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Abstract

In the convergence theory of regularization methods for ill-posed
problems, so far deterministic error concepts were dominating, which
leads to worst-case error estimates. Since this is sometimes not desir-
able, we aim at providing a framework for proving convergence rates
in the Prokhorov metric for the regularization of ill-posed problems
with stochastic noise. This allows to assess uncertainty in the sense
of a confidence region for the probability that the deviation between
exact and regularized solution stays below a given bound with given
probability. We exemplify this method for the special case of Tikhonov
regularization for linear ill-posed problems and apply the result to the
problem of deblurring an image contaminated by random blurring.

1 Introduction

Inverse problems are usually ill-posed in the sense of Hadamard and hence
especially sensitive to noise. In analyzing stable methods for their solution,
so-called regularization methods, one therefore has to lay special emphasis
on estimating the error propagation and, more general, the rate with which
such methods converge as the noise level tends to 0. This is especially im-
portant since for ill-posed problems, convergence of regularization methods
can be arbitrarily slow ([19]) and convergence rates can only be proven under
a-priori conditions concerning the smoothness of the (unknown) exact solu-
tion. Even under such assumptions, convergence rates can be rather slow
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depending on the degree of ill-posedness ([8, p.40]) of the problem. In or-
der to assess the efficiency of regularization methods and in order to choose
e. g. regularization parameters in such a way that the best possible conver-
gence rate for a given situation (which may be slow anyway) can at least
be achieved, precise estimates of rates of convergence are necessary. See [8]
for a detailed account of these aspects; there, as in most of the “functional
analysis based” literature on the numerical solution of ill-posed problems, the
error (both in the data and in the numerical approximations) is treated in a
deterministic way, one assumes bounds on the error in the data and aims at
bounds for the error between regularized and exact solutions in some (usually
Hilbert space) norms. In this way, stochastic aspects like error distribution
or confidence regions for regularized solutions in a probabilistic sense are ne-
glected: It would be advantageous to know that with a given probability, the
deviation between the regularized and exact solutions for an inverse problem
with noisy data stays below a certain bound. Instead, error estimates in the
traditional functional analytic setting are usually of a worst-case type in the
sense that they give an estimate for this deviation which is valid for all noisy
data compatible with the (norm) bound for the data noise. This is, in many
situations, a much too stringent approach for assessing uncertainty. The ap-
propriate notion of convergence which leads to confidence regions seems to be
convergence in distribution of random variables, which is metrizable by the
Prokhorov metric. This is our motivation for studying convergence (rates) for
regularization methods in the Prokhorov metric. The first paper where this
has been done (to our knowledge) is [11], where this was only a by-product of
other investigations. More recently, the Prokhorov metric has been used in
connection with parameter identification problems for differential equations
from biology, where stochasticity is arising naturally in the model not only
through noise (see [1]).

While our approach is based on convergence in distribution, there is as
lot of literature on using other stochastic convergence concepts in connection
with inverse problems, see e. g. [22, 16, 17, 4, 2, 12, 9, 10]. Motivated by
statistical estimation theory, one usually aims there at estimates for the
expected value of the squared norm of the deviation. Whether we use such
a concept or convergence in distribution, we have to treat input and output
variables of our inverse problem as random variables, not just as elements in
some Hilbert space as in the usual functional analytic theory. Randomness
may enter an inverse problem in at least two ways, which we exemplify for a
linear ill-posed problem

Ax = y ,

where A is a linear operator between Hilbert spaces X, Y :
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Data Noise. Instead of the exact data y, noisy data yδ are given. Further-
more, instead of the operator A only an approximate version Aξ might
be available, e. g., in the case of an integral operator A for which the
kernel is not known exactly (“modeling error”, see [15] and Section 5
for examples). If this noise is modeled via Y - and L(X,Y )-valued ran-
dom variables, then consequently, also the solution x is an X-valued
random variable.

Stochastic Model Parameters. Another source for randomness lies in the
fact that parameters in the underlying model are of a stochastic nature
themselves, even without noise. This is frequently the case in biological
applications, where one is usually not interested in a single individual,
but in an ensemble of individuals, and the parameters entering into a
model and also the output from the model are then distributions of
these parameters over this ensemble (see, e. g., [1]). Similar situations
occur also in physics when one is studying an experiment which is re-
peated many times and the quantity of interest is not the outcome of
a specific realization of the experiment but again the distribution of
outcomes over the collection of experiments; see [15] for an example
from time-resolved fluorescence. In such situations, it might be advan-
tageous to use a stochastic model from the outset.

In the approach we present, it does not matter from which source the
randomness arises, both aspects can be analyzed simultaneously in the same
framework; moreover, the results will contain the well-known results from
the deterministic theory by specialization to “constant” random variables.

In the following we assume that the original linear problem is influ-
enced by some external random parameter ω, element of a probability space
(Ω,A, µ), i. e., for fixed ω we have the equation

A(ω)x(ω) = y(ω) . (1.1)

Here, A and y are L(X, Y )- and Y - valued measurable functions, which
implies by using measurable selection theorems (cf. e. g. [6]) that also x
is measurable (or, in case of multiple solutions, that measurable selections
exist). If A(ω) is a. s. a compact operator, then equation (1.1) is ill posed
and we have to use, e. g., Tikhonov regularization to solve it in a stable
way. The regularized solution xδ

α,Aξ(ω) obtained from noisy data yδ using an
approximate operator Aξ with Tikhonov-regularization is given by

xδ
α,Aξ(ω) := (Aξ(ω)∗Aξ(ω) + αI)−1Aξ(ω)∗yδ(ω) =: Rδ

α(ω)yδ(ω) , (1.2)
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which is now a random variable. The aim is to estimate the deviation between
the least-squares minimum-norm solution x†(ω) of (1.1), which is a random
variable (see [9, 10]) and the approximation xδ

α,Aξ(ω) in dependence of the
noise in the data and the operator. There are convergence results available
for stochastic noise for the situation that the noise level is defined via an
expected value E(‖y − yδ‖2) = δ2 and deviation and convergence are then
also measured via expected values as E(‖xδ

α − x‖2) (see [16, 22, 17, 4]).
As motivated above, we use convergence in distribution for measuring con-

vergence, and quantify this by using the metric which generates convergence
in distribution, the Prokhorov metric. Based on the probability measure µ
we denote the distribution of an X-valued random variable x by µx, i. e., µx

is a probability measure on X with

µx(B) = µ({ω | x(ω) ∈ B}) =: µ
(

x−1(B)
)

(B ⊂ X, Borel-set). (1.3)

The distributions µy and µA of y and A are defined analogously.
Convergence in distribution of random variables is now defined as weak

(-star) convergence of their distributions, which is generated by the following
metric: The Prokhorov distance between two measures µ and µ̃ is defined as
(see, e. g., [3, 14, 18, 5])

ρ(µ, µ̃) = inf{ε > 0 | µ(B) ≤ µ̃(Bε) + ε, ∀Borel-sets B}, (1.4)

where Bε := {z ∈ Z | d(z, B) ≤ ε}. Hence, if the random variables x and z
have the distributions µx and µz, respectively, then

ρ(µx, µz) = inf{ε > 0 | µ{‖x − z‖ > ε} < ε}. (1.5)

If a sequence of random variables xn converges to x in distribution, then
for any bounded uniformly continuous real-valued function f , also the ex-
pectations of the random variables obtained by applying f to the original
sequence converge, i. e., E(f(xn)) → E(f(x)) (see, e. g., [3]). This result is
not quantitative. Since we aim at quantitative estimates, i. e., convergence
rates, the following estimate between the Prokhorov distance of two distri-
butions and the difference between expectations of nonlinear functionals of
the underlying random variables is important:

Let f be a bounded Lipschitz continuous real valued function on X with
Lipschitz constant L and bound C; then for X-valued random variables x
and z with distributions µx and µz,

| E(f(x)) − E(f(z)) |≤ (L + 2C)ρ(µx, µz). (1.6)
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This follows quite easily from (1.5) [23] and allows to deduce quantitative
convergence results for expectations of certain nonlinear functionals of ran-
dom variables from the convergence rates in the Prokhorov metric we prove
in this paper.

If now, x† is the least-squares minimum-norm solution of (1.1) with dis-
tribution µx† , our aim is to estimate ρ(µx† , µxδ

α,Aξ
) in terms of the Prokhorov

distances of input quantities, namely of ρ(µA, µAξ) and ρ(µy, µyδ). We do this
by splitting the error term into several parts and estimating them separately
by methods developed in [11]:

The general principle for obtaining these estimates is to first construct
point-wise estimates for fixed ω, which can be obtained from traditional
(deterministic) regularization theory, and then to lift them to the space of
probability measures equipped with the Prokhorov metric. For the latter
step, estimates about the tail behaviour of certain distribution, i. e., about
the probability of large deviations, have to be used.

From such estimates for ρ(µx† , µxδ
α,Aξ

), one can finally obtain estimates

for | E(f(x†))−E(f(xδ
α,Aξ)) | via (1.6) for any bounded Lipschitz continuous

real valued function f . In addition, by (1.5), the estimate for ρ(µx† , µxδ
α,Aξ

)

gives information about a confidence region for xδ
α,Aξ(ω) in the sense de-

scribed above. Such estimates are reminiscent of estimates used in function
estimation from point values (cf. e. g. Corollary 2 in [20]).

We finally note that although we exemplify our method for a specific
method, namely Tikhonov regularization, for linear problems, the principle
is of much wider applicability. In this paper, we concentrate on outlining
this principle, which does, on this level, not yet result in a new computa-
tional method, but in a new view on an existing method concerning error
estimates. When this view is combined with parameter choice strategies like
the discrepancy principle or similar strategies involving the noise level (see
[8, 7]), new ways for computing regularization parameters will result since
the concept of noise level is different. See the remark at the end of Section 4
for a first hint into this direction. All these aspect will be topics for future
work.

2 Lifting of Hölder Estimates to Spaces of

Probability Measures

Since deterministic error estimates for the regularization of mildly ill-posed
problem are usually of Hölder type (as opposed to the severely ill-posed case,
where one obtains logarithmic estimates, see e. g. [13]), the first task is to
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lift (local) Hölder estimates for mappings between Hilbert spaces (or, more
general, metric spaces) to spaces of probability measures on these spaces,
equipped with the Prokhorov metric. This can then be used for lifting de-
terministic error estimated for all kinds of (regularization) methods to the
stochastic situation. In this paper, where we will only deal with linear in-
verse problems, we will not yet use this result verbatim; the reason for this is
that for linear problems, we can split the total error into several parts, and
for each part, we use a variant of the general lifting result and of its proof.
Nevertheless, we formulate and prove this result also for later use, e. g., for
nonlinear problems. We proceed along the lines of [11] where this was done
for local Lipschitz estimates.

If F : X → Y , then we define the lifting F̃ to the spaces of probability
measures on metric spaces X and Y , equipped with the metrics d and d̃,
respectively, in the following way: For a probability measure µ on X, F̃ (µ)
defines a probability measure on Y via

F̃ (µ)(B) := µ
(

F−1(B)
)

= µ{x | F (x) ∈ B} (B ⊂ Y, Borel-set) .

In the following let F be locally Hölder continuous with Hölder exponent
0 < γ ≤ 1, where the Hölder constant is controlled by a monotonically
increasing, right continuous function h : R

+ → R
+,

d̃(F (z), F (z̃)) ≤ h(max{d(z, 0), d(z̃, 0)}) d(z, z̃)γ (z, z̃ ∈ X ). (2.1)

Since the Hölder constant depends on the size of z and z̃, it is reasonable
that for lifting such an estimate to probability measures, we have to introduce
some kind of balancing which ensures that the probability of large elements
is small, which is a requirement on the tail behavior of one of the measures
involved. We assume that the measure µ̃ fulfills, with some monotonically
decreasing, right continuous function κ (κ(ϑ) → 0, ϑ → ∞), the following
decay condition:

µ̃(B(z0, ϑ)′) ≤ κ(ϑ) (ϑ > 0) . (2.2)

Here B(z0, ϑ) denotes a ball with radius ϑ around some specific element z0,
by B′ we denote the complement of a set B, i. e., for B ⊂ X, B′ := X − B.

The following theorem is an extension of Theorem 1 in [11] and shows
that the lifted operator F̃ fulfills a Hölder condition with the same exponent
as the original operator F :

Theorem 2.1. Let assumptions (2.1) and (2.2) be fulfilled. Then we have

ρ(F̃ (µ), F̃ (µ̃)) ≤ (2.3)

≤ inf
ϑ>0

max{ρ(µ, µ̃)γh(d(z0, 0) + ϑ + ρ(µ, µ̃)), ρ(µ, µ̃) + κ(ϑ)} .
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Especially, with κ−1(τ) := inf{ϑ ≥ 0 | κ(ϑ) ≤ τ} we obtain the Hölder
estimate

ρ(F̃ (µ), F̃ (µ̃)) ≤ (2.4)

≤ ρ(µ, µ̃)γmax{h
(

d(z0, 0) + κ−1(ρ(µ, µ̃)) + ρ(µ, µ̃)
)

, 2 ρ(µ, µ̃)1−γ}.

Proof. For obtaining an estimate for the Prokhorov distance of F̃ (µ) and
F̃ (µ̃), according to the definition of F̃ and the Prokhorov metric, we have to
estimate the infimum of all ε > 0 s. t.

µ(F−1(B)) ≤ µ̃(F−1(Bε)) + ε for all Borel-sets B . (2.5)

For δ > ρ(µ, µ̃) and ϑ > 0 we have, due to (2.2),

µ(F−1(B)) ≤ µ̃(F−1(B)δ) + δ

≤ µ̃(F−1(B)δ ∩ B(z0, ϑ)) + µ̃(B(z0, ϑ)′) + δ (2.6)

≤ µ̃(F−1(B)δ ∩ B(z0, ϑ)) + κ(ϑ) + δ.

We now construct Bε with F (F−1(B)δ ∩ B(z0, ϑ)) ⊆ Bε which is equivalent
to F−1(B)δ ∩ B(z0, ϑ) ⊆ F−1(Bε).

For z in F−1(B)δ ∩B(z0, ϑ) the distance of F (z) to B can be bounded as
follows: Choose z̃ ∈ F−1(B) with d(z, z̃) ≤ δ. Since d(z, z0) ≤ ϑ, we have

d̃(F (z), F (z̃)) ≤ h(max{d(z, 0), d(z̃, 0)}) d(z, z̃)γ

≤ h(d(z0, 0) + max{d(z, z0), d(z̃, z0)}) δγ (2.7)

≤ h(d(z0, 0) + ϑ + δ) δγ .

Combining (2.6) and (2.7) we obtain

µ(F−1(B)) ≤ µ̃
(

F−1(Bh(d(z0,0)+ϑ+δ) δγ

)
)

+ κ(ϑ) + δ .

Using the continuity of h from the right, (2.3) now follows by taking the
infimum over all δ > ρ(µ, µ̃) and ϑ > 0. For the choice ϑ = κ−1(ρ(µ, µ̃)),
(2.4) is obtained.

The following special case is important if we consider the approximation
of a deterministic quantity µ̃ by a probability distribution µ:

Corollary 2.2. Let µ̃ be a point-measure δz0
and let assumption (2.1) be

fulfilled. Then

ρ(F̃ (µ), F̃ (µ̃)) ≤ ρ(µ, µ̃)γ max{h(d(z0, 0) + ρ(µ, µ̃)), ρ(µ, µ̃)1−γ} .

Proof. This follows from the fact that for a point-measure µ̃ we have (2.2)
with κ(ϑ) = 0 for ϑ > 0. Since h is monotonically increasing, the infimum
in (2.3) is attained for the limit ϑ → 0.
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3 Lifting of Convergence Rates

It is a general result that for an ill-posed problem convergence rates for
regularized solutions of the form ‖x†−xδ

α(δ)‖ = O(f(δ)) can only be achieved

if the solutions x† (or, equivalently, the exact right hand sides) satisfy certain
abstract smoothness conditions (see, e. g. [8]). In these “source conditions”
it is required that the exact solution x† is in the range of a certain operator.
For instance if x† has the representation x† = (A∗A)νv with ν ≤ 1, then it
can be shown that the approximation error for Tikhonov regularization (and
many other methods) behaves as

∥

∥x† − xα

∥

∥ ≤ ‖v‖αν .
In order to obtain convergence rates for (1.1), we have to transfer these

smoothness conditions to a stochastic setting. We do this point-wise with
respect to ω in combination with a requirement that the probability of the
norm of the source function v being large decays appropriately.

First of all we have to introduce appropriate smoothness sets. Conver-
gence rates under rather general source conditions were proven in [21]. Fol-
lowing the notation in [21] we consider sets defined by functions f with the
following properties:

1. limλ→0 f(λ) = 0
2. f(λ) is strictly monotonically increasing
3. λf−1(λ) is convex on R

+.







(3.1)

If f satisfies conditions (3.1) we define the smoothness set Xf,τ (ω) as

Xf,τ (ω) := {z ∈ X | z = f
(

A(ω)∗A(ω)
)

v, ‖v‖ ≤ τ} . (3.2)

In order to obtain convergence rates in a stochastic setting we assume that
x†(ω) ∈ ⋃

τ>0 Xf,τ (ω) almost surely, and moreover, that the probability of
x†(ω) /∈ Xf,τ (ω) is small for large τ . This probability is measured by a
function g, which will influence the resulting convergence rates.

Definition 3.1. Let Xf,τ (ω) be a smoothness set as in (3.2) with a function
f satisfying (3.1). We say that a stochastic source condition for x† holds, if
there exists a decreasing function g(τ) such that

µ{ω | x†(ω) ∈ Xf,τ (ω)′} ≤ g(τ) . (3.3)

Section 5 is devoted to a detailed discussion of this stochastic source
condition for the example of an integral operator.

We want to lift convergence rate results from the deterministic case to
the stochastic case. In order to keep our results general, we introduce the
function h, which measures the speed of convergence, that can be obtained
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with Tikhonov-regularization, when x† is in the range of f(A∗A). In many
cases (e. g., for f(λ) = λν , ν ≤ 1) we have f ≡ h, but this need not be the
case, e. g., if saturation occurs (cf. e. g. [8]).

Definition 3.2. Let f satisfy (3.1). For a decreasing function h, we say that
f allows the deterministic convergence rate h, if for any continuous linear
operator A : X → Y , any x† and xα = (A∗A + αI)−1A∗Ax† we have

x† ∈ {z ∈ X | z = f
(

A∗A
)

v, ‖v‖ ≤ τ} ⇒
∥

∥x† − xα

∥

∥ ≤ τh(α). (3.4)

The most popular smoothness functions f are either of Hölder or of loga-
rithmic type, i. e., f(λ) = λν or f(λ) = (− ln λ)−ν . Convergence rate results
for these cases can be found in [8] and [13], respectively.

In the next theorem we show that deterministic convergence rates to-
gether with the stochastic source condition (3.3) yield convergence rates in
the Prokhorov metric:

Theorem 3.3 (Approximation Error). Let x†(ω) satisfy a stochastic
source condition (3.3). Assume that f allows the deterministic convergence
rate h as in (3.4). Then the distance of µx† and µxα in the Prokhorov metric
is bounded by

ρ(µx† , µxα) ≤ inf
τ≥0

max {τh(α), g(τ)} . (3.5)

Proof. In the following let τ be arbitrary, but fixed. For any Borel-set B,

µx†(B) = µ{ω | x†(ω) ∈ B} =

= µ{ω | x†(ω) ∈ B ∩ Xf,τ (ω)} + µ{ω | x†(ω) ∈ B ∩ Xf,τ (ω)′}. (3.6)

These two terms can now be estimated separately. Using the stochastic
source condition (3.3) we obtain for the second term that

µ{ω | x†(ω) ∈ B ∩ Xf,τ (ω)′} ≤ g(τ) .

In order to estimate the first term we use results from the deterministic the-
ory. First of all we observe that, using the notation Gα(ω) := (A(ω)∗A(ω) +
αI)−1(A(ω)∗A(ω)) we have (with a potentially set-valued G−1

α (ω))

µ{ω | x†(ω) ∈ B ∩ Xf,τ (ω)} ≤
≤ µ{ω | x†(ω) ∈ G−1

α (ω)Gα(ω)(B ∩ Xf,τ (ω))}
= µ{ω | xα(ω) ∈ Gα(ω)(B ∩ Xf,τ (ω))} .
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Since f allows the deterministic convergence rate h we have for z ∈ Xf,τ (ω)

‖Gα(ω)z − z‖ =
∥

∥

∥

[(

A(ω)∗A(ω) + αI
)−1(

A(ω)∗A(ω)
)

− I
]

z
∥

∥

∥

=
∥

∥α(A(ω)∗A(ω) + αI)−1z
∥

∥ ≤ τh(α) ,

where the last term is independent of ω. Hence, if z ∈ (B∩Xf,τ (ω)) then the
distance of Gα(ω)z to B is at most τh(α), i. e., Gα(ω)(B∩Xf,τ (ω)) ⊂ Bτh(α).
Hence, altogether we find that

µx†(B) ≤ µxα(Bτh(α)) + g(τ) ,

which holds for arbitrary choices of τ ≥ 0. By taking the infimum over τ we
obtain (3.5).

Since one of the functions in 3.5 is decreasing in τ and the other one is
increasing, the point where the infimum is attained can be found by equating
the two terms.

Remark 3.4 (Hölder source conditions). Let us exemplify the above
convergence rate result for the case of Hölder source conditions. It is well
known for Tikhonov regularization (see, e. g., [8, Example 4.15]) that f = λν ,
ν ≤ 1 allows deterministic convergence rates with h(α) = αν . Assume that
for this choice of f , the stochastic source condition (3.3) is satisfied with
g(τ) = c1τ

−e(ν), with some exponent e(ν) monotonically decreasing with ν
and some constant c1. We then obtain from (3.5) that

ρ(µx† , µxα) ≤ c2α
γ with γ =

νe(ν)

e(ν) + 1

holds with some appropriate constant c2. In particular, if the source condition
is fulfilled with an exponential decay rate, e. g., g(τ) = e−τ , we obtain the
rate O(αγ) for any γ < ν.

Hence, for these types of source condition we can expect Hölder rates
in (3.5), and the Hölder exponent approaches the one from the deterministic
setting when the probability of large τ , i. e. of source functions with large
norm, gets smaller.

Remark 3.5 (Deterministic Framework). The estimate (3.5) is sharp
in the sense that for the deterministic setting, the well-known convergence
rates for that case (see, e. g. [8]) are obtained as special case: If A and x are
deterministic then the associated measure µx is a point measure. Suppose
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that x† satisfies a source condition of the type x† = f(A∗A)v with some v;
then (3.3) becomes

µ{ω | x†(ω) ∈ Xf,τ
′} =

{

1 τ < ‖v‖
0 τ ≥ ‖v‖ .

Since we are interested in asymptotic convergence rates, we may choose α
small enough such that ‖v‖h(α) ≤ 1. In this case the infimum in (3.5) is
attained at τ = ‖v‖. Hence,

ρ(µx† , µxα) ≤ ‖v‖h(α),

which is the well-known convergence rate for the deterministic case.

4 Convergence Rates for Noisy Data

In order to estimate the total error ρ(µx† , µxδ
α,Aξ

), we split this term into

three parts: the approximation error (Theorem 3.3), the modelling error
(Lemma 4.1), and the propagated data error (Lemma 4.2). The resulting
estimate is presented in Theorem 4.3 and interpreted for the case of stochastic
noise in Remark 4.5.

If the exact data and operator y and A are themselves random variables
and perturbed by additional noise resulting in noisy data yδ and an inexact
operator Aξ, we have to impose an additional decay condition controlling the
probability that y and A differ from some deterministic quantities (e. g., their
means) A0 and y0 : Let β be some monotonically decreasing, right continuous
function with β(ϑ) → 0 for ϑ → ∞ such that

µ{ω | max{‖A(ω) − A0‖ , ‖y(ω) − y0‖} > ϑ} ≤ β(ϑ) (4.1)

holds. If A does not depend on ω or A(ω) is uniformly bounded, then this
condition is implied by the stochastic source condition (3.3).

The following two Lemmata are modifications of results in [11]. In con-
trast to [11], where the error in y and the error in A were combined into one
overall error, we now treat these two terms separately, which is advantageous
for obtaining optimal convergence rates.

Lemma 4.1. Let xα(ω) be as in Definition 3.2 and xα,Aξ(ω) denote the
Tikhonov-regularized solution with exact data y and noisy operator Aξ, i. e.,
xα,Aξ(ω) := (Aξ(ω)∗Aξ(ω) + αI)−1Aξ(ω)∗y(ω). Furthermore let A(ω) and
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y(ω) fulfill the decay condition (4.1). Then we have, with ρA := ρ(µA, µAξ),

ρ(µxα , µx
α,Aξ

) ≤
≤ inf

ϑ>0
max{ρA h̃α

(

max{‖A0‖ + ρA, ‖y0‖} + ϑ
)

, ρA + β(ϑ)}

≤ ρA max{h̃α

(

max{‖A0‖ + ρA, ‖y0‖} + β−1(ρA)
)

, 2} ,

where h̃α is defined as

h̃α(λ) :=
λ

α
+ 2

λ2

α3/2
. (4.2)

Proof. According to [11] we have

∥

∥(A(ω)∗A(ω) + αI)−1A(ω)∗ − (Aξ(ω)∗Aξ(ω) + αI)−1Aξ(ω)∗
∥

∥ ≤

≤
∥

∥A(ω) − Aξ(ω)
∥

∥

α
+ 2 max{‖A(ω)‖ ,

∥

∥Aξ(ω)
∥

∥}
∥

∥A(ω) − Aξ(ω)
∥

∥

α3/2
.

This yields the Lipschitz estimate

∥

∥F (A(ω), y) − F (Aξ(ω), y)
∥

∥ ≤
≤ h̃α

(

max ‖A(ω)‖ ,
∥

∥Aξ(ω)
∥

∥ , ‖y‖
) ∥

∥A(ω) − Aξ(ω)
∥

∥

for the operator F (A, y) := (A∗A + αI)−1A∗y and h̃α as in (4.2). The proof
now follows with Theorem 2.1 and the observation that for joint distributions
(A, y), (B, y) we have ρ(µ(A,y), µ(B,y)) = ρ(µA, µB).

Lemma 4.2. Let xα,Aξ(ω) be defined as in Lemma 4.1 and xδ
α,Aξ(ω) be as

in (1.2). Then we have

ρ(µx
α,Aξ

, µxδ
α,Aξ

) ≤ max

{

1

2
√

α
, 1

}

ρ(µy, µyδ) .

Proof. Spectral theory yields that for any bounded linear operator A,

∥

∥(A∗A + αI)−1A∗
∥

∥ ≤ 1

2
√

α
, (4.3)

which yields

∥

∥F (Aξ(ω), y(ω)) − F (Aξ(ω), yδ(ω))
∥

∥ ≤ 1

2
√

α

∥

∥y(ω) − yδ(ω)
∥

∥ ,

with F as in Lemma 4.1. The proof now follows as above with (4.3).
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A combination of Theorem 3.3, Lemma 4.1 and Lemma 4.2 yields our
main result. Applications of this theorem are presented in Remark 4.5 and
Section 5.

Theorem 4.3. Let the assumptions of Theorem 3.3 and Lemma 4.1 be ful-
filled. Then we have

ρ(µx† , µxδ
α,Aξ

) ≤
≤ inf

τ≥0
max {τh(α), g(τ)} +

+ inf
ϑ>0

max{ρA h̃α

(

max{‖A0‖ + ρA, ‖y0‖} + ϑ
)

, ρA + β(ϑ)}

+ max

{

1

2
√

α
, 1

}

ρ(µy, µyδ).

If the operator A is known exactly (i. e., Aξ = A, A may still be ran-
dom!), then the decay condition (4.1), which is used in Lemma 4.1 only, is
superfluous, and the theorem above simplifies to the following result:

Corollary 4.4. Let the assumptions of Theorem 3.3 be fulfilled and the (pos-
sibly random) operator A be given without noise. Then we have the conver-
gence rate

ρ(µx† , µxδ
α
) ≤ inf

τ≥0
max {τh(α), g(τ)} + max

{

1

2
√

α
, 1

}

ρ(µy, µyδ) .

Remark 4.5 (Stochastic noise). We now consider the special case where
A, x and y are deterministic, but contaminated by stochastic noise, which
renders Aξ and yδ being stochastic. Conditions (3.3) and (4.1) are therefore
fulfilled with g and β being characteristic functions. The regularized solutions
xδ

α,Aξ(ω) are random variables. Assume that x† is such that h(α) = αν with
ν ≤ 1 (cf. Remark 3.4). Combining Remark 3.5 and Theorem 4.3 yields the
error estimate (with v as in Remark 3.5, some C > 0, ρA := ρ(µA, µAξ) and
ρy := ρ(µy, µyδ))

ρ(µx† , µxδ
α,Aξ

) ≤ ‖v‖αν +
C

α3/2
ρA +

1

2
√

α
ρy .

An appropriate choice for the regularization parameter α to obtain conver-
gence as ρA → 0 and ρy → 0 depends on the relation between these two

”input” errors. If ρy = O
(

ρ
(2ν+1)/(2ν+3)
A

)

we take α ∼ ρ
2/(2ν+3)
A which yields

the convergence rate ρ(µx† , µxδ
α,Aξ

) = O
(

ρ
2ν/(2ν+3)
A

)

. If ρA = O
(

ρ
(2ν+3)/(2ν+1)
y

)

,

especially if there is no noise in A, we may instead choose α as

α ∼ ρ
2

2ν+1

y (4.4)

13



which yields

ρ(µx† , µxδ
α,Aξ

) = O
(

ρ(µy, µyδ)
2ν

2ν+1

)

,

i. e., we obtain the same convergence rate as in the deterministic case.

Note that (4.4) is an a-priori rule for choosing the regularization param-
eter like in the deterministic theory (cf. [8]), but now referring to the data
error in the Prokhorov metric instead of a norm bound. At this point, our
theory changes also the computations via a different parameter choice rule.
The same will be true for (more realistic) a posteriori parameter choice rules
like a discrepancy principle using the Prokhorov metric.

5 An Application: Reconstruction of a Ran-

domly Blurred Image

Now we consider, as an example, the deblurring of an image with stochastic
influence on the blurring kernel: Let x† ∈ L2(R2) be a grey-scale image
which undergoes a random blurring effect (e. g. atmospheric turbulence, lens
defects, defocus); the outcome of this process, y, is measured.

We can model the blurring effect by an integral operator with kernel
k(s, t, ω), k ∈ L2(R2×R

2×P ), where P is a probability space and ω describes
the random effects. The observed image y(s, ω) is then given by

Kx†(s) :=

∫

k(s, t, ω)x†(t) dt = y(s, ω), s ∈ R
2.

Since in general the real blurring kernel is unknown, this model is replaced
by one with some averaged blurring kernel k0 ∈ L2(R2 × R

2):

K0x :=

∫

k0(s, t)x(t) dt = y(s, ω). (5.1)

An approximation to the exact image can now be obtained by solving equa-
tion (5.1) using Tikhonov regularization

xα(ω) := (K∗
0K0 + αI)−1K∗

0y(·, ω).

Note that xα(ω) depends on the random variable ω. In the presence of
measurement errors, only a noisy version yδ of y is available, and hence we
obtain

xδ
α(ω) := (K∗

0K0 + αI)−1K∗
0y

δ(·, ω) . (5.2)

14



Using the results of the previous sections, we can estimate the Prokhorov
distance between xδ

α and x† in terms of the Prokhorov distance between the
random kernel k(s, t, ω) and the estimated kernel k0(s, t) and the noise level
ρ(y, yδ).

The stochastic source condition (3.3) can be interpreted for Gaußian ker-
nels:

Assumption 5.1. Assume that the blurring operator K has an isotropic
blurring kernel k ∈ L2(R2 × R

2 × P ) in the form of a Gaußian

k(s, t, ω) = γ(s − t, σ(ω)) =
1

2πσ(ω)2
exp

(−|s − t|2
2σ(ω)2

)

and let K0 be the integral operator with kernel k0(s, t) := γ(s − t, σ0).

Under this assumption the stochastic source condition (3.3) can be inter-
preted as a smoothness condition on x† and a condition on the tail of the
distribution of σ(ω), i. e., the width of the blurring kernel:

Lemma 5.2. Let x† ∈ H2ν(R2), the blurring kernel k as in Assumption 5.1
and assume

µ{ω | σ(ω)2ν ≥ τ} ≤ g̃(τ). (5.3)

Then x† fulfills a stochastic source condition (3.3) with a function f(λ) =
(− log(λ

e
))−ν for λ < 1 satisfying (3.1) and g(τ) = g̃( τ

π2ν‖x‖H2ν
).

Proof. In the Fourier domain, f(K∗K) can be written as multiplication op-
erator: f(K∗K)x = f(K2)x =F−1(f(gσ(·))2Fx), where

gσ(ξ) = Fγ(·, σ(ω)) = exp(−1
2
ξ2π2σ(ω)2)

and F denotes the Fourier transform. Therefore, (3.3) is equivalent to

µ{ω|‖ (Fx†)(ξ)

f(exp(−ξ2π2σ2))
‖ ≥ τ} ≤ g(τ) .

We choose f(λ) = (− log(λ
e
))−ν for λ ≤ 1 and extend f to R

+ such that (3.1)
holds. Since gσ(ξ) ≤ 1 this extension is irrelevant for the source condition
yielding f(exp(−ξ2π2σ(ω)2)) = (π2|ξ|2σ2 + 1)−ν . The above estimate now
reads

µ{ω|
∥

∥(Fx†)(ξ)(|ξ|2 + (πσ)−2)ν
∥

∥ σ(ω)2νπ2ν ≥ τ} ≤ g(τ) .

Since for x† ∈ H2ν(R2), ‖Fx†(|ξ|2 + (πσ)−2)ν‖ ≤ ‖x†‖H2ν , we obtain that a
stochastic source condition (3.3) is fulfilled if

µ{ω | σ(ω)2ν ≥ τ

π2ν ‖x‖H2ν

} ≤ g(τ) .
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So if x is smooth enough and the probability of σ(ω) being large decays
sufficiently fast, we can obtain convergence rates for ρ(µx† , µxα) using the
results from the previous sections:

We estimate the distance of the operators K and K0 in terms of the
parameter σ. The proof uses again a lifting argument like in Section 2:

Lemma 5.3. Let the blurring operators K and K0 be as in Assumption 5.1.
Then, if σ0 > ρ(σ, σ0), we have the estimate

ρ(K, K0) ≤ 2e−1 1

σ0 − ρ(σ, σ0)
ρ(σ, σ0) .

Proof. First of all we construct an estimate for ‖K − K0‖ in dependence of
σ(ω), where we fix ω and write σ for σ(ω). The operator norm of K can be
estimated via the L2-norm of the kernel γ defined in Assumption 5.1. The
probability measure associated to K0 is the point measure at σ0. Using the
Fourier transform and the Plancherel theorem we conclude that the operator
norm of the convolution operator ‖K‖L2→L2 can be written as

‖K‖L2→L2 := sup
‖x‖L2≤1

‖Kx‖ = sup
‖Fx‖L2≤1

‖FγFx‖ = ‖Fγ‖∞ .

Hence, for the difference of K and K0 we obtain

‖K − K0‖L2→L2 = ‖Fγ(·, σ) −Fγ(·, σ0)‖L∞ =

=
∥

∥exp(−1
2
ξ2π2σ2) − exp(−1

2
ξ2π2σ2

0)
∥

∥

L∞

≤ 2e−1 max{ 1

|σ| ,
1

|σ0|
}|σ − σ0|. (5.4)

This estimate can now be lifted to the stochastic case by a slight modification
of the arguments in [11] or, more general, of Section 2. Since here, the
Lipschitz constant does not grow for σ → ∞, but for σ → 0, we cannot
apply Theorem 2.1 directly to lift this estimate, but have to modify the
corresponding proof slightly: Instead of intersecting with the set B(z0, ϑ), we
now use the complement of this set, centered around zero. Furthermore, as
in the proof of Corollary 2.2 we can take advantage of the fact that µK0

is
a point-measure, and choose the particular radius ϑ = σ0. The proof now
follows with similar arguments as (2.7), (5.4) implies the claimed estimate.

We now obtain the main result of this section:
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Theorem 5.4. Let x† ∈ H2ν(R2), the blurring kernel k be as in Assump-
tion 5.1 and σ0 > 0. Furthermore suppose that σ(ω) satisfies (5.3) with
g̃(τ) = τ−m. Then we have, for xδ

α as in (5.2), the estimate

ρ(µx† , µxδ
α
) = O

(

(− log(α
e
))−ν m

m+1

)

+ O
(

ρ(σ, σ0)

α3/2

)

+ O
(

ρ(y, yδ)√
α

)

for α → 0, ρ(y, yδ) → 0 and ρ(σ, σ0) → 0.

Proof. According to Lemma 5.2, x† satisfies a stochastic source condition
with f(λ) = (− log(λ

e
))−ν for λ ≤ 1. By [13] we know that f(λ) allows a

deterministic convergence rate (3.4) with h(α) = C(− log(α
e
))−ν for α suffi-

ciently small, hence the assumptions of Theorem 3.3 are satisfied. Using the
assumed decay condition on σ we find that

inf
τ≥0

max{τC(− log(α
e
))−ν , g̃(τ)} = O(− log(α

e
))−ν m

m+1 .

For an application of Theorem 4.3 to our example we have to check con-
dition (4.1). Since ‖K(ω)‖ = 1 and ‖y(ω)‖ ≤ ‖K(ω)‖‖x†‖ ≤ ‖x†‖, this
condition holds with A0 = 0, y0 = 0, and β(ϑ) = 0 for ϑ > max{1, ‖x†‖}.
Now the result follows from Theorem 4.3, Lemma 5.3 and the definition of h̃α

in (4.2):

inf
ϑ>0

max{ρ(K, K0) h̃α

(

ρ(K,K0) + ϑ
)

, ρ(K, K0) + β(ϑ)}

= e−1 ρ(σ, σ0)

σ0 − ρ(σ, σ0)
max{h̃α(e−1 ρ(σ, σ0)

σ0 − ρ(σ, σ0)
+ max{1,

∥

∥x†
∥

∥}), 1}

=
ρ(σ, σ0)

α3/2
O(1) = O

(

ρ(σ, σ0)

α3/2

)

This estimate also gives rise to an a priori choice for the regularization
parameter α.

Remark 5.5. If σ(ω) satisfies (5.3) with an exponentially decaying g̃(τ), the
first term in the estimate of Theorem 5.4 can be replaced by O((− log(α))γ)
for any γ < ν. This holds, for instance, in the important case that σ(ω) is
normally distributed.
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