn) . (3.14)

In case of exact data, the error can be written as

xkp+i+1 − x† = (I −Giαkp+i
(Fi)Fi)(x0,i − x†) , (3.15)

for n = kp+ i, k ∈ N, so by (1.5) and αn → ∞ as n→ ∞,

xkp+i+1 − x† → PN (Fi)⊥(x0,i − x†) as k → ∞ ,

whence concergence of xn to x† as n→ ∞ implies (3.12).

In this sense, Theorem 3.1 means that the regularized Newton Kaczmarz method
is as least as good as application of Newton’s method separately to each of the p
equations, which is a priori not evident due to the mixing up of the equations during
the iteration (1.10). Since it takes into account more information, it should intuitively
be even better, which is also reflected in our numerical tests, that showed convergence
without any specific choice of the initial guesses.

Note that in the linear case, subsequent iterates completely decouple, i.e., subse-
quences (xkp+i1 )k∈N, (xkp+i2 )k∈N are independent of each other for i1 6= i2. Thus it
suffices to have

x0,i − x† ∈ N (Fi)
⊥ (3.16)

12



for one i = ī ∈ {0, . . . , p − 1}, to obtain convergence of the respective subsequence
xkp+ī+1 from standard results for linear regularization methods. The same holds true
for convergence rates. Consequently, in order to get convergence (and convergence
rates) with noisy data, it suffices to have (3.16) (and x0,i − x† ∈ R(f(F ∗

i Fi))) for one
i = ī ∈ {0, . . . , p− 1} only, and to stop the iteration at an index from the respective
subsequence kp + ī + 1 with k∗ = k∗(δ) being determined a priori from (3.4), (3.5),
(3.6) or, alternatively, a posteriori from a discrepancy principle

‖Fixk∗p+ī+1 − yi‖ ≤ τδ < ‖Fixkp+ī+1 − yi‖ , 0 ≤ k < k∗ .

Unfortunately this complete decoupling gets lost as soon as the operators Fi are
nonlinear.

3.3. Standard Regularizing Operators. Now we shall apply Theorem 3.1
to some regularization methods Gi of particular interest. Moreover, in the abstract
source condition (2.8), we insert the most relevant special cases of a Hölder function
f in (2.9) or a logarithmic function f in (2.10).

As important examples from a larger class of regularization methods defined by
real functions gα : R

+ 7→ R
+ approximating λ 7→ 1

λ and

Gα(K) := gα(K∗K)K∗ (3.17)

via functional calculus (cf., e.g., [12, 29]), we consider
• Tikhonov-Philips regularization:

Gα(K) = (K∗K + αI)−1K∗ , I −Gα(K)K = α(K∗K + αI)−1 (3.18)

In this case, we shall call the arising iterative method iteratively regularized
Gauss-Newton-Kaczmarz (IRGNK) method.

• iterated Tikhonov regularization:

Gα(K) =
∑k
l=0

∏k
j=l αj(K

∗K + αjI)
−1 1

αl
K∗,

I −Gα(K)K =
∏k
l=0 αl(K

∗K + αlI)
−1,

(3.19)

with the effective regularization parameter

α :=
1

∑k
l=0

1
αl

.

We shall call the arising iterative method k-iteratively regularized Gauss-
Newton-Kaczmarz (IRGNKk) method. Here we distinguish between the spe-
cial stationary case

αl :≡ 1 , (3.20)

i.e., Lardy’s method, and the (due to its faster convergence more attractive,
cf. [19]) nonstationary case of, e.g., geometrically decaying αl

αl := Cql , (3.21)

with q ∈ (0, 1).
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• Landweber iteration:

Gα(K) =

k
∑

l=0

(I −K∗K)lK∗ , I −Gα(K)K = (I −K∗K)k+1 , (3.22)

α :=
1

k + 1
,

where the scaling is assumed to be done such that ‖I − K∗K‖ ≤ 1, i.e.,
CiS =

√
2 in (2.1)). For obvious reasons, this method shall be called Newton-

Landweber-Kaczmarz (NLK) method here and below.
These methods are well known to satisfy (1.5), (1.6) with

Φ(α) = C
1√
α
,

(cf. e.g., [12, 29, 19]). Moreover, for the Hölder type source representation functions
(2.9), they satisfy (3.2) with

ψ(α) = Cαν (3.23)

(where ν is restricted to the interval [0, 1] in Tikhonov regularization and to the
interval [0, k] in iterated Tikhonov regularization). from which one can conclude by
Lemma 4 in [23], that they also satisfy (3.2) for the logarithmic functions (2.10) with

ψ(α) = C(− ln(α))−µ

where w.l.o.g., both ‖K‖2 and α are restricted to the interval (0, exp(−1)] (i.e., C iS =
exp(−1/2) in (2.1)) in order to avoid the singularity of fLµ at zero. Therewith, a decay
restriction

αn
αn+1

≤ Cα ∀n ∈ N (3.24)

is suffcient for (3.3).
Corollary 3.3. Let xn be defined by the sequence (1.10) with Fréchet differen-

tiable operators Fi satisfying (2.1), (2.2) with (2.3), data yδ satisfying (1.4) and the
regularization methods Giα defined by Tikhonov-Philips regularization, nonstationary
iterated Tikhonov regularization, or Landweber iteration, as well as a sequence αn
tending to zero and satisfying (3.24). Moreover, let τ and ‖x0,i − x†‖ be sufficiently
small and x0,i − x† ∈ N (F ′(x†)⊥, i = 0, . . . , p− 1

Then, the assertions of Theorem (3.1) hold. In particular, under a Hölder type
source condition (2.8) with (2.9), we obtain

‖xN(δ) − x†‖ = O(δ
2ν

2ν+1 ) ,

(where ν is restricted to [0, 1] in case of Tikhonov regularization), and under a loga-
rithmic type source condition (2.8) with (2.10)

‖xN(δ) − x†‖ = O((− ln(δ2))−µ) .

Note that the satiuration of iterated Tikhonov regularization at ν = k does not

take effect here, since we do not consider k but
(

∑k
l=0 α

−1
l

)−1

as the regularization

parameter.
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Proof. It remains to show that the differences between applications of the regu-
larization methods to two different operators can be estimated according to (3.1).
For Tikhonov regularization can make use of estimates already presented in [24], as
well as in Hohage’s thesis [22], namely, for arbitrary K ∈ L(X,Yi), R ∈ L(X,X) with
‖R− I‖ ≤ c < 1,

‖Giα(KR)KR−Giα(K)K‖
= α‖(K∗K + αI)−1 − ((KR)∗KR+ αI)−1‖
= α‖((KR)∗KR+ αI)−1

(

(KR)∗KR(I −R−1) + (R − I)∗K∗K
)

(K∗K + αI)−1‖
≤ (1 + 1

1−c)‖R − I‖

for f according to (2.9) with ν ≤ 1
2 or f according to (2.10).

For the iterative methods — iterated Tikhonov regularization and for Landweber
iteration — we make use of the identity

k
∏

l=0

Al −
k

∏

l=0

Bl =

k
∑

l=0

l−1
∏

j=0

Aj(Al −Bl)

k
∏

j=l+1

Bj (3.25)

for linear operators Al, Bl, with the notation
∏−1
l=0Al = I =

∏k
l=k+1 Bj , and first of

all consider case a):
To obtain (3.1) for Landweber iteration, we set

Al := (I − (KR)∗KR) , Bl := (I −K∗K) , (3.26)

and use the fact that

Al −Bl = (KR)∗KR(R−1 − I) + (I −R∗)K∗K (3.27)

to derive

Giα(K)K −Giα(KR)KR =

k
∑

l=0

l−1
∏

j=0

Aj(KR)∗KR(R−1 − I)

k
∏

j=l+1

Bj

+

k
∑

l=0

l−1
∏

j=0

Aj(I −R∗)K∗K
k

∏

j=l+1

Bj

(3.28)

To estimate the sums from 0 to k we decompose them into sums from 0 to [ k2 ] and

from [k2 ] + 1 to k and use the fact that

‖
l−1
∏

j=0

Aj(KR)∗KR‖ ≤ 1

l + 1
, ‖

k
∏

j=l+1

K∗KBl‖ ≤ 1

k − l + 1
(3.29)

as well as

(KR)∗KR = I −Al , K∗K = I −Bl (3.30)

and a telescope sum trick to obtain, for the first sum on the right hand side of (3.28)

‖
k

∑

l=[ k
2
]+1

l−1
∏

j=0

Aj(KR)∗KR(R−1− I)
k

∏

j=l+1

Bj‖ ≤
k

∑

l=[ k
2
]+1

1

l + 1
‖R−1− I‖ ≤ ‖R−1− I‖
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and

‖
[ k
2
]

∑

l=0

l−1
∏

j=0

Aj(KR)∗KR(R−1 − I)

k
∏

j=l+1

Bj‖

= ‖
[ k
2
]

∑

l=0

l−1
∏

j=0

Aj(I −Al)(R
−1 − I)

k
∏

j=l+1

Bj‖

= ‖
[ k
2
]

∑

l=1

l−1
∏

j=0

Aj(R
−1 − I)(I −Bl)

k
∏

j=l+1

Bj+

(R−1 − I)

k
∏

j=1

Bj +

[ k
2
]

∏

j=0

Aj(R
−1 − I)

k
∏

j=[ k
2
]+1

Bj‖

≤





[ k
2
]

∑

l=1

1

k − l+ 1
+ 2



 ‖R−1 − I‖ ≤ 3‖R−1 − I‖ .

and analogously for the second sum on the right hand side of (3.28).

For iterated Tikhonov regularization, the estimates can be obtained analogously,
with this time

Al := αl((KR)∗KR+ αlI)
−1 , Bl := αl(K

∗K + αlI)
−1 ,

Al −Bl = Al
1

αl

(

(KR)∗KR(R−1 − I) + (I −R∗)K∗K
)

Bl

Giα(K)K −Giα(KR)KR =

k
∑

l=0

l
∏

j=0

Aj(KR)∗KR(R−1 − I)

k
∏

j=l

Bj

+

k
∑

l=0

l
∏

j=0

Aj(I −R∗)K∗K
k

∏

j=l

Bj

(3.31)

‖
l

∏

j=0

Aj(KR)∗KR‖ ≤





l
∑

j=0

1

αj





−1

, ‖
k

∏

j=l

K∗KBl‖ ≤





k
∑

j=l

1

αj





−1

and

1

αl
(KR)∗KR Al = I −Al ,

1

αl
Bl K

∗K = I −Bl

in place of (3.26), (3.27), (3.28), (3.29), (3.30), respectively. In the stationary case
(3.20) again cutting the sum at [ k2 ] and the telescope trick have to be used, and in the
nonstationary case (3.21), we apply the telescope sum trick to the whole first sum in
(3.31), and leave the second sum unchanged.
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3.4. Regularization by Discretization. The Newton-Kaczmarz methodology
proposed here can also be extended to regularization methods outside the class defined
via (3.17). Among those is regularization by discretization (cf., e.g., [3, 13, 16, 26, 32,
35, 37, 38, 42]), where the infinite dimensional linear operator equation is projected
to a finite dimensional subspace Y li of the data space Yi out of a sequence

Y 0
i ⊆ Y 1

i ⊆ Y 2
i ⊆ . . . ⊆ R(K) ,

⋃

l∈N

Y li = R(K)

and solved in a best approximate sense, so that with the superscript † denoting the
generalized inverse, and PM orthogonal projection onto M ,

Giα(K) = (PY l
i
K)†PY l

i
.

By (2.2) we can assume all F ′
i (x) under consideration to have the same range Ri. The

regularization parameter α is here represented by some mesh size parameter hl of the
discretization, (which is only a suggestive notation, though, and does not exclude
meshless discretization methods). More precisely, due to the smoothing property of
the operators under consideration, which can be represented by the smoothness class
of their range Ri (e.g., within some Sobolev space), together with an approximation
property of Y li (e.g., some finite element space), one can conclude from standard
results (e.g., Ciarlet, [6]), that

‖(I −PY l
i
)K‖ ≤ CAh

s
l (3.32)

for all K with ‖K‖ ≤ CiS and R(K) = Ri, with some s > 0. On the other hand,
inverse inequalities (c.f., Ciarlet, [6] in the context of finite elements) yield an estimate
of (PY l

i
K)†PY l

i
in terms of the mesh size

‖(PY l
i
K)†PY l

i
‖ ≤ CIh

−s̃
l . (3.33)

Moreover, additional smoothness of the difference between the solution x† and the
initial guess x0 implies faster convergence of ‖(I − Giα(K)K)(x0 − x†)‖ : By the
interpolation inequality and functional calculus (cf. e.g., Section 2.3 in [12]) we get
for the discretization error rate

‖(I −Giα(K)K)(K∗K)ν‖ = ‖(I −PK∗

i Y
l

i
)(K∗K)ν‖

≤ (‖(K∗K)
1
2 (I −PK∗

i Y
l

i
)‖)2ν

= (‖K(I −PK∗

i Y
l

i
)‖)2ν

= (‖(I −PY l
i
)K(I −PK∗

i Y
l

i
)‖)2ν

≤ (CAh
p
l )

2ν (3.34)

for ν ≤ 1
2 , where we have used the identity

PY l
i
K(I −PK∗

i Y
l

i
) = 0 . (3.35)

In order to get optimal convergence, we have to assume that

s = s̃ (3.36)
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which in fact turns out to be natural in the context of parameter identification and
discretization by finite elements (cf. [26]). Hence, with the correspondence

α = h2s
l

we have (1.5) and (1.6) with Φ(α) = C 1√
α

for all K with ‖K‖ ≤ CiS and R(K) = Ri.

Moreover, (3.1) can be derived as follows:

‖Giα(KR)KR−Giα(K)K‖ = ‖R−1(PY l
i
K)†PY l

i
KR− (PY l

i
K)†PY l

i
K‖

≤ (1 +
1

1 − c
)‖R− I‖ .

Consequently, we can conclude
Corollary 3.4. Let xn be defined by the sequence (1.10) with Fréchet differ-

entiable operators Fi satisfying (2.1), as well as (2.2) with (2.3), data yδ satisfying
(1.4) and the regularization methods Giα defined by regularization by discretization
with (3.32), (3.33), (3.36), as well as a sequence αn tending to zero and satisfying
(3.24). Moreover, let τ and ‖x0,i−x†‖ be sufficiently small and x0,i−x† ∈ N (F ′(x†)⊥,
i = 0, . . . , p− 1 hold.

Then, in the noise free case (δ = 0), the sequence xn converges to x† as n→ ∞.
In case of noisy data and with the choice (3.4), (3.5), xN(δ) converges to x† as δ → 0.

Under a Hölder type source condition (2.8) with (2.9), we obtain

‖xN(δ) − x†‖ = O(δ
2ν

2ν+1 )

for ν ≤ 1
2 .

We finally want to mention that the results on regularization by discretization can
be extended to the situation where discretization is applied to any of the standard
regularization methods.

3.5. Levenberg-Marquardt-Kaczmarz. An alternative to considering the
regularized Newton-Kaczmarz approach (1.10) is the generalization of a Levenberg-
Marquardt method (cf. [18] as well as (1.7) in the introduction) to the situation of
multiple equations in the following form:

xn+1 = xn − (F ′
n(xn)∗F ′

n(xn) + αnI)
−1F ′

n(xn)∗(Fn(xn) − yδn) .

Note that this formally corresponds to the (intuitively optimal) formal choice of x0,n =
xn in (1.10), which however is not admissible in view of the convergence analysis
given here, that requires a cyclic repetition of the starting guesses according to x0,n =
x0,mod(n,p).

Under a nonlinearity condition of the type (2.6) and with an appropriate a pos-
teriori choice of the sequence αn, along the lines of the proofs in [18], and similarly to
[28], one can show that the error ‖xn−x†‖ is monotonically decreasing up to an index
n = N(δ) determined by the discrepancy principle, without having to make assump-
tions of the type (3.12). Moreover the norms of the residuals are squared summable
in case of exact data and therewith

Fn(xn) − yn → 0 as n→ ∞. (3.37)

This implies that there exists a weakly convergent subsequence of xn. However the
limit of a weakly convergent subsequence (xnl

)l∈N of (xn)n∈N need not necessarily
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be a solution to (1.2), even if the Fi are (weakly) sequentially closed, i.e., for any
sequence (xk)k∈N ⊆ D(Fi) and fi ∈ Yi,

(

xk ⇀ x ∧ Fi(xk) → fi

)

⇒
(

x ∈ D(Fi) ∧ Fi(x) = fi

)

. (3.38)

Namely, if, e.g., (xnl
)l∈N ⊆ (xmp+ī)m∈N for some ī ∈ {0, . . . , p− 1}, then (3.37) and

(3.38) imply that the weak limit of (xnl
)l∈N is s solution of Fī(x) = yī only but not

necessarily of Fi(x) = yi with i 6= ī. Also, strong convergence to x† of xn as n→ ∞ in
the case of exact data or of xN(δ) in the noisy situation, cannot be proved by methods
like those used in [18], [28], even in the linear case. Still, necessary convergence
conditions on the initial guess can be expected to be less retrictive for (1.7) than for
(1.10) as the the linear case with bounded generalized inverses indicates: Setting all
regularization parameters αn to zero we arrive at the error recursion

xn+1 − x† = PN(Fn)(xn − x†) = PN(Fn)PN(Fn−1) · · · PN(F0)(x0 − x†) ,

so that one even obatins termination of the iteration with xn+1 = x† as soon as
PN(Fn−1) · · · PN(F0)(x0 − x†) ∈ N (Fn)⊥ for some n.

4. Numerical Solution Methods. In the following we discuss some possible
discretization strategies and methods for the solution of the arising finite-dimensional
problems.

4.1. Primal Method. For all of the optimization approaches discussed above,
one can use a standard Galerkin discretization strategy, by choosing a finite-dimen-
sional subspace Xh ⊂ X and solving a weak form of the discretized Newton equation
for xhn+1. For the IRGNK method, we have Gnαn

= M−1
n F ′

n(xhn)∗ with the positive
definite operator Mn := F ′

n(x
h
n)∗F ′

n(xhn) + αnI . Using this special form, we can
discretize a step of the IRGNK method via

〈Mn(x
h
n+1−xh0,n), ϕ〉 = −〈(Fn(xhn)−yδn−F ′

n(x
h
n)(xhn−xh0,n)), F ′

n(xhn)ϕ〉 ∀ ϕ ∈ Xh.

By iterating this discretization procedure k times, one obtains a discrete form of the
IRGNKk method. Due to the positive definiteness of Mn, one can solve this prob-
lem iteratively by a preconditioned conjugate gradient method, where all standard
preconditioners for the Tikhonov regularization can be used (cf. [43] for an overview).

In the case of the Newton-Landweber iteration, we obtain the same equation for
each Landweber step finally leading to xhn+1, but now with Mn = I , which gives a
quasi-explicit form for the next iteration (one only has to invert a mass matrix corre-
sponding to the identity operator, which does not even change during the iteration).

4.2. Dual Method. In the following we shall consider a dual method for the
iteratively regularized Gauss-Newton-Kaczmarz method (IRGNK) , i.e., the Newton-
Kaczmarz method with the choice Gα(K) = (K∗K + αI)−1K∗. We shall now derive
a dual method, which is particularly suitable for the important case that the output
spaces Yi are of lower dimensionality than the parameter space X (which is the case
for the examples considered above).

A first observation is that each iteration step of the IRGNK method is equivalent
to the minimization problem

1

2
‖Fn(xn) + F ′

n(xn)(x − xn) − yn‖2 +
αn
2

‖x− x0,n‖2 → min
x∈X

. (4.1)
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By defining the right-hand side z := yn−Fn(xn)−F ′
n(xn)xn, and the linear operator

K := F ′
n(xn), this optimization problem is of the form

J1(Kx) + J2(x) → min
x∈X

, (4.2)

with (omitting the index n in the regularization parameter αn)

J1(y) =
1

2
‖y − z‖2, J2(x) =

α

2
‖x− x0,n‖2.

Both the functionals J1 and J2 are strictly convex, and therefore standard Fenchel
duality (cf. [11]) implies that the primal problem (4.2) is equivalent to the dual
problem

J∗
1 (−v) + J∗

2 (K∗v) → min
v∈Yn

, (4.3)

where J∗
1 and J∗

2 are the conjugate functionals, which are obtained as

J∗
1 (v) = sup

y∈Yn

〈v, y〉 − J1(y) =
1

2
‖v + z‖2 − 1

2
‖z‖2

J∗
2 (w) = sup

x∈X
〈w, x〉 − J2(x) =

1

2α
‖w + αx0,n‖2 − α

2
‖x0,n‖2.

Moreover, the solution v of the dual problem (4.3) and the solution x of the primal
problem are connected by the optimality condition

K∗v = J ′
2(x) = α(x − x0,n).

Thus, we may compute x = x0,n + 1
αK

∗v once we have solved the dual problem.
By ignoring the constant terms in the conjugate functionals, we may equivalently

state the dual problem as

1

2
‖ − v + z‖2 +

1

2α
‖K∗v + αx0,n‖2 → min

v∈Yn

, (4.4)

which can be discretized e.g. by the Ritz-method on a subspace of Yn, i.e., by minimiz-
ing the functional in (4.4) on a finite-dimensional subspace Y h

n ⊂ Yn. This automati-
cally yields a discretization of the update in the primal space via xhn−x0,n = 1

αK
∗vh,

where vh is the discrete solution of the dual problem.
The main advantage of a dual strategy is the (possible) lower dimensionality of the

spaces Yn, which yields smaller discrete problems and consequently a faster solution.
In many important cases such as the examples presented above, the spaces Yn do not
depend on the iteration index, but are the same for each step, such that one does not
have to change the basis over the Kaczmarz sweep.

4.3. Primal-Dual Methods for PDE-Constrained Problems. As we have
seen in the examples above, the operator Fi is defined implicitely via the solution
of partial differential equations in many applications. We formally write the partial
differential equation as a nonlinear operator equation of the form

Ei(ui, q) = 0,

where Ei : U ×X → V is a continuously differentiable nonlinear operator such that
∂Ei

∂u is regular for each u ∈ U . The operator Fi is typically obtained as Fi := Li ◦Hi,
where Hi(q) = ui. We shall derive a primal-dual solution method in this case.
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One step of the IRGNK method can be rewritten as the constrained problem

1

2
‖Lnv + Lnun − yn‖2 +

αn
2

‖s+ qn − q0,n‖2 → min
(v,s)

subject to the constraint that v = H ′
n(qn)s, which can be expressed using the implicit

function theorem as

∂En+1

∂u
(un, qn)v +

∂En+1

∂q
(un, qn)s = 0,

where un = Hn(qn). Deriving the KKT-conditions for this constrained problem, we
obtain an indefinite system for the primal variables v, s, and a dual variable w, given
by





L∗
nLn 0 A∗

n

0 αnI B∗
n

An Bn 0









v
s
w



 =





L∗
nyn − L∗

nLnun
αn(q0,n − qn)

0





with the linear operators An := ∂En+1

∂u (un, qn) and Bn := ∂En+1

∂q (un, qn).
This indefinite system can be discretized using a mixed approach, i.e., we look for

a solution (vh, sh, wh) in the finite-dimensional subspaces Uh ×Xh × Vh satisfying

〈Lnv, Lnϕ〉 + 〈Anϕ,w〉 = 〈yn − Lnun, Lnϕ〉
αn〈s, σ〉 + 〈Bnσ,w〉 = αn〈q0,n − qn, σ〉
〈Anv, ψ〉 + 〈Bns, ψ〉 = 0

for all (ϕ, σ, ψ) ∈ Vh ×Xh × Uh.
The resulting indefinite system can be solved by a preconditioned conjugate gradi-

ent method for the Schur complement, or directly by a preconditioned Krylov subspace
method for indefinite systems like GMRES, QMR, or MINRES. We refer to [4, 5] for
the discussion of solution methods for indefinite systems arising from primal-dual
formulations in parameter identification.

5. Numerical Examples. In the following we shall present numerical results
for two of the examples introduced above.

5.1. Reconstruction with Multiple Sources. We start with numerical re-
sults for Example 2 in the one-dimensional domain Ω = (0, 1), using p = 20 localized
sources of the form

hi(x) = 10e−10(x− i+1

p+1
)2

The data correspond to the ”exact solution” q∗(x) = 5 + 5x(1 − x) and the initial
value is q0 ≡ 5. Note that in general we cannot expect the least-squares minimum
norm solution q† to be equal to q∗, since we only use a finite number of measurements.
However, we shall see below that the resulting limit q† is close to q∗, with a difference
probably caused due to the limited numerical resolution only.

For the numerical solution we use the iteratively regularized Gauss-Newton-Kacz-
marz method, i.e., Tikhonov regularization in H1(Ω) as the linear regularization
method. The iteration is discretized using a primal-dual method as described above,
with piecewise linear finite elements on a uniform grid of size h = 0.01.

21



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

5.5

6

6.5

x

Reconstruction at Iteration 1, α = 0.0001

Reconstruction
Exact Solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

5.5

6

6.5

x

Reconstruction at Iteration 4, α = 7.5e−005

Reconstruction
Exact Solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

5.5

6

6.5

x

Reconstruction at Iteration 8, α = 5.1e−005

Reconstruction
Exact Solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

5.5

6

6.5

x

Reconstruction at Iteration 12, α = 3.5e−005

Reconstruction
Exact Solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

5.5

6

6.5

x

Reconstruction at Iteration 16, α = 2.4e−005

Reconstruction
Exact Solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

5.5

6

6.5

x

Reconstruction at Iteration 20, α = 1.6e−005

Reconstruction
Exact Solution

Fig. 5.1. Reconstructions in the first example, δ = 0, at iterates 1, 4, 8, 12, 16, and 20

We first test the convergence behavior in the noise free case. To this end, we
generate the data on the same grid as we later solve the inverse problem and choose
the regularization parameters as

αn = α0ζ
−n (5.1)

with ζ = 1.1 and α0 = 10−5. The convergence behaviour is illustrated in Figures
5.1 and 5.2 by the iterates at several different steps. The behaviour during the first
Kaczmarz sweep is illustrated in Figure 5.1. In the iterations 1 and 4, for which we use
sources localized close to the left boundary x = 0, the convergence is more pronounced
close to the left boundary. Vice versa, for iterations 16 and 20, with sources localized
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Fig. 5.2. Reconstructions in the first example, δ = 0, at iterates 30, 40, 50, and 60

close to the right boundary x = 1, the reconstruction is better close to the right
boundary. In the medium stage of a Kaczmarz sweep, at iterates 8 and 12 with sources
localized in the middle of the interval (0, 1), the iterate appears almost symmetric.
In the later stage of the iteration we plot the iterates qn at n = 30, 40, 50, 60 (i.e.,
those in the middle and at the end of a Kaczmarz sweep) in Figure 5.2. One observes
convergence of the algorithm, which turns out to be slightly faster for the iterates
in the middle of the Kaczmarz sweep. The reason for this behaviour is mainly the
ordering of the sources, one will of course obtain a different behaviour for different
ordering. We finally provide a quantitative basis for the above observations on the
behaviour of the iterates in Figure 5.3, where we plot the development of the error
‖q∗−qn‖ (dashed, on the left) and of the residual ‖Fn(qn)−yn‖ (on the right). In the
left plot we also plot the error at the end of each Kaczmarz sweep ‖q∗ − qnp‖ (solid)
and in the middle of the Kaczmarz sweep ‖q∗ − qnp+n/2‖ (dotted). In this example
it turned out that the total error is not always decreasing, but the error at the same
stage of the Kaczmarz sweep ‖q∗ − qnp+j‖ (for 0 ≤ j ≤ p− 1) is decreasing with n.
In particular, it seems that the error at the beginning and end of the sweep is always
the maximum one in the sweep, while the one in the middle of the sweep is always the
minimum one. Since all of them decrease towards zero, we obtain the expected worst-
case convergence, but of course in practice one should consider suitable orderings of
the data yi. The comparison of the residual at different iterates is even more difficult,
since the operators and data are different in each step. However, we also obtain that
‖Fnp+j(qnp+j) − ynp+j‖ (for 0 ≤ j ≤ p− 1) is decreasing to zero with n.
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Fig. 5.3. Plot of error (left) and residual (right) vs. iteration number in the first example, δ = 0

For the noisy case we generated data on a finer grid of size h = 1
347 in order to

avoid inverse crimes. The resulting data are then perturbed using uniform random
noise in the interval [−δ, δ]. The regularization parameters are chosen again via (5.1)
with ζ = 1.1 and α0 = 10−2.

We illustrate the reconstructions obtained for different noise levels (close to the
minimum of the error during the iteration) in Figure 5.4. In clockwise order the
plots show the reconstruction for noise level δ = 0.5% (at iteration 90), δ = 1%
(at iteration 50), δ = 3% (at iteration 30), δ = 5% (at iteration 30). One observes
that the quality of the reconstruction improves with decreasing δ, i.e., the error of
the iterate at the stopping index decreases with δ, thus confirming the convergence
result for the noisy case. A quantitative monitoring of error and residual vs. the
iteration number is presented in Figure 5.5, for δ = 1% (top), δ = 3% (middle), and
δ = 5% (bottom). One also sees that the minimal error and residual obtained during
the iteration decreases with δ as expected. As usual for ill-posed problems the error
decreases only until some iteration step and then increases again though the residual
is still decreasing. Note that this statement has to interpreted in a different sense,
namely for the subsequences np + i, 0 ≤ i ≤ p − 1. Moreover, the variation in the
error and residual during a sweep over the different sources increases with the noise
level, which obviously makes the choice of the stopping index more difficult.

5.2. Reconstruction from Dirichlet-Neumann Data. Our second numeri-
cal experiment is the solution of Example 1, i.e., the reconstruction of the coefficient
q in

−∆u+ qu = 0, in Ω ⊂ R
d

from p = 20 values of the Dirichlet-to-Neumann map. In our numerical example, the
two-dimensional domain is Ω = (0, 1)2, on which the differential equation is discretized
by finite differences on a uniform grid of size h = 0.025.

The applied Dirichlet sources fj are identically zero on three of the boundary
segments and of the form

fj(x1, x2) =

103e−50((x1−j/6)2 for j = 1, . . . , 5, x2 = 0

103e−50((x1−(j−5)/6)2 for j = 6, . . . , 10, x2 = 1

103e−50((x2−(j−10)/6)2 for j = 11, . . . , 15, x1 = 0

103e−50((x2−(j−15)/6)2 for j = 16, . . . , 20, x1 = 1
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Fig. 5.4. Reconstructions in the first example, for noise levels δ = 0.5% (top left), δ = 1% (top
right), δ = 3% (bottom right), δ = 5% (bottom left)

on the fourth segment, i.e., they approximate Dirac-delta impulses equally distributed
over the boundary.

In this case we use the Levenberg-Marquardt-Kaczmarz method, i.e., a Tikhonov
type stabilization in the H1-norm in each step with prior qn. This means that in each
step of the method, the update s = qn+1 − qn is obtained by solving the minimization
problem

1

2
‖∂vn
∂ν

− gn‖2
H−1/2(∂Ω) +

αn
2

‖s‖2
H1(Ω)

subject to the linear equation

−∆vn + qnvn + sun = 0 in Ω

for vn with homogeneous Dirichlet boundary values on ∂Ω. The norm in H−1/2(∂Ω)
of element is realized by

‖g‖H−1/2(∂Ω) := ‖φg‖H1(Ω),

where φg ∈ H1(Ω) is the unique weak solution of

∫

Ω

(∇φg · ∇ψ + φgψ) dx =

∫

∂Ω

gψ dσ ∀ ψ ∈ H1(Ω).
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Fig. 5.5. Plot of error (left) and residual (right) vs. iteration number in the first example, for
noise levels δ = 1% (top), δ = 3% (middle), δ = 5% (bottom)

This means we have to solve an additional Neumann problem to evaluate the norm.

We use a primal-dual approach to discretize this problem, which means that
we have to find two Lagrange multipliers corresponding to the partial differential
equations for vn and the function φg used to evaluate the norm. A careful investigation
of the optimality system shows that φg can be eliminated in favour of one of the
Lagrange multipliers, and the optimality system in each steps becomes after straight-
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Fig. 5.6. Difference q̂ − qn in the first examples at iterates 1, 2, 3, 5, 10, and 100.

forward transformations

−∆vn + qvn + sun = 0

−∆λ+ qλ = 0

−∆µ+ µ+ (1 − q)vn − sun = 0

−∆s+ s+
1

α
unλ = −∆(q0 − qn) + q0 − qn
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Fig. 5.7. Semi-logarithmic plot of error (left) and residual (right) vs. iteration number in the
second example, δ = 0

in Ω, supplemented by the boundary conditions

vn = 0

λ− µ = φn − φgn

∂µ

∂ν
= 0

s = 0

on ∂Ω. The functions φn and φgn are the functions used to evaluate the H−1/2-norm
of ∂un

∂ν and gn, respectively, defined in the same way as φg above.
We start with some examples using data generated from the parameter

q̂ = 3 + 5 sin(πx) sin(πy)

and the starting value q0 ≡ 3. Note that again q̂ is not necessarily the minimum norm
solution of the inverse problem with the above measurements, but since we expect
that a succesful reconstruction algorithm should at least approximate q̂ and since
we do not know the minimum norm solution, we measure the error as the difference
between q̂ and qn. In order to test the convergence of exact data, we generate data on
the same grid as the one used for solving the inverse problem and then perform the
IRGNK algorithm with αn chosen according to (5.1) with ζ = 1.05 and α0 = 10−8.

The difference between q̂ and qn is shown in Figure 5.6, at the iterates n = 1, 2
(top), n = 3, 5 (middle), and n = 10, 100 (bottom). One observes that the error is
reduced very fast globally, but one also observes a certain local influence of the sources,
i.e., the convergence seems faster closer to the support of the boundary sources. The
quantitative development of the error ‖q̂ − qn‖ (left) and the residual ‖F (qn) − gn‖
(right) are shown in a semi-logarithmic scale in Figure 5.7.

Moreover, we test the behaviour of the algorithm with respect to noise by using
Gaussian random noise of variance δ = 1% and δ = 0.5%. We plot the devlopment of
the error (left) and the residual (right) in a semi-logarithmic scale in Figure 5.8 for
δ = 1%, and in Figure 5.9 for δ = 0.5%. One observes the expected semi-convergence
in both cases, i.e., the error reaches a minimum around which one should stop the
iteration, and then starts to increase again. As expected, the minimal error appearing
during the iteration decreases with the noise level, one obtains a minimal relative error
0.14 for δ = 1% and 0.11 for δ = 0.5%.
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Fig. 5.8. Semi-logarithmic plot of error (left) and residual (right) vs. iteration number in the
second example, δ = 1%
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Fig. 5.9. Semi-logarithmic plot of error (left) and residual (right) vs. iteration number in the
second example, δ = 0.5%

We finally test the behaviour for a more complicated exact parameter value

q̂ = 3 + 2 sin(3πx1) sin(2πx2).

In this case we change the initial value α0 to 10−12 due to the lower sensitivity of
the data with respect to this parameter. The development of error and residual are
shown in semi-logarithmic scale in Figure 5.10. One observes that the method seems
to converge in this case, too, although slower than in the above example, which is also
caused by the lower sensitivity.

6. Conclusions and Open Problems. We have derived a detailed convergence
analysis of regularized Newton-Kaczmarz methods for nonlinear ill-posed problems,
which - as usual for ill-posed problems - can be carried out under certain conditions
on the nonlinearity of the operators involved. As we have demonstrated in several
examples from practice, these conditions seem not to be too restrictive in the case
of Newton-Kaczmarz methods. Moreover, we have dicussed the numerical solution
of the linear problems arising in each step of the iteration method by three differ-
ent approaches. The numerical experiments we carried out confirm the theoretical
predictions.
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Fig. 5.10. Semi-logarithmic plot of error (left) and residual (right) vs. iteration number in the
second example for different exact solution, δ = 0

So far, we have discussed a-priori stopping rules (in the sense of [12]) only, whereas
in practice it seems to be more important to have a-posteriori stopping rules, which
do not only depend on the noise level δ, but also on the actual data yδ.

As mentioned in Section 3.2, the condition (3.12) on the initial values poses a
severe theoretical restriction that seems to be inevitable for Newton-Kaczmarz Meth-
ods of the type (1.10) as the linear case shows. A possible way out might be to define
the iteration by (1.7). Here the methods of proof considerd so far for p = 1 (cf. [18])
rely on nonlinearity conditions of the type (2.5) instead of (2.4), in whose extension
to p > 1, (2.2) we are interested here. Thus, new ideas would be necessary for proving
convergence, maybe based on a sweep wise instead of a step wise analysis.
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[3] G. Bruckner, S. Prößdorf, and G. Vainikko, Error bounds of discretization methods for
boundary integral equations with noisy data, Applicable Analysis 63 (1996), 25-37.
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