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Abstract

This paper presents a new solution strategy for a standard topology optimization
problem: the minimal compliance problem. This problem contains the system of
linear elasticity partial differential equations (PDEs) as a constraint resulting in a
large scaled optimization problem after the finite element discretization. Due to the
repeated solution of the direct field problem given by the PDE constraints, efficient
solution techniques are required. In this paper we present a new solution method
involving adaptive multilevel techniques. Topology optimization problems are ill-
posed, so regularization is needed. In our algorithm we combine two regularization
techniques, in fact filter methods, such that their disadvantages are eliminated and
only their positive properties remain. Numerical experiments are performed with
several benchmark problems, where our multilevel approach turns out to be quite
efficient. For solving the optimization problems arising in each iteration step, the
method of moving asymptotes is used.
Keywords: Topology Optimization, Minimal Compliance, Filter Methods, Adaptive
Mesh-Refinement, Multilevel Approach.

1 Introduction

For the development and design process of new products or structures it is of great impor-
tance to find the best possible layout. However it is basically unclear how to choose the
initial topology, i.e., where to place material and where to place holes. Also due to the fact

∗This work has been supported by the Austrian Science Fund ’Fonds zur Förderung der wis-
senschaftlichen Forschung (FWF)’ under the grant SFB F013/F1309.
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that the topology is crucial for finding the optimal layout, it pays off to start the design pro-
cess with optimizing the basic layout. So it turned out that in the recent decade the field of
topology optimization, although it is relatively new, is rapidly expanding with an enormous
development in terms of theory, computational methods and applications including com-
mercial applications (e.g., Optistruct by Altair, http://www.altair.com). A comprehensive
review of the field of structural optimization is given in the monographs by Allaire [2],
Bendsøe [3], Bendsøe and Sigmund [4], and Haslinger and Neittaanmäki [11],
and in the survey articles by Eschenauer and Olhoff [10] and Rozvany [14]. All
contain many references on the various aspects of this field of optimization in general.

This paper deals with a multilevel approach to minimal compliance problems. In these
problems an optimal material distribution is searched with respect to maximal stiffness
and restriction of the total volume used. Minimizing compliance turned out to be a stan-
dard problem in topology optimization. However it already contains the most basic, but
non-trivial difficulties like mesh dependent solutions, local minima and checkerboard phe-
nomena.

The remainder of this paper is organized as follows. In the next section an introduction
to topology optimization by means of minimizing compliance is given. In the following
section some aspects of topology optimizations are treated, namely material interpolation
and regularization. Then our adaptive multilevel algorithm is introduced and motivated
by the considerations of the previous section. The efficiency of this hierarchical approach is
illustrated by our numerical examples, presented in the next section. Finally, conclusions
are drawn and some plans for the future improvements are discussed.

2 The Minimal Compliance Problem

This section gives an introduction to the field of topology optimization on the basis of the
so-called minimal compliance problem (MCP). The MCP aims at the design of the stiffest
(or least compliant) structure under a given fixed load, possible support conditions and
restriction on the volume of the used material.

The beginning of this section is devoted to the equation that determines the state of
equilibrium of a structure under applied external forces. In the following, Lp denotes the
Lp spaces (1 ≤ p ≤ ∞) equipped with the norm ‖ · ‖Lp

, and Hk denotes the Sobolev
spaces equipped with the norm ‖ · ‖Hk

. Details about Sobolev spaces can be found in
Adams [1]. Geometric vectors are written in bold-face, and | · | denotes the Euclidean
norm of such a vector. Similarly Lp and Hk denote the spaces of vector valued functions
which components belong to Lp and Hk respectively.

2.1 The State Equation

Let Ω ⊂ R
d (d = 2,3) be a fixed domain, the so called ground structure. Furthermore,

we assume that Ω is an open, bounded connected domain with a Lipschitz boundary Γ.
Moreover let Γu ⊂ Γ, |Γu| > 0 be the part of the boundary where the displacements are
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Figure 1: The reference domain and applied forces in a minimal compliance problem.

fixed, and Γt = Γ \ Γu the part where boundary tractions are predescribed. Later on the
optimal design is generated referring to this ground structure.

For describing material in Ω let ρ ∈ L∞(Ω) be a function representing the material
density which fulfills 0 < ρ ≤ ρ ≤ 1 almost everywhere (a.e.) in Ω, where ρ is some positive
lower bound. Then, let E0

ijkl describe an elasticity tensor of fourth order, satisfying the
usual symmetry, ellipticity and boundedness assumptions, representing a certain isotropic
material. Further, let η be a monotonously increasing material interpolation function,
mapping [ρ, 1] to (0, 1], and describing how the actual density influences the elasticity
tensor (e.g., to enforce ’black and white’ designs) at a given point x. More information
about material interpolation is given in Section 3.1. Then the actually used elasticity
tensor varies over the ground structure and is defined as

Eijkl(ρ(x)) = η(ρ(x))E0
ijkl, for x ∈ Ω. (1)

Here it is required that η(1) = 1 and that 0 < η(ρ) � 1, which describes a very compliant
material pretending to be void.

Now for a fixed ρ and for a fixed η, the displacement field u ∈ V0 fulfills the following
equilibrium or state equation in its variational formulation:

a(ρ;u,v) = `(v) for all v ∈ V0, (2)

where V0 = {v ∈ H1(Ω) | v = 0 on Γu} is the space of kinematically admissible displace-
ments. The energy bilinear form on V0 × V0 is defined as

a(ρ;u,v) =

∫

Ω

Eijkl(ρ(x))εij(u)εkl(v) dx, (3)

with linearized strains εij(u) = 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
and the load linear form

`(v) =

∫

Ω

f · v dx +

∫

Γt

t · v ds (4)

defines a linear, bounded functional on V0, where f ∈ L2(Ω) defines the body forces and
t ∈ L2(Γt) describes the boundary tractions.
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Again let η be fixed, but ρ(x) ∈ [ρ, 1] arbitrary, then a(ρ;u,v) satisfies the following
conditions (see, e.g., Ciarlet [9]):

∃µ1 > 0 : µ1η(ρ)‖v‖2
H1(Ω) ≤ a(ρ;v,v), for all v ∈ V0, (5)

which is due to Korn’s inequality, and

∃µ2 > 0 : |a(ρ;u,v)| ≤ µ2‖u‖H1(Ω)‖v‖H1(Ω), for all u,v ∈ V0.

For the V0-ellipticity (5) it is crucial that η(ρ) is strictly positive. Assuming that the linear
load form `(v) fulfills the following boundedness criterion

∃µ3 > 0 : ‖`‖V∗

0
= sup

0 6=v∈V0

`(v)

‖v‖H1(Ω)

≤ µ3,

the total potential energy of the structure, given by a fixed ρ and the load form `, can be
stated as

J(ρ;v) =
1

2
a(ρ;v,v) − `(v),

with J(ρ;v) strictly convex. The equilibrium displacement field u is now the unique
minimizer of J(ρ;v) with respect to v ∈ V0, i.e. the principle of minimum potential
energy or the principle of virtual work, when equivalently characterized as the solution of
(2).

2.2 The Optimization Problem

The considered design problem consists now of minimizing the compliance (maximizing the
stiffness) of a structure, with respect to the state equations (2) and some design constraints.
For the sake of simplicity the body forces in (4) are omitted. Furthermore it is assumed
that a proper material interpolation function η has been chosen. Mathematically the MCP
can be formulated as the following optimization problem:

min
ρ∈L∞(Ω),u∈V0

`(u) (6)

subject to: a(ρ;u,v) = `(v) for all v ∈ V0, (7)∫
Ω

ρ(x) dx ≤ v0, (8)

ρ ≤ ρ(x) ≤ 1 a.e. in Ω, (9)

Clearly the constraint (7) represents the state equations, the constraint (8) controls the
volume of the used material, where v0 is a positive bound on the used volume, and (9)
ensures that the density stays within reasonable bounds.

In the above formulation the problem would lead to a simultaneous (all-at-once) ap-
proach, reducing the error of the constraining state equations is done at the same time
as minimizing the objective. But usually, and also in this work, the state variable u is
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eliminated through (7), resulting in a nested (black-box) approach. For a given admissible
ρ the solution of (7) is exists and is unique and is denoted by u(ρ). So we arrive at the
nested formulation of the minimal compliance problem:

min
ρ∈L∞(Ω)

`(u(ρ)) (10)

∫
Ω

ρ(x) dx ≤ v0, (11)

ρ ≤ ρ(x) ≤ 1 a.e. in Ω. (12)

Now the state constraints (7) are hidden in the objective (10), which means that for every
function evaluation or derivative calculation the state equations have to be solved in order
to evaluate the nonlinear map ρ 7→ u(ρ).

Both approaches, the simultaneous and the nested one, have advantages and disadvan-
tages, but it is not within the scope of this report to discuss this, although it is a very
interesting subject. Some results with respect to a simultaneous approach can be found,
e.g., in Hoppe, Petrova, and Schulz [12] and Maar and Schulz [13].

2.3 Discretization using Finite Elements

When solving problems like (6) - (9) or (10) - (12) numerically they are usually discretized
using finite elements on a triangulation Th = {τi}, i = 1, . . . , n (see, e.g., Ciarlet [9] or
Braess [8] for an introduction the method of finite elements). Following a standard finite
element procedure the ground structure Ω is partitioned into n = O(h−d) (n = Nel = Nρ)
triangles τi, where h is the used discretization parameter. For a more detailed description of
the triangulation we refer to Ciarlet [9]. It is worth noticing that there are two different
variables, the displacements u and the density ρ. For both the same finite element mesh
is used, but not the same finite elements.

The density ρ is approximated by a piecewise constant finite element function ρ̃, i.e. ρ̃
is constant over every triangle τi. The displacement field u is approximated as continuous
element-wise quadratic functions and the finite element function ũ is now the the unique
solution of the finite element equations:

a(ρ̃; ũ, ṽ) = `(ṽ) for all ṽ ∈ Vh
0 , (13)

where Vh
0 = P2(Th) denotes the finite dimensional subspace of V0 and ρ̃ ∈ Qh = P0(Th).

Here Pk(Th) denotes the space of polynomials of maximal degree k over the triangle τi.
Whenever mesh refinement is performed it is done in such a way that Vh

0 ⊃ VH
0 if h ≤ H .

Let the vectors uh ∈ R
Nu and ρ

h ∈ R
n contain the coefficients of the finite element functions

ũ ∈ V h
0 and ρ̃ ∈ Qh, respectively. Then, the discrete analogon of the state equations (2)

turns from (13) to the following linear system of equations:

K(ρh)uh = fh ∈ R
Nu , (14)
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where, fh denotes the load vector. The stiffness matrix K(ρh) depends on the design vector
ρ

h as follows:

K(ρh) =
n∑

i=1

η(ρh
i )Ki, (15)

where Ki are the element stiffness matrices extended to Nu × Nu matrices, which are
weighted with the values of the material interpolation function evaluated at the elements
densities.

Now, with uh(ρh) denoting the unique solution of (14), the discrete analogon of the

continuous objective (10) is fhT
uh(ρh). Furthermore let the vector vh represent the volumes

of the finite elements such that vh
i = |τi|. Then the discrete version of the MCP can be

posed as follows:

min
ρh∈Rn

fhT
(uh(ρh)) (16)

vhT
ρ

h ≤ v0, (17)

ρ ≤ ρh
i ≤ 1, i = 1, . . . , n. (18)

3 Material Interpolation Schemes and Regularization

3.1 Material Interpolation Schemes

Actually the basic question in the MCP is how to distribute a certain amount of material
such that the resulting structure is as stiff as possible. So, for each point of the ground
structure one has to decide whether to occupy it with material or not. In this terminology
the continuous constraint (12) should be replaced by the discrete version ρ(x) ∈ {ρ, 1}
a.e. in Ω. But in order to avoid e.g. branch and bound techniques to solve the discretized
’0-1’ problem, the discrete valued constraint is relaxed to the continuous one. However,
the design variable is then allowed to attain values between 0 (in fact ρ) and 1, which is
undesirable, and those intermediate values should be penalized to obtain again a more or
less 0-1 or ’black and white’ design.

By far the most popular penalization method is the so called SIMP (Solid Isotropic
Material with Penalization) model, which has turned out to be extremely efficient. Here a
nonlinear interpolation model of the following form is used:

η(ρ(x)) = ρ(x)p, with p ≥ 1. (19)

Intermediate values would then give very little stiffness in comparison to the amount of
used material. In other words, by choosing a higher value than 1 for the parameter p, it is
inefficient for the algorithm to choose intermediate density values.

An alternative approach to the SIMP method is the following interpolation model:

η(ρ(x)) =
ρ(x)

1 + q(1 − ρ(x))
, with q ≥ 0. (20)
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This model is called RAMP, which stands for Rational Approximation of Material Prop-
erties. One disadvantage of SIMP versus RAMP is that the mass depends linearly on the
element density ρh

i and the element stiffness depends on the power of ρh
i , which results in

a non finite ratio of mass to stiffness when ρh
i attends zero. More information is given in

Bendsøe and Sigmund [4], and a detailed motivation and introduction to the RAMP
interpolation scheme can be found in Stolpe and Svanberg [16].

A totally different approach to penalize intermediate density values is to choose the
material interpolation function η(ρ(x)) = ρ(x) and to add an additional constraint to
the optimization problem to encourage ’black and white’ optimal designs. Such a penalty
constraint could e.g. look like the following:

P (ρ(x)) =

∫

Ω

(1 − ρ(x))(ρ(x) − ρ) dx ≤ εP . (21)

Of course such a penalty function could also be added as a penalty term to the objective
functional.

3.2 Regularization

A naive formulation of topology optimization tasks like minimizing compliance will lead to
difficulties due to the ill-posedness in the sense that there are no optimal solutions. The
physical explanation is that given a structure with a certain volume, one can improve the
stiffness by introducing lots of small holes without changing the actual volume, which will
lead to an indefinite perforation of the structure. Mathematically speaking the reason for
this effect is the non-closure of the feasible design set.

An optimization problem is said to be well-posed when the two following conditions are
valid: The objective functional has to be lower semi-continuous and the feasible set has to
be compact, and both properties have to be fulfilled with respect to the same topology. For
the minimal compliance problem (10) - (12), the feasible set is weakly∗ compact in L∞(Ω).
However, the objective functional is not weakly∗ lower semi-continuous in L∞(Ω) when
the material interpolation function is chosen according to the SIMP or RAMP technique,
in contrast to the original choice η(ρ) = ρ. But when using η(ρ) = ρ and penalizing
intermediate values like in (21), the set of feasible designs not weakly∗ closed anymore, see
Borrvall and Petersson [6], and the problem lacks solutions again.

The effect that a larger number of holes appears and that more and more fine-scaled
parts yield a more detailed structure, when solving the same problem on finer and finer
grids, is called mesh-dependence. An illustration of the mesh-dependence effect can be seen
in Fig. 2. Ideally refining the mesh should result in the same optimal design, but with a
better and smoother description of the boundary. Basically there are two different ways
to circumvent the ill-posedness, namely relaxation methods and restriction methods.

Relaxation methods in principle enlarge the feasible set of designs. Well-posedness is
achieved by introducing an infinitely fine microstructure in every element of the structure
and using the homogenized properties of these microstructures as material properties of
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Figure 2: Mesh refinement without regularization. Solutions on a mesh with 449, 1839, 7319,
and 29443 elements, respectively.

that element. A deeper insight of this homogenization approach to topology optimization is
given by, e.g., Bendsøe and Sigmund [4].

In comparison with relaxation methods, restriction methods reduce the set of feasible
designs, such that a sufficient closure is gained. Mainly this is achieved by adding one extra
constraint to the problem, ruling out the possibility for fine scale structures to formate, or
by using some filter techniques, filtering the sensitivities or directly the density. A survey
of various restriction methods are given by Bendsøe and Sigmund [4], Sigmund and

Petersson [15], Borrvall [5] and Bourdin [7].
Two different filter methods to restrict the design space are used in the calculations

presented in this paper. The first one is called Regularized Intermediate Density Control
(RIDC) and is discussed in detail in Borrvall and Petersson [6]. Here the material in-
terpolation function is chosen as η(ρ) = ρ, such that the problem without any penalization
of intermediate density values is well posed. But in order to calculate a black and white
optimal design the intermediate density values are penalized by an additional constraint
like (21). To get a sufficiently closed set of feasible designs, (21) is modified such that the
design variable ρ is filtered firstly by a convolution operator S and then penalized via (21).
Let S : L2(Ω) → L2(Ω) be an integral operator defined by

S(ρ(x)) =

∫

Ω

φ(x,y)ρ(y) dy, x ∈ Ω. where (22)

where φ(x,y) = C(x) max(0, 1−|x−y|/R) and C(x) is chosen such that
∫
Ω

φ(x,y) dy = 1.

8



Basically this means a linear convolution with a cone of base radius R. The penalizing
constraint now looks as the following:

P (ρ) =

∫

Ω

(1 − S(ρ(x)))(S(ρ(x)) − ρ) dx ≤ εP , (23)

where a suitable value for εp must be found by experiments. Since this procedure is mostly
very expensive, this is a serious disadvantage of this approach. But on the other hand
for problems like the minimal compliance problem it is mathematically well founded (see
Borrvall and Petersson [6]).

The second filter technique is used together with the RAMP interpolation scheme (20).
Here not the density, but the discrete element sensivities of an objective J are modified as
follows (e.g., see Sigmund and Petersson [15]):

∂̂J

∂ρh
k

=
1

ρh
k

∑n
i=1 Hi,k

n∑

i=1

Hi,kρ
h
i

∂J

∂ρh
i

, (24)

where the convolution operator Hi,k with filter radius R is defined as

Hi,k = max {0, R − dist(τi, τk)} , for i, k = 1, . . . , n.

The operator dist(τi, τk) represents the distance of the geometrical centroids of element τk

and element τi. Roughly speaking this filter replaces the original derivatives by a weighted
average of the derivatives in the surrounding area. The advantage of this filter approach
is that it is very easy to implement and it turned out to work very well in various different
topology optimization problems in 2D and in 3D. Moreover it is very robust with respect
to coarse grids. But it must be pointed out that this filter is purely heuristic and it is not
quite understood which problem is actually solved. In the following we will call this filter
the mesh-independence filter and refer to it as MIF.

Both filter techniques are able to control the minimal length scale of the components in
the optimal design. The larger the filter radius R is, the larger is the minimal length scale
or the thicker are the occurring components, which is important, e.g., to ensure that the
optimal structure is not too complicated to be manufactured. This influence of the filter
radius can be seen in Fig. 3.

Another numerical anomaly is the so called checkerboard effect, which can be seen in
Fig. 4. The appearance of checkerboard patterns is due to bad numerical modeling. For
some combinations of finite element discretizations for the design ρ and the displacements u

these patterns give an artificial high stiffness when analyzed in their discretized formulation.
In the above mentioned citations a detailed explanation and various techniques to prevent
these effects are described. Both filter methods mentioned above have the nice property
to remove checkerboard effects or at least reduce them sufficiently.

4 A Multilevel Algorithm

Our basic motivation for a multilevel algorithm is to solve our problem efficiently and to
save computational costs. This is achieved by solving the problem firstly on a coarse grid
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Figure 3: Different sizes of the filter radius: left R = 0.15 and right R = 0.05.

Figure 4: The checkerboard effect in the MBB beam example.

to get a first coarse design for rather cheap computational costs. Then we will use this first
coarse design as an initial design on a finer grid and repeat the optimization on this finer
grid, and so on. As the first coarse design is mostly close to the succeeding finer designs,
this procedure will help us to avoid unnecessary long and expansive computations on very
fine meshes.

4.1 Adaptive Mesh-Refinement

Since we want to solve our problem on a sequence of meshes {Tl} with a increasing number
of elements, we have to address the question how to generate this sequence. Of course a
basic idea would be to perform a uniform mesh-refinement, i.e. refine every element of the
mesh. But proceeding this way would also introduce a lot of very fine elements in areas
where a locally fine mesh is not needed. Elements inside a region full of material or void, far
away from the structure’s boundary, are very unlikely to be affected by the optimization
on the next level. Far more interesting is the interface between void and material, i.e.
the boundary of the design. It is much more efficient to identify this interface and only
to refine the elements along this interface. In this way we ensure that new elements are
inserted only where we need more detailed information. If material is moved, it will only
happen around the boundary of the design, since no new holes will appear due to the
regularization. Also finer elements along the interface give rise to the possibility that the
boundary of the design can be described in a smoother way.

For identifying the interface the filter operator S defined in (22) turns out to be a useful
tool. Let us consider a point x in the design domain. If the function ρ is locally constant
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Figure 5: Sketch, coarse solution, identified boundary and refined mesh of the cantilever problem
in 2D.

inside the filter region of x (the support of the integral kernel φ(x,y) in (22)), then we
have that S(ρ)(x) = ρ(x). If ρ is not constant inside the filter region, |S(ρ)(x)− ρ(x)| will
have values different from 0. In fact |S(ρ)(x)− ρ(x)| ∈ [0, 1− ρ], since S(ρ)(x) ∈ [ρ, 1] for
x ∈ Ω (see Borrvall and Petersson [6]). So we mark the element τi to be refined, if

|(Φρ
h)i − ρh

i | ≥ δ1 > 0 (25)

for some δ1 with 1 � δ1 > 0. Here Φ ∈ IRn×n is the convolution matrix corresponding
to the integral kernel φ. In Fig. 5 one can see the application of this refinement idea to
the cantilever problem in 2D. In the upper line the sketch and the solution of the problem
is shown. Then, in the lower line, in the left picture the identified interface using the
refinement indicator (25) (scaled to [0,1]) and in the right picture the final refined mesh is
plotted. Moreover, in Fig. 6 the refinement indicator for the cantilever problem in 3D is
shown.

Varying the size of the filter radius Rref for the refinement indicator we can control
the sensivity of the indicator with respect to the interface. The larger we choose Rref the
more elements around the interface are chosen to be refined. But of course Rref should be
at least greater than the distance of all elements centroids to their at most d + 1 adjacent
neighboring elements centroids:

Rref ≥ δ2 · max
i=1,...,n

{dist(τi, τk) | τk ∈ NH(τi)}, with δ2 > 1,

where NH(τi) should represent the set of the adjacent neighboring elements of element τi.
In Fig. 7 two different refined meshes are shown, resulting from two different refinement
filter radii Rref .
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Figure 6: The refinement indicator for the 3D cantilever problem.

Figure 7: Influence of the refinement filter radius Rref on the refined mesh. Original mesh: 1463
elements. Left: Refined mesh with 2625 elements. Right: Refined mesh with 3741 elements.

4.2 A Multilevel Idea

In our multilevel approach we basically tried to combine the two filter methods mentioned
in the last section, such that their disadvantages are eliminated and their advantages
remain.

At the beginning the problem is solved on the coarsest grid T0. Here, at the first
level, we use the mesh-independency filter MIF for regularization together with the RAMP
interpolation scheme combined with a continuation method. The latter means that the
RAMP-parameter q is slowly raised through the optimization progress. In the first few
iterations q = q0 is chosen, then for the next ones some higher value, until a wanted value
qmax for q is reached where the design is finally fully optimized. The advantage of such a
continuation method is that one avoids to get early stucked in an unwanted local minima,
which may happen if the calculation is done only with one value of q, which is chosen too
large. There are two major reasons why we use MIF combined with RAMP on the coarsest
grid. On the one hand we can use coarser grids as with the RIDC method and on the other
hand we can use the optimal design ρ

H of the coarsest grid to get a realistic value for εP in
(23), setting εP = P (ρH). This saves us costly experiments to find a proper value for εP .
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1: Coarse grid solution ρH with MIF
and RAMP, l = 0.

2: Determine ε
0
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P = P (ρH).
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P = δ3ε
l
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4: Fine grid solution using RIDC.

5: Satisfying solution?

No: l = l + 1, → Step 3. Yes: STOP.
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Figure 8: Data flow of our multilevel algorithm.

Although we adapted the MIF formula (24) in an obvious way to work also on adaptively
refined grids, we didn’t achieve as good results as on uniformly refined grids.

So we continue on the refined grids with the RIDC method, which works fine on un-
structured grids and is mathematically well-founded. Moreover, since the effective density
and the original density ρ are the same (η(ρ) = ρ), there are no doubts which density is
the one to plot. The basic data flow of this multilevel approach can be seen in Fig. 8.

In the optimal coarse grid design the interface I = {x ∈ Ω | ρ < ρ(x) < 1} between void
and material might have a quite significant width (a fuzzy interface). In order to minimize
these zones of intermediate material we reduce εP from level to level like εl+1

P = δ3ε
l
P with

0 < δ3 ≤ 1. So the initial diffuse interface turns, as l increases, into a sharp interface.
Unfortunately, if δ3 is chosen too small, it may happen that the optimization algorithm is
unable to find a feasible point at the next level l +1. The following choice of δ3 turned out
to work quite well, in fact it was successful with all our test examples:

δ3 = 1 −
1

2

∫
Ω

χI(x)ρ(x)dx∫
Ω

ρ(x)dx
,

where χI denotes the characteristic function of the interface I.

5 Numerical Experiments

We tested the approach described above with several known benchmark examples and got
very good results from all of them. For solving the discrete optimization problem (16)
- (18) we used the method of moving asymptotes (MMA), which is quite popular in the
field of structural optimization. In MMA the original problem is solved iteratively by
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sequential approximating subproblems, which are convex and separable. For the sake of
space we will omit a detailed description of this method and refer the interested reader to
Svanberg [17, 18].

Figure 9: Sketch, coarse grid and fine grid solution of the ’wheel’ example.

l Nel Nu tstate t∇ topt tfil tit Iter.

level 0: 3334 13666 1.4 0.5 0.02 0.1 2.0 101
level 1: 7574 34908 3.7 1.2 0.05 0.3 5.6 76
level 2: 20661 100448 12.1 3.2 0.2 2.4 20.5 70
level 3: 46009 227248 27.6 7.1 0.5 15.2 66.3 49
level 4: 97648 485506 67.6 15.2 1.1 100.0 284.8 36
level 5: 213634 1065532 156.1 33.1 2.7 655.2 1519.4 16
level 6: 431476 2154826 329.4 67.2 6.7 4282.9 8991.2 11

Table 1: Computational data from the 2D wheel example.

In Table 1 we list the computational data gained from the ’wheel’-example. The
columns Nel and Nu contain the number of finite elements and the degrees of freedom
w.r.t. the displacements. The other columns tstate, t∇, topt, tfil and tit show the time
used for one evaluation of the state equation, of the derivatives, for the solution of the
subproblem, for applying the filter and the overall time per iteration. In the last column
the number of needed iterations is listed. We stopped the algorithm at each level when
the maximum norm of the difference between two successive designs is less than 0.1 and
the relative difference of two successive objective values was less then 10−5. It turned out
that this is a sufficiently tight convergence criteria for good design results. For solving the
direct problem in 2D we used a fast sparse Cholesky factorization. To get an impression
about the gained speed-up we also solved the problem on a uniform mesh T with 100889
elements. That is roughly the same number of elements as in the mesh T4 of level 4, and
the optimization only on T took 176 iterations, which is an approximate time slow-down
by the factor of 4 in comparison to the multilevel approach. But still the smallest elements
of T4 (around the interface) are smaller as the ones in T by a factor of approximately 10.

We also applied this multilevel algorithm to other known 2D examples, where the
solutions are shown in Fig. 10. In all 2D examples the available volume was restricted
to 0.5|Ω| and the filter radius was chosen as R = 0.1. The messurements of the ground
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Figure 10: Sketch and fine grid solution of other 2D examples.

structures of the examples were 4×2, 6×1, 3.2×2 and 2×1 respectively. The time tables
are basically the same, hence we omit them. Taking a close look at Table 1 we see that the
used time for applying the filter is growing significantly, which is still a serious bottleneck
for this approach. The same effect appears of course when calculating 3D examples, like
the cantilever beam example. Fig. 11 shows sketch, coarse grid solution with 8100 elements
and fine grid solution with 1101904 elements. Due to symmetry, the actual computation
was performed only in a quarter of the domain. The available volume was |Ω|/3, the filter
radius was set to 0.5 and messurements of the the ground structure were 16 × 10 × 3.

Figure 11: The cantilever beam in 3D: Sketch, coarse grid solution and fine grid solution.

Again, in Table 2, we list the computational data of the 3D example. In comparison to
the direct solver for the 2D examples, we used here a multigrid preconditioned conjugate
gradient method to solve the direct problem. As in the 2D examples it is possible to
observe that the computational time for applying the filter operator grows quadratically.
A comparison of the computational effort of applying the filter w.r.t. the solution of the
state equation is plotted in Fig. 13. The used multigrid preconditioner so far does not take
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l Nel Nu tstate t∇ topt tfil tit Iter.

level 0: 2025 7224 2.6 1.1 0.01 0.0 3.8 88
level 1: 4615 15682 12.5 2.6 0.02 0.1 15.5 71
level 2: 11193 37048 32.1 6.2 0.06 0.8 40.9 49
level 3: 21604 70708 67.5 11.9 0.11 4.2 89.2 42
level 4: 39599 127806 130.4 21.8 0.23 16.9 187.5 27
level 5: 86279 274322 311.3 47.8 0.57 111.4 605.1 23
level 6: 141714 447432 595.7 78.4 1.01 381.1 1442.3 16
level 7: 275476 861462 1281.2 159.3 2.14 1680.8 4814.6 14

Table 2: Computational data from the 3D cantilever beam example.

into account the special structure of the state problem, the different scaling of the entries
in the stiffness matrix w.r.t. void and material and the slightly changing interface per level.
Per iteration a V-cycle with one pre- and post-smoothing step is done. Nevertheless, this
results in an almost linear time complexity.

Figure 12: Finally refined mesh of
the 3D cantilever beam. Figure 13: Applying the filter vs. solu-

tion of the state equation.

In Fig. 14 and 15 we see the result of another 3D example. As before, the computation
was just done in a quarter of the domain. Since the computational data is similar to the one
listed in Table 2, it is omitted again. Here the coarse grid solution is computed with 30236
(7559) elements and the fine grid solution with 608340 elements corresponding to 608340
(152085) design unknowns and 953964 (238491) displacement unknowns, respectively. All
computations were performed on a computer with a 2.4 GHz CPU and 2 GB memory.

6 Conclusions and Outlook

In our multilevel approach we combined two filter techniques such that their disadvantages
are eliminated and we gain from their good properties. Finally we ended up with an
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Figure 14: The ’roof’ example: sketch and the finally refined mesh, once from above and below.

Figure 15: Coarse grid solution and fine grid solution.

efficient method to solve minimal compliance problems with a high resolution of elements
around the interface between void and material in 2D and in 3D.

But still there is the serious bottleneck of the high complexity of applying the filter
operator on adaptively refined triangular meshes. Here, a more efficient way has yet to be
investigated for very fine resolutions. Also a point of high interest will be the investigation
and construction of an optimal muligrid based solver for the state problem, taking into
account the interface between material and void. Here we refer to a forcoming paper.

The implementation of this optimization algorithm is based on the software package
NETGEN/NGSolve by J. Schöberl (see http://www.hpfem.jku.at), a very powerful mesh-
ing and finite element software tool.
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