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Abstract. This paper investigates the stable identification of local volatility surfaces σ(S, t)
in the Black-Scholes/Dupire equation from market prices of European Vanilla options. Based
on the properties of the parameter-to-solution mapping, which assigns option prices to
given volatilities, we show stability and convergence of approximations gained by Tikhonov
regularization. In case of a known term-structure of the volatility surface, in particular if the
volatility is assumed to be constant in time (σ(S, T ) = σ(S)), we prove convergence rates under
simple smoothness and decay conditions on the true volatility. The convergence rate analysis
sheds light onto the importance of an appropriate a-priori guess for the unknown volatility
and the nature for the ill-posedness of the inverse problem, caused by smoothing properties
and the nonlinearity of the direct problem. Finally, the theoretical results are illustrated by
numerical experiments.

1. Introduction

Financial derivatives are contracts between two or more parties, where payment is derived from
some underlying asset like a stock, bond, commodity, interest or exchange rate. In the famous
Black-Scholes model [3], the stochastic behaviour of the underlying asset S is modeled by a
geometric Brownian motion

dS(t) = µSdt + σSdW (t). (1.1)

Here, Wt denotes a standard Wiener process. The parameters µ and σ are called drift rate and
volatility of the underlying asset. By Ito’s rule [20], the stochastic behaviour of a derivative
security V (S, t) is governed by the stochastic differential equation

dV (S, t) =

(
Vt +

1

2
σ2S2VSS + µSVS

)
dt + σSdW (t). (1.2)

In their seminal paper [3], Black and Scholes constructed a dynamic portfolio consisting
of a derivative security and a variable amount of the underlying completely eliminating risk in
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(1.2). In the absence of arbitrage the instantaneous return of this portfolio equals the return of
a riskless investment, denoted by the interest rate r, which together with (1.2) yields the famous
Black-Scholes equation

Vt +
1

2
σ2S2VSS + rSVS = rV. (1.3)

As an important consequence of no-arbitrage arguments (see, e.g., [28]), the drift rate µ does
not enter (1.3). The payoff, i.e. the amount of money received when exercising the option at
maturity, enters via the terminal condition, e.g.,

V K,T (S, t = T ) = max(S − K, 0) (1.4)

for a European call option with strike K and maturity T . In the case of constant parameters
the value of a European call option is then given by (the Black-Scholes formula)

C = S0N (d1) − e−rT KN (d2)

with

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√

T
, d2 = d1 − σ

√
T .

The price of a European call option as a function of volatility C(σ) is strictly monotone
and the unique value of σ corresponding to a given option price C(K, T ; S, t) for strike K and
maturity T , current stock price S and time t, is called (Black-Scholes-) implied volatility. In
contrast to the constant parameter assumptions of the Black-Scholes model, implied volatilities
show a distinct dependence on strike and maturity, which is referred to as the smile- respectively
term-structure. One possibility to explain the volatility smiles in the (extended) Black Scholes
world is to use a deterministic volatility function σ(S, t) in (1.1). For other generalizations like
stochastic volatility and jump-diffusion models, see, e.g., [15, 24]).

Once, σ(S, t) and r have been specified a variety of options can be priced using equations
similar to (1.3).

Volatility identification in extended Black-Scholes models, also referred to as calibration to
market prices, has recently been investigated by several authors, e.g., in [5, 6, 14, 19, 22, 23] and
it has been observed to be an ill-posed problem in the sense that reconstruction of local volatility
is unstable with respect to errors in the data.

In [19, 22] emphasis has been put on certain aspects of a numerical implementation. In both
papers, motivated by heuristic arguments, Tikhonov regularization is applied to stabilize the
inverse problem. A different, computationally cheap estimation of local volatilities has recently
been proposed in [13].

The authors of [5] consider a linearized problem and derive a uniqueness result for the purely
state dependent case σ = σ(S). Uniqueness for state dependent volatilities and the relation
of optimal control problems corresponding to time discrete and time continuous observation
are investigated in [23]. In [6], a quite general existence result for the pricing equation (1.3)
is derived and compactness of the corresponding solution operator is shown for an reasonable
choice of function spaces. Stability and convergence of the Tikhonov-regularized solutions follows
directly by applying the standard convergence theory of Tikhonov regularization for non-linear
inverse problems [9].

The case of purely time dependent volatilities is extensively studied in [14], and the ill-
posedness of the inverse problem is proven.

In the first part of this work, we consider the operator connecting volatilities with
corresponding option prices (the parameter-to-solution map) and investigate its properties in



Tikhonov Regularization Applied to the Inverse Problem of Option Pricing 3

detail. Then we state the inverse problem of option pricing and discuss its stable solution via
Tikhonov regularization and convergence of the approximations for various observation spaces.

In the second part, we focus on derivation of convergence rate results: The question of
convergence rates of Tikhonov regularization applied to the inverse problem of option pricing
has been investigated in [6] only in the general framework of [9], Section 10 so far; in particular,
no interpretable sufficient conditions for application of the convergence rate result of [9] have
been given. In Section 4, we prove convergence rates for the case of time-independent volatilities
σ = σ(S) under simple smoothness assumptions. The results can be generalized to a class of
local volatility functions, where the term structure is assumed to be known, more precisely,
σ(S, t) = σ(S)ρ(t) and the function ρ(t) is known. As an implication of the convergence
rates considerations we obtain uniqueness of solutions to the inverse problem under the given
assumptions. Furthermore, we show that it is possible to weaken the assumptions in the case of
observations of first derivatives of the data (which amount to prices of digital call options in our
case, which are also observable on the markets).

Finally, we discuss some aspects of an efficient implementation and present numerical tests,
which confirm the theoretical results.

2. The inverse problem of option pricing

The inverse problem of option pricing under consideration is the identification of a local volatility
surface σ(S, t) such that the solutions C(S, t; K, T ) = CK,T (S, T ) of

Ct +
1

2
σ2 S2CSS + (r − q)S CS − r C = 0 (2.1)

C(S, T ; K, T ) = (S − Ki)
+, for S > 0. (2.2)

match quoted market prices C∗(K, T ). Each observation is linked with the solution of equation
(2.1) with different terminal conditions (2.2). Under the assumption that the interest and
dividend yield r, q are functions of time only, C(S, t; K, T ) also satisfies the following dual
(Dupire-) equation (see [5, 7])

−CT +
1

2
σ2(K, T )K2CKK + (q − r)K CK − q V = 0 (2.3)

with initial value

C(S, t; K, T = t) = (S − K)+, for K > 0. (2.4)

The substitutions K = ey, τ = T − t, u(y, τ) = e
R

T

t
q(s) ds C(K, T ), a(y, τ) = 1

2σ2(K, τ) and
b(τ) = q(τ) − r(τ) yield

−uτ + a(y, τ) (uyy − uy) + b(τ)uy = 0 (2.5)

u(y, 0) = (S∗ − ey)+. (2.6)

Next, we show well-posedness of the direct problem, i.e. stable solution of (2.5), (2.6) for
the following set of admissible parameters:

Definition 2.1 Let a, a > 0 and a ≤ a∗ ≤ a with ∇a∗ ∈ (L2(Q))2 and Q := R × (0, T ). Define

K(a∗) := {a ∈ a∗ + W 1
2 (Q) : a ≤ a ≤ a}. (2.7)

By W 2,1
p we denote the usual Sobolev spaces, cf. [1]. The condition a ∈ K(a∗) is equivalent to σ

being uniformly bounded from above and below and ∇σ ∈ (L2(Q))2.

The main properties of the parameter to solution map F : a → u(a), where u(a) is the
solution of (2.5), (2.6) are summarized in the following:
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Theorem 2.1 There exist a p∗ > 2 such that F : K(a∗) → W 2,1
p,loc(Q) is continuous and compact

for 2 ≤ p < p∗. Moreover, F is weakly (sequentially) continuous and thus weakly closed.

The proof can be found in the Appendix.

3. Stability and convergence of Tikhonov regularization

Continuity, compactness and weakly closedness of the parameter to solution map F : K(a∗) →
W 2,1

2,loc(Q) immediately imply local ill-posedness (see [17]) of the inverse problem of option pricing:
Let an be a bounded sequence in K(a∗) that has no convergent subsequence. Since an is bounded,
it has a weakly convergent subsequence ank . Now by compactness and weak closedness of the
operator F , the sequence F (ank) converges. This means that similar option values may be
linked to completely different volatilities, i.e., identification of a volatility surface corresponding
to perturbed option prices is ill-posed.

For a mathematical analysis of the inverse problem, we assume that continuous observation
of option prices u(y, τ) is available on Q (or at least on a strip Q∆ := R × (T − ∆, T ) if
a(y, t) = a(y) does not depend on time). Stability and convergence results are stated for L2(Q)
as observation space and K(a∗) as set of admissible parameters. Nevertheless, the convergence
analysis below carries over to the case of a large class of observation spaces, as long as L2(Q)
can be continuously embedded. In particular the results are applicable to discrete observations
and state-continuous observations for certain maturities Ti.

We assume in the sequel that the “real” data u† are attainable, i.e., there exists an a† ∈ K(a∗)
with u† = u(a†), and that an upper bound δ for the noise level

‖u† − uδ‖ ≤ δ. (3.1)

of the observation is known a-priori. It is well-known that regularization without such a
knowledge is not possible in general (cf. [2, 9]).

For a stable solution of the inverse problem, we follow the standard Tikhonov approach
for regularization of nonlinear ill-posed problems: An approximate solution aδ

β of the inverse

problem u(a) := F (a) = uδ, is obtained by minimizing the Tikhonov functional (cf., e.g., [9])

Jδ
β(a) = ‖u(a) − uδ‖2

L2(Q) + β ‖a − a∗‖2
W 1

2 (Q). (3.2)

The applicability of the standard theory for Tikhonov regularization (see, e.g. [9]), is granted by
Theorem 2.1.

Theorem 2.1 naturally extends to more general observations, as long as a continuous
embedding of W 2,1

2,loc(Q) is available, i.p. to continuous observation in time/space and discrete
observations in space/time and to fully discrete data. The standard results for Tikhonov
regularization for nonlinear ill-posed problems [9] yield for fixed β > 0 existence of a minimizer,
stability of solutions aδ

β and convergence as β ∼ δ → 0. We summarize the main results and
refer to [9] for details and proofs. The first result states well-posedness of the regularized (β > 0)
problems:

Proposition 3.1 (Stability) Let β > 0 and {ak}, {uk} be sequences where uk → uδ and ak is
a minimizer of (3.2) with uδ replaced by uk. Then there exists a convergent subsequence of {ak}
and the limit of every convergent subsequence is a minimizer of (3.2).

The second result shows that the regularization parameter β can be chosen in dependence
of the noise level δ such that minimizers of the approximating problems converge (in a set valued
sense) to an a∗-minimum-norm-solution, i.e., a least squares solution of F (a) = uδ with minimal
distance to a∗ (see, e.g.,[9]).
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Proposition 3.2 (Convergence) Let ‖u − uδ‖ ≤ δ and β(δ) be such that β(δ) → 0 and
δ2/β(δ) → 0. Then every sequence {aδk

βk
}, where δk → 0, βk := β(δk) and aδk

βk
is a solution

of (3.2) has a convergent subsequence. The limit of every convergent subsequence is an a∗-
minimum-norm-solution. If the a∗-minimum-norm-solution a† is unique, then

lim
δ→0

aδ
β(δ) = a†.

It shall be mentioned, that the above general convergence theory for Tikhonov regularization
for nonlinear ill-posed problems in particular applies to the case of discrete observations.
However, the corresponding convergence results are rather weak, as they guarantee only
convergence of subsequences to some a∗-minimum-norm-solution, which, in case of finitely many
data, will not be unique in general. To study the structure of the inverse problem in more detail,
we will investigate the rate of convergence under additional assumptions below.

4. Convergence rates

In general convergence stated in proposition 3.2 will be arbitrarily slow. A rate of convergence
can only be derived under additional assumptions, e.g. in [9] a convergence rate of

‖aδ
β − a†‖ = O(

√
δ) and ‖F (aδ

β) − uδ‖ = O(δ) (4.1)

is proven for general inverse problems F (a) = uδ under the following assumptions:

(i) F is Fréchet differentiable and the derivative satisfies a Lipschitz condition

‖F ′(a) − F ′(a†)‖ ≤ γ ‖a− a†‖ (4.2)

(ii) A source condition

a∗ − a† = F ′(a†)∗w (4.3)

holds, with ‖w‖ sufficiently small.

For the inverse problem of option pricing under consideration, the Fréchet differentiability of the
parameter-to-solution map F follows by

Proposition 4.1 Let F : K(a∗) → W 2,1
p,loc(Q), 2 ≤ p < p∗ be the parameter-to-solution map,

i.e. u(a) = F (a) satisfy (2.5), (2.6). Then F is Fréchet-differentiable and satisfies a Lipschitz
condition (4.2).

Proof. We set for simplicity r = q = 0. By linearity, the directional derivative in direction p,
u′h, satisfies

−(u′h)τ + a ((u′h)yy − (u′h)y) = −h (uyy(a) − uy(a))

with homogeneous initial condition. Proposition A.1 yields existence and uniqueness of a solution
u′h ∈ W 2,1

p (Q) for 2 ≤ p < p∗. Note, that h ∈ W 1
2 (Q) ⇒ h ∈ Lq for 1 ≤ q < ∞. Linearity of

u′h = F ′(a)h in h and continuity in a imply Fréchet differentiability. By the same arguments we
get w := (v′h − u′h) = (F ′(b) − F ′(a))h solves

−wτ + a (wyy − wy) = −h ((v − u)yy − (v − u)y) − (b − a) ((v′h)yy − (v′h)y)

and hence by Proposition A.1 ‖w‖W 2,1
p

≤ c‖h‖W 2
1
‖(b − a)‖W 2

p
.
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For continuous observation in L2(Q) and time and space dependent volatility a ∈ K(a∗),
the source condition (4.3) requires the existence of a source function w, such that

∫

Q

p(uyy − uy)Wd(y, t) = (a† − a∗, p)1, ∀p ∈ H1(Q),

where W is a solution to the adjoint equation

Wt + (aW )yy + (aW )y = w,

with homogeneous boundary and terminal condition (cf., e.g., [6]). A similar representation holds
in the case of purely space dependent volatility and one maturity. It is not clear how to derive
reasonable sufficient conditions for the existence of such a source-function w.

In order to derive convergence rates under interpretable conditions, we use a problem
adapted theory, cf. [10] in the context of parameter identification in heat conduction: First, note
that data are usually very sparse in time direction (e.g. four maturities per year), and one cannot
expect to identify the term-structure of volatility accurately from such data. Therefore, we make
an additional assumptions on the term structure of volatility, e.g. σ = σ(K) or, more generally,
σ(K, T ) = ρ(T )σ(K) (see [4]), where in the second case the term structure ρ(T ) is assumed to be
known. For brevity, we restrict ourselves to case of one maturity and time independent volatility
(cf. e.g. [4, 5, 23]) in the sequel and assume continuous observations on an arbitrarily small
time interval (T − ∆, T ). For a ∈ K2(a

∗) := {q ∈ K(a∗) : q − a∗ ∈ W 2
2 (R), a∗ := a∗(y)}, the

Tikhonov functional now reads

Jδ
β(a) =

∫

Q∆

|u(a) − uδ|2d(y, t) + β ‖a− a∗‖2
W 2

2 (R), (4.4)

where u(a) is solution of (2.5), (2.6). Here Q∆ = R× (T −∆, T ). Stability for β > 0 with respect
to data noise and convergence are guaranteed by Proposition 3.1, 3.2. Following the ideas in
[10], we derive the convergence rates (4.1) under interpretable conditions.

Lemma 4.1 (compare Th. 6.1. in [10])
Let a† ∈ K2(a

∗) and u = u(a†). Additionally, let aδ
β ∈ K2(a

∗) denote a minimizer of (4.4) and

u(aδ
β) the corresponding solution to (2.5), (2.6) with a replaced by aδ

β. If there exists a function

ϕ ∈ W 2,1
2 (Q∆) ∩ Ẇ 1

2 (Q∆)

such that

(a† − a∗, p)W 2
2 (R) =

∫

Q∆

p (uyy − uy)ϕd(y, τ) ∀p ∈ W 2
2 (R),

then with β ∼ δ the estimates

‖aδ
β − a†‖W 2

2 (R) = O(
√

δ) and ‖u(aδ
β) − uδ‖L2(Q∆) = O(δ) (4.5)

hold.

Proof. The proof uses ideas from [10]. We assume again for simplicity that b = 0. Let u = u(a†),
then

‖uδ − u‖2
L2(Q∆) + β ‖aδ − a†‖2

W 2
2 (R) ≤ δ2 + 2 β (a† − a∗, a† − aδ)W 2

2 (R) (4.6)
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Now, β (a† − a∗, a† − aδ)W 2
2 (R) can be estimated as follows:

β (a† − a∗, a† − aδ)W 2
2 (R) = β

∫

Q∆

[
(a† − aδ) (uyy − uy))

]
ϕd(y, τ)

= β

∫

Q∆

[
−(uδ − u)t + aδ (uδ − u)yy − aδ (uδ − u)y

]
ϕd(y, τ)

= β

∫

Q∆

(
(uδ − u)

) {
ϕt + (aδϕ)yy + (aδϕ)y

}
d(y, τ)

≤ ε ‖u − uδ‖2
L2(Q∆) +

β2

4 ε

(
1 + 2 ‖aδ‖W 2

2 (R)

)
‖ϕ‖W 2,1

2 (Q).

The first term can be shifted to the left side of (4.6) which completes the proof.

Lemma 4.1 immediately yields global uniqueness of the inverse problem under the given
source condition. Uniqueness for a linearized problem has been proven in [4, 5] with different
methods.

With additional smoothness assumptions on a†−a∗, a function ϕ satisfying the requirements
of Lemma 4.1 can be constructed explicitly, which leads to the following

Theorem 4.1 Let the assumptions of Lemma 4.1 hold. Assume that w := (a† − a∗) and
g := ∂4

yw − ∂2
yw + w ∈ W 2

2 (R) satisfy

|gyy|, |gy|, |g| = O(e−B′y2

)

for some B′ large enough and that b(t) is Hölder continuous (f.i. b ∈ W 1
2 (0, T )). Then the rates

(4.5) hold.

Proof. Let

ϕ(y) =

∫ T

T−∆

(T − τ) (τ − T + ∆) a† (uyy − uy) dτ

and define
Φ(y, τ) = (T − τ) (τ − T + ∆) a† g

ϕ(y)
.

Then
∫ T

T−∆
(uyy − uy)Φ dτ = g by construction. Note that G(y, τ) := uyy − uy is a fundamental

solution of
−Gτ + (a G)yy + (a G)y + b Gy = 0

and satisfies (see [11], Corollary 1, Appendix)

G(y, τ) ≥ Ae−B(d)y2

for τ ≥ d > 0

for some B(d) > 0. Hence 1
ϕ(y) ≤ C eBy2

. It remains to be shown that ϕ ∈ W 2,1
2 (Q∆):

ϕ(y) =

∫ T

T−∆

(T − τ) (τ − T + ∆) a† (uyy − uy) dτ

=

∫ T

T−∆

(T − τ) (τ − T + ∆) (uτ − b uy) dτ

=

∫ T

T−∆

(2 T − ∆ − 2 τ)u − (T − τ) (τ − T + ∆) b uy dτ
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If b(t) is Hölder continuous with exponent α, then u(a; ·, τ) ∈ C2+α(R) for any τ > 0 (see [11])
and it follows (see proof of Proposition A.1) that uy ∈ W 2,1

2 (Q∆).

Theorem 4.1 makes assumptions on the derivatives of (a† − a∗) up to order 6. These
smoothness conditions can be relaxed if also derivatives of the data are available. Assume that
observation is taken in W 1,0

2,loc(Q∆) and define the Tikhonov functional

Jδ
β(a) = ‖u(a) − uδ‖2

W 1,0
2 (Q∆)

+ β ‖a − a∗‖2
W 1

2 (R) (4.7)

for parameters a ∈ K1(a
∗) := {q ∈ K(a∗) : q − a∗ ∈ W 1

2 (R), a∗ = a∗(y)}. By Theorem 2.1
F : K1(a

∗) → W 1,0
2,loc(Q∆) is compact and the stability and convergence results of Proposition

3.1, 3.2 are applicable. If there exists a function Φ ∈ Ẇ 1
2 (Q∆) such that

(a† − a∗, p)W 1
2 (R) =

∫

Q∆

p (uyy − uy)Φ d(y, τ) ∀p ∈ W 1
2 (R),

then integration by parts only once in the proof of Lemma 4.1 yields

β (a† − a∗, a† − aδ)W 1
2 (R)

≤ ε ‖u − uδ‖2
W 1,0

2 (Q∆)
+

β2

4 ε

(
1 + 2 ‖aδ‖W 1

2 (R) + ‖b‖L∞(0,T )

)
‖Φ‖W 1

2 (Q).

Thus, if we claim that g̃ := −wyy + w ∈ W 1
2 (R) satisfies

|g̃y|, |g̃| = O(e−B′y2

)

and follow the construction in the proof of Theorem 4.1, we get

‖aδ
β − a†‖W 1

2 (R) = O(
√

δ) and ‖F (aδ
β) − uδ‖W 1,0

2 (Q∆) = O(δ). (4.8)

This yields the following result:

Theorem 4.2 Let aδ
β ∈ K1(a

∗) denote a minimizer of (4.7) and u(aδ
β) be the corresponding

solution of (2.5), (2.6). If w := (a† − a∗) and g := −wyy + w ∈ W 2
2 (R) satisfy

|gy|, |g| = O(e−B′y2

)

for some B′ large enough and if b(t) is Hölder continuous (for instance, b ∈ W 1
2 (0, T )), then the

rates (4.8) hold.

Observation of derivatives of u(a) can be realized, for instance, by smoothing L2

observations. Since our choice of parameters (a ∈ W 1
2 ) implies (u(a) − u(b))|Q∆ ∈

C4+α,2+α/2(Q∆), we immediately obtain convergence rates, e.g. for Tikhonov regularization,
for the pre-smoothing process, i.e. we can give W 1

2 error estimates of the smoothed data in
terms of L2 error bounds for the initial data. A second way is to utilize market prices of digital
call options: deriving (2.3), (2.4) once by K it follows immediately that CK = e−yuy are the
values of digital calls, which are quoted on the markets and observable, too.

The given convergence rate results immediately imply uniqueness of solutions to the inverse
problem.

In reality, only discrete data (option prices for a discrete set of maturities and strikes)
are available, which suffices to apply the stability and convergence results of Section 3. The
assumption of availability of observations over a small time interval used for the derivation
of convergence rates is probably the more restrictive one: In [23], the relation of the optimal
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control problems related to observations over a small time interval (T −∆), T ) and time-discrete
observations at t = T have been investigated: In fact, for β > 0 the corresponding solutions
aδ

β(∆) converge to a solution of the problem with terminal observation only as ∆ → 0. However,
we were not able to show that this is true, if β and ∆ converge to 0 simultaneously. Note, that
a convergence rate result for β, ∆ → 0 would imply uniqueness of the inverse problem with only
terminal observation, which is not proven for general inverse parabolic problems (see, e.g., [18]).

5. Numerical implementation and test examples

For an illustration of the theoretical results derived in the last section, we investigate the the
numerical realization in the case of one maturity and a time independent volatility. For simplicity
we further assume the interest and dividend rates to be q = r = 0.

Several numerical techniques are frequently used for pricing options, for instance, bi- or
trinomial trees, Monte-Carlo methods, finite difference and finite element methods (see, e.g.
[26]). For a validation of our convergence results, we will utilize a finite element discretization of
the dual (Dupire-) equation in logarithmic variables, (2.5), (2.6) similar to [19]. The approach
via the dual equation allows to price a whole set of options via solution of only one pde.

As approximate solutions for our problem, we look for minimizers of the Tikhonov functional

J(a) = ‖u(a) − uδ‖2
u + β ‖a − a∗‖2

a (5.1)

for a given regularization parameter β and measured (noisy) data uδ. The norms ‖ · ‖u, ‖ · ‖a

will be chosen in dependence of the available data, in particular, we investigate the choices

‖u‖2
u =

∫
|u(y, T0)|2 dy or ‖u‖2

u =
∑

i

|u(yi, T0)|2

and choose for the regularization term

‖a‖2
a =

∫
|a|2 + |ay|2dy,

motivated by the convergence considerations of the previous sections.

5.1. Gradient evaluation

For minimizing the Tikhonov functional we employ gradient type (e.g., steepest descent or quasi-
Newton) techniques. In any of these methods, a gradient evaluation of (5.1) has to be performed,
which can be done efficiently via an adjoint approach. The directional derivative of (5.1) is given
by

J ′(a)[p] = 2(u(a) − uδ, u′(a)[p])u + 2β(a − a∗, p)a.

Assuming measurements at time T in L2, we have with r := u(a) − uδ, w := u′(a)[p]

(u′(a)[p], u(a) − uδ)u =

∫
w(y, T )r(y)dy

=

∫ T

0

d

dt

∫
w(y, t)R(y, t)dydt =

∫ T

0

∫
wtR + wRtdydt

=

∫ T

0

∫
[a(wyy − wy) − p(uyy − uy)]R + wRtdydt

=

∫ T

0

∫
[Rt + (aR)yy + (aR)y ]w − p(uyy − uy)Rdydt
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=

∫ T

0

∫
p(uyy − uy)Rdydt,

where we have chosen R to be a solution to

Rt + (aR)yy + (aR)y = 0

with terminal condition
R(y, T ) = r(y).

In case the state domain is approximated by a finite interval, R has to satisfy the additional
boundary condition

R(y, t) = 0, (y, t) ∈ ∂Ω × (0, T ).

Alternatively, one can also solve for S := aR, which solves

St + a(Syy + Sy) = 0

with
S(y, t) = a(y)r(y)

and homogeneous Dirichlet boundary conditions. Hence, the same solver as for the forward
problem can be utilized. A gradient direction is then given by solution of the variational problem

(g, p)a = 2(u(a) − uδ, u′(a)[p])u + 2β(a − a∗, p)a

= 2

∫ T

0

∫
p(uyy − uy)Rdydt + 2β(a − a∗, p)a.

(5.2)

Here, the bilinear form (·, ·)a depends on the regularization norm, e.g., (5.2) amounts to solving
the variational problem

−gyy + g = −2(uyy − uy)R + 2β(−daxx + da),

with da = a−a∗, when regularizing in H1. Summarizing, one step in a gradient or quasi-Newton
algorithm requires two numerical solutions of parabolic pde problems and one solution of the
variational problem above (5.2).

5.2. Approximations and incomplete data

For a numerical treatment, the state domain is restricted to a finite interval, e.g., we solve (2.5)
on the domain QM,T := ΩM × (0, T ), with ΩM := (−M, M), and introduce artificial boundary
conditions u(−M, t) = g0(t), u(M, t) = g1(t). Appropriate values for gi(t) can be deduced by
studying the decay properties of solutions u. E.g, for the choice g0(t) = 1, g1(t) = 0, the error
introduced in this manner is of the order of e−|M|, see [23]. Alternatively, approximate Neumann
boundary conditions can be derived, i.e. uy(−M) ∼ uy(M) ∼ e−|M|.

In the test example below, the boundary values gi(t) are determined in the following
manner: First we use the Black-Scholes formula to calculate Black-Scholes implied volatilities
for u(−M) = z0 and u(M) = z1, where z0 and z1 are the data for the lowest and highest
possible strike. Then these volatilities are used to calculate option values g0 = u(−M, T ) and
g1 = u(M, T ) for T ∈ [0, T0] again by the Black-Scholes formula.
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5.3. Choice of the regularization parameter

In the previous sections we showed that convergence of the approximations aδ
β obtained by

Tikhonov regularization can be expected for δ → 0, if δ2/β → 0. Especially, the a-priori
choice β ∼ δ will lead to a converging regularization algorithm. The right choice of the
regularization parameter β is crucial for numerical approximations at finite noise levels. We
propose the following strategy, motivated by a-posteriori parameter choice rules (e.g., Morozov’s
discrepancy principle, see e.g. [9, 25]): In order to stay within the converging regime, we define
a sequence of admissible regularization parameters β0 = 102δ < β1 < ... < βn = 10−3δ. We
start minimizing the Tikhonov functional Jβ0 . Then we subsequently decrease the regularization
parameter β = βi, starting the minimization of the Tikhonov functional Jβi

at the previous
minimizer aδ

βi−1
. The procedure is stopped, if the minimal regularization parameter is active, or

if a discrepancy principle ‖u(aδ
β) − uδ‖ ≤ τδ for some τ > 1 is met. In our numerical test, with

noise levels ranging from 10−1 to 10−5, the discrepancy principle for a choice of τ = 1.5 could
be met for typical values of β ∼ 10−2δ.

5.4. Test examples

In order to illustrate the stability and convergence results of Sections 3 and 4, and to discuss
some additional matters, e.g., approximation of discrete data, choice of regularization norms,
restriction to bounded domains and the influence of data noise, we consider the following
numerical test examples:

Example 1 Constant Volatility:
Let S = 100, r = q = 0 and T = 1 year to expiry. We set M = 3, and thus take into account
possible strikes K ∈ (5, 2000). The first example consists of identifying the (unknown) constant
parameter a = 0.15.

For the first set of examples, we choose the initial guess a∗
1 = 0.15− 0.05erf(−y2), which has the

correct asymptotic behaviour for |y| large (compare Theorems 4.1 and 4.2). In a first simulation
(A), we use a complete set of option prices calculated via the Black-Scholes formula. Data noise
is only due to discretization and restriction to a bounded domain, hence can be assumed to be
very small. We choose the regularization parameter to be β = 10−6.

In a second test (B), we investigate the influence of incomplete data given for 20 strikes only.
Note, that the problem is now highly under determined, and we expect the resulting minimizer
to depend more strongly on the a-priori guess a∗.

The bad identifiability of volatilities far away from the spot and the importance of the decay
behaviour of a∗ is considered in a third test run (C), where we choose the a-priori guess a∗

2 = 0.1
and β = 10−6 as in the previous examples.

In the last test (D), we investigate the influence of data noise by adding 0.1% uniformly
distributed noise to the data. In case of an underlying worth 1000$, this amounts to an
”uncertainty” of ±1$ in the option prices, which is about the size of typical the bid-ask spreads,
e.g., for the S&P500 index option.

Finally, we compare the results of the reconstructions with the option prices for the very
good guess a = 0.16.

The error-free data in this example are constructed by the Black-Scholes formula: A
comparison of the Black-Scholes data with the option values (optimal) corresponding to the
true parameter a = 0.15 indicates that the restriction to a finite domain is reasonable.

In all examples, the identified volatilities are very close to the true value on the range of
strikes given. However, in case C, the volatilities deviate significantly far away from the spot
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Table 1. Reconstructed option values after calibration - Example 1: (A) complete exact data,
(B) exact incomplete (20 strikes) data, (C) bad initial guess a∗ = 0.1 and complete exact data,
(D) 0.1% additional data noise, (BD) incomplete (20 strikes) data with added 0.1% noise;
(optimal) option prices corresponding to true parameter a = 0.15 calculated numerically .

strike true value optimal A B C D BD noisy data a=0.16

600.00 439.20 439.15 439.20 439.20 439.20 439.20 438.98 439.49 442.70
700.00 369.61 369.51 369.60 369.60 369.61 369.48 369.36 369.09 374.30
800.00 309.65 309.51 309.65 309.65 309.65 309.42 309.41 308.69 315.34
900.00 258.70 258.54 258.70 258.70 258.70 258.39 258.46 258.23 265.13

1000.00 215.81 215.63 215.80 215.81 215.81 215.44 215.57 215.82 222.70
1100.00 179.93 179.76 179.93 179.93 179.93 179.56 179.70 180.18 187.06
1300.00 125.24 125.09 125.23 125.23 125.24 124.90 125.01 125.85 132.27
1500.00 87.57 87.48 87.57 87.57 87.57 87.32 87.37 87.68 94.05
1800.00 51.88 51.86 51.88 51.88 51.88 51.78 51.82 51.16 57.18

Table 2. Reconstructed volatilities: (A) complete exact data, (B) exact incomplete (20
strikes) data, (C) bad initial guess a∗ = 0.1 and complete exact data, (D) 0.1% additional
data noise, (BD) incomplete (20 strikes) data with added 0.1% noise.

strike true value A B C D BD

600.00 0.1500 0.1500 0.1502 0.1499 0.1504 0.1489
700.00 0.1500 0.1502 0.1502 0.1502 0.1499 0.1495
800.00 0.1500 0.1503 0.1502 0.1503 0.1501 0.1499
900.00 0.1500 0.1503 0.1503 0.1503 0.1495 0.1500

1000.00 0.1500 0.1503 0.1502 0.1503 0.1495 0.1501
1100.00 0.1500 0.1503 0.1503 0.1503 0.1496 0.1501
1300.00 0.1500 0.1502 0.1502 0.1502 0.1498 0.1500
1500.00 0.1500 0.1500 0.1500 0.1500 0.1497 0.1490
1800.00 0.1500 0.1497 0.1497 0.1497 0.1500 0.1500

(K = 1000) by sticking to the ”wrong” a-priori guess a∗ = 0.1, which corresponds to a violation
of the source condition in Theorems 4.1 and 4.2.

The large deviation in option prices corresponding to a = 0.16 indicates high sensitivity
of option values on volatility around the spot, where vice versa good reconstructions can be
expected.

Example 2 Let the S, r, q, T, M be chosen as in the previous example and the true parameter
a =

√
2σ be given by

a(y) = 0.15 + 0.05 exp[−(y + 0.3)2] sin(2πy) + 0.05 erf(20y).

The data are constructed numerically on the domain ΩM = (−5, 5) with a fine discretization and
a different time integration scheme as used for the reconstruction, to avoid inverse crimes.

Again, we compare the reconstructed volatilities and corresponding option prices for several
test runs: (A) The case of complete, exact data and initial guess a∗

1 = 0.15+0.05erf(2y) with the
correct asymptotic behaviour for |y| large (compare Theorem 4.1 and 4.2). In (B) we investigate
the influence of only partial data (for 20 strikes). The influence of a ”wrong” a-priori guess
a∗ = 0.15 is reported as test (C). In (D) we add additional 0.1% noise. In this example, the
true parameter has some oscillating features with decaying amplitude for increasing |y| and is
increasing sharply around y = 0 (K = 1000).
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Table 3. Reconstructed option values after calibration - Example 2: (A) complete exact data,
(B) exact incomplete (20 strikes) data, (C) bad initial guess a∗ = 0.15 and complete exact
data, (D) 0.1% additional data noise, (BD) incomplete (20 strikes) data with added 0.1% noise;
(optimal) option prices corresponding to true parameter a = 0.15 calculated numerically .

strike true value opt A B C D BD data

600.00 416.95 417.54 416.96 416.94 416.93 416.42 415.73 416.32
700.00 336.69 337.59 336.68 336.76 336.71 336.72 336.41 336.73
800.00 271.59 272.58 271.59 271.77 271.66 272.48 272.81 271.71
900.00 225.42 226.53 225.43 225.71 225.65 226.54 226.91 226.14

1000.00 193.67 194.07 193.66 193.50 193.64 193.40 193.84 194.57
1100.00 168.70 169.18 168.71 168.70 168.52 167.45 167.95 169.19
1300.00 128.42 128.78 128.42 128.40 128.35 127.19 127.72 128.26
1500.00 97.45 97.73 97.45 97.45 97.45 97.01 97.23 97.92
1800.00 64.30 64.48 64.31 64.31 64.34 64.61 64.27 63.37

Table 4. Reconstructed volatilities: (A) complete exact data, (B) exact incomplete (20
strikes) data, (C) bad initial guess a∗ = 0.15 and complete exact data, (D) 0.1% additional
data noise, (BD) incomplete (20 strikes) data with added 0.1% noise.

strike true value A B C D BD

600.00 0.1020 0.0983 0.1000 0.0983 0.0873 0.0872
700.00 0.0696 0.0680 0.0673 0.0679 0.0654 0.0624
800.00 0.0554 0.0540 0.0548 0.0530 0.0561 0.0578
900.00 0.0701 0.0655 0.0713 0.0716 0.0814 0.0838

1000.00 0.1500 0.1609 0.1514 0.1483 0.1360 0.1351
1100.00 0.2273 0.2223 0.2269 0.2168 0.1889 0.1874
1300.00 0.2434 0.2414 0.2433 0.2438 0.2305 0.2399
1500.00 0.2201 0.2185 0.2194 0.2202 0.2318 0.2346
1800.00 0.1869 0.1864 0.1870 0.1880 0.2023 0.1894

As in the previous example option values can reproduced very accurately by the
reconstructed volatility. The behaviour of the volatility smile around the spot can be resolved
very accurately, while the values for large |y| are highly determined by the a-priori guess a∗.

Summarizing, all the numerical test show that volatility smiles can be identified stably by
Tikhonov regularization. The decay condition on the unknown part of the volatility a†−a∗ needed
for the proof of convergence rates (see Theorems 4.1, 4.2) is reflected in the numerical examples,
in which good identifiability is observed only near the spot y = 0. Thus, for a reasonable
reconstruction of volatilities for very large/small strikes, different techniques have certainly to
be used. The numerical tests also confirm that the restriction of the computational domain to a
finite interval does not influence the reconstruction of volatilities near the spot noticeably.

Further test examples and details on the influence or the regularization parameter choice on
the reconstruction can be found in [8].

6. Concluding Remarks

Tikhonov regularization yields a stable and convergent method for volatility estimation by
calibrating a modified Black-Scholes model to market prices of European Vanilla options. The
regularized least squares formulation of the inverse problem allows to treat various kinds of
observations (continuous, discrete) in a uniform framework.
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The question of convergence rates under interpretable assumptions is answered for the case
when the term structure of volatility is known, in particular, if volatility is piecewise constant
in time (see Theorems 4.1, 4.2). The convergence rate results also imply uniqueness of solutions
to the inverse problem. The conditions on differentiability and decay of the unknown part of
volatility (a∗ − a†) illustrate two sources of ill-posedness in the problem:

- the differential part corresponds to the smoothing properties of the parameter-to-solution
map;

- the decay condition for |y| → ∞ reflects the nonlinearity of the forward problem.

Even though the source condition may seem rather strong, one should bear in mind that market
prices of options depend on markets expectation of the future values of volatility: thus it seems
reasonable to assume that these expected volatilities are rather smooth. On the other hand,
for high/low strikes, volatility cannot be reconstructed stably and therfore additional knowledge
on the behaviour of the volatility function for high/low strikes has to be incorporated into the
a-priori guess a∗.

Utilization of the dual (Dupire) equation (2.3) is essential for fast numerical algorithms,
since it allows to valuate a range of options, and hence calculation of the Tikhonov functional,
by solving only one differential equation. Minimization of the Tikhonov functional can be done by
standard algorithms for nonlinear optimization, e.g., Quasi-Newton-type methods. Gradients,
which involve adjoint Frèchet-derivatives of the parameter-to-solution map, can be calculated
effectively by using an adjoint approach (5.2), hence again only one additional solution of a
parabolic differential equation is necessary for a gradient evaluation of the Tikhonov functional.
Using these two techniques, the numerical effort for the reconstruction of a volatility surface can
be kept rather small enabling an ”online” calibration to market prices.

The non uniqueness of solutions to the inverse problem respectively special assumptions
on the term structure (here: piecewise constant) should be kept in mind when pricing path
dependent options by means of the calibrated model: If the volatility smile is flat (σ 6= σ(S)),
then it is well known that European Call prices expiring at time T depend on the aggregated

volatility
∫ T

0 σ2(t)dt only, i.e., a variety of term structures will perfectly calibrate the model to
the market, whereas the corresponding prices of exotic derivatives may vary a lot. Thus, for a
reasonable reconstruction of the term structure of volatility, additional data have to be used.

Appendix

Extending standard results on existence and regularity of solutions to parabolic equations (cf.
e.g. [11, 21]) by the ideas in [12, 16, 27] one can derive existence and uniqueness results for
solutions to (2.5), (2.6) in W 2,1

p -spaces. A similar existence result for the case p ∈]2, p∗[ has been
derived in a probabilistic framework in [6].

Proposition A.1 Let a ∈ K(a∗), b ∈ L∞(Q) and f ∈ Lp(Q) ∩ L2(Q). Then there exist p∗ > 2
such that

−vτ + a vyy + b vy = f (A.1)

v(y, 0) = 0 (A.2)

has a unique solution v ∈ W 2,1
p (Q) satisfying the estimates

‖v‖W 2,1
p

≤ Cp ‖f‖p

for 2 ≤ p < p∗, with Cp depending only on the bounds of the coefficients and p.
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Proof. According to [21] Th. IV.9.2, (A.1) has a unique solution vn ∈ W 2,1
p (Q) for smooth

(Hölder) an with the estimate

‖vn‖W 2,1
p

≤ C(p) ‖f‖p (A.3)

We establish existence of a solution to (A.1), (A.2) and a uniform bound (A.3) for arbitrary
a ∈ K(a∗). We start with the case p = 2. By linearity wn = vn

y solves

−wn
τ + (an wn

y )y + (b wn)y = fy

and satisfies the estimate

‖wn‖2
W 1,0

2 (Q)
≤ c

∫ T

0

‖fy(τ)‖2
W−1

2 (R)
dτ ≤ C ‖f‖L2(Q),

where the constants c, C now depend only on the lower bound of a and ‖a‖L∞
, ‖b‖L∞

. To see
that ‖vn‖L2(Q) is also bounded, consider

‖vn‖2
L2(Q) =

∫

Q

∫ τ

0

d

dτ
|vn|2 dτ d(y, t)

= 2

∫

Q

∫ τ

0

{
a

(
vn

yy + b vn
y

)
− f

}
vdτd(y, t)

≤ c(T )
{
‖vn

yy‖L2(Q) + ‖vn
y ‖L2(Q) + ‖f‖L2(Q)

}
‖vn‖L2(Q)

≤ C(T ) ‖f‖L2(Q) ‖vn‖L2(Q)

Thus (A.3) holds uniformly for smooth an ∈ K(a∗). Now let an → a ∈ K(a∗) (in W 1
2 ), then

a (sub-)sequence vkn of the corresponding solutions vn admits a weak limit v̂ ∈ W 2,1
2 (Q). For

ϕ ∈ W 2,1
2 (Q) with compact support

∫

Q

(−vτ + a(vyy − vy) + bvy)ϕd(y, τ)

= lim
n∞

∫

Q

(−vkn
τ + akn(vkn

yy − vkn
y ) + bvkn

y )ϕd(y, τ) = (f, ϕ)L2(Q)

Hence, by regularity, v̂ = v solves (A.1).
Now let p 6= 2 and set a∗ = (a + a)/2. By linearity v solves

−vk
τ + a∗ (vk

yy) = f − b vn
y + (a∗ − an) vn

yy =: gn

Following the proof of Th. IV.9.2 in [21], we get

(̂vn
yy)(ξ, s) =

ξ2

i s + a∗ ξ2
ĝ(ξ, s)

and by Plancherel’s theorem

‖vn
yy‖L2(Q) ≤

1

a∗
‖gn‖L2(Q) (A.4)

Now the Riesz-Thorin theorem [16] implies that the constants C(p) of the estimate

‖vn
yy‖Lp(Q) ≤ C(p)‖gn‖Lp(Q)

depends continuously on p, i.e. there exist p∗ > 2 such that a−a
2 C(p) < 1 for 2 ≤ p < p∗ and

‖vn
yy‖Lp(Q) ≤ C(p)

(
‖f‖Lp(Q) + C ‖vn‖W 1,0

p (Q) +
a − a

2
‖vn

yy‖Lp(Q)

)
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which by ‖vn‖W 1,0
p (Q) ≤ c ‖vn‖W 2,0

2 (Q) implies

‖vn‖W 2,1
p (Q) ≤ C(p)

[
‖f‖Lp(Q) + ‖f‖L2(Q)

]

for 2 ≤ p < p∗. Thus the solutions vn are uniformly bounded in W 2,1
p . That v solves (A.1)

follows as above.

By standard arguments, the existence theorem can be extended to cover our equation (2.5).

Corollary A.1 Let a ∈ K(a∗), b ∈ L∞(Q). Then there exist p∗ > 2 such that for 2 ≤ p < p∗

the problem

−vτ + a (vyy − vy) + b vy = 0 in Q (A.5)

v(y, 0) = (S∗ − ey)+ (A.6)

has a unique solution v ∈ W 2,1
p,loc(Q) satisfying the estimates

|v| ≤ S∗ and ‖vx‖W 1,0
p

≤ Cp

The constant C depends only on the bounds of the parameters and p.

Proof. Observe that

ṽ(y, τ) :=

∫ y0

−∞

1√
4πτ

e−
(y−ν)2

4τ (S∗ − eν) dν ∈ W 2,1
p,loc(Q)

for p < 3, y0 = ln(S∗). The difference w = v − ṽ then solves

−wτ + a (wyy − wy) + b wy = ṽτ − a (ṽyy − ṽy) − b ṽy

with homogeneous initial condition. Proposition A.1 completes the proof.

Continuity of the parameter-to-solution map

F : a 7→ v(a)

follows from linearity of equation (2.5) and application of corollary A.1.

Proposition A.2 F : K(a∗) → W 2,1
p,loc(Q) is continuous for 2 ≤ p < p∗.

Proof. Let an ∈ K(a∗), un denote the corresponding solutions of (2.5),(2.6) and an → a in W 1
2 .

By Corollary A.1 un ∈ W 2,1
p̃,loc for any 2 ≤ p̃ < p∗. Employing linearity we get that wn := un−u(a)

solves
−wn

τ + a (wn
yy − wn

y ) + b wn
y = −(an − a) (un

yy − un
y )

and satisfies the estimate

‖w‖W 2,1
p (Q) ≤ C ‖an − a‖Lq(Q)‖un

y‖W 1
p
(Q)

for 1
p + 1

q = 1
p and p < p < p∗. Sobolev embedding theorems [29] yield an → a in Lq(Q) for

1 ≤ q < ∞ and the assertion follows by ‖un
y‖W 1

p
(Q) ≤ Cp uniformly for all n.

By compact Sobolev embedding and utilizing the asymptotic behaviour of solutions to (2.5),
(2.6) we can even show compactness of this mapping, which is one source of the ill-posedness for
the inverse problem of option pricing.
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Proposition A.3 F : K → W 2,1
p,loc(Q) is compact for 2 ≤ p < p∗ and weakly (sequentially)

continuous.

Proof. Let an, un as in the proof of proposition A.2, an ⇀ a in W 1
2 (Q) and un ⇀ u in

W 2,1
p (Q) ∩ W 2,1

p (Q) for p < p < p∗. By compact Sobolev embedding an → a in Lq(Qc) for any
1 ≤ q < ∞ and Qc ⊂ Q compact. On the other hand u satisfies

−uτ + a (uyy − uy) + b uy = 0 in Lp(Q)

and as in proposition A.2 the difference wn := un − u satisfies

−wn
τ + an (wn

yy − wn
y ) + b wn

y = −(a − an) (uyy − uy) =: fn (A.7)

We split fn = fn
1 + fn

2 with

fn
1 := fnχ[−M,M ], fn

2 := fn − fn
1

and get

‖wn‖W 2,1
p (Q) ≤ C

{
‖an − a‖Lq(QC)‖uy‖W 1

p
(QC) + ‖an − a‖Lq(Qc

C
)‖uy‖W 1

p
(Qc

C
)

}

for any 2 ≤ p < p, 1
p + 1

q = 1
p and QC := (−M, M)×(0, T ), Qc

C = Q\QC. Now ‖an−a‖Lq(QC) → 0

by compact Sobolev embedding and ‖uy‖W 1
p
(Qc

C
) → 0 with M → ∞.
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