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Abstract

This paper presents geometrical (GMG) and algebraic multigrid (AMG)
preconditioners for data-sparse boundary element matrices arising from
the adaptive cross approximation (ACA) to dense boundary element ma-
trices. As model problem, we consider the single layer potential integral
equation resulting from the direct boundary integral formulation of the in-
terior Dirichlet problem for the Laplace equation in 3D. The standard im-
plementation of collocation, or Galerkin boundary element discretizations
lead to fully populated system matrices which require O(N?) of storage
units and causes the same complexity for a single matrix-by-vector mul-
tiplication, where N, denotes the number of boundary unknowns. Data-
sparse matrix approximations schemes such as ACA reduce this complexity
to an almost linear behavior in Nj. Since the single layer potential oper-
ator is a pseudo-differential operator of the order minus one, the resulting
boundary element matrices are ill-conditioned. Iterative solvers dramat-
ically suffer from this property for growing Np. Our multigrid precondi-
tioners avoid the increase of the iteration numbers and result in almost
optimal solvers with respect to the total complexity for storage and arith-
metical operations required. Numerical experiments are concentrated on
the comparison of GMG and AMG preconditioners.
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1 Introduction

In this paper we are concerned with the fast solution of data-sparse bound-
ary element equations by geometrical and algebraic multigrid methods. The
most common technique for discretizing elliptic boundary value problems for
second order partial differential equations is the finite element method (FEM).
Nevertheless, in many applications it will be advantageous to use alternative
approaches. The boundary element method (BEM) is certainly a preferable dis-
cretization technique for some specific problem classes. One typical application
area for BEM is, for instance, the treatment of unbounded domains.

Since only the boundary I' = 99 of the computational domain Q C R? (d =
2,3) has to be discretized, the dimension of the arising matrices will be reduced
essentially. Once the complete Cauchy data (Dirichlet data v and Neumann
data v = Ou/On) are available on I', the solution in the total computational
domain € can easily be computed by the representation formulae.

Using standard BEM has one essential drawback. The system matrices are
dense, i.e. for a growing number of (boundary) unknowns N; every iterative
solving algorithm will result in a complexity of O(N?) with respect to the
arithmetical cost and memory demand. We refer the reader to [7] or [19] for a
detailed treatment of boundary element methods.

Therefore, the application of iterative solvers only will be reasonable, if
the cost for a single matrix-by-vector multiplication can be reduced essentially
(especially in 3D). In the last years different sparse approximation techniques
for boundary element matrices have been developed. The multipole method
[18, 6], the panel clustering method [10], the H-matrix approach [9] and wavelet
techniques [12] are certainly now the most popular ones. In our paper we will
consider the adaptive cross approximation (ACA) method recently suggested
by M. Bebendorf and S. Rjasanow [3, 2, 4]. The basic idea is to decompose
the system matrix into its near-field and far-field contributions. Finding an
appropriate low-rank approximation for the far-field matrix yields a data-sparse
BEM matrix approximating the original dense matrix in such a way that the
discretization error is not affected. In conclusion, the application of a sparse
representation algorithm allows us to realize the matrix-by-vector multiplication
in almost O(N},) operations.

It is well-known that iterative solvers heavily suffer from the behavior of
the condition number k(K}) of the system matrices K. FE-discretization of
boundary value problems for self-adjoint second-order elliptic partial differential
equations (PDEs) leads to x(K},) proportional to O(h~2), where h is the typical
mesh size. Boundary element matrices originating from the discretization of the
single layer potential or the hypersingular operator also lead to ill-conditioned
system matrices K}, with a condition number x(K},) of order O(h~1). Thus, it is
obvious that we need appropriate preconditioning techniques in order to avoid
the steady rise of the number of iterations for finer and finer discretization. In
[14, 15, 13] we introduced algebraic multigrid preconditioners for dense BEM
matrices as well as for large-scaled data-sparse BEM matrices arising from stan-
dard collocation or Galerkin discretizations of the single layer potential and the
hypersingular operators. In this paper we focus on the comparison between the



GMG and AMG approach. More precisely, we give some key numerical features
concerning the quality of the multigrid preconditioners.

The paper is organized as follows: Section 2 gives a brief overview on the
considered single layer potential operator and its properties. In addition, the
ACA-method is briefly described. In Section 3, we introduce the multigrid
components designed for ACA-matrices. Some results of our numerical studies
are presented in Section 4. Finally, we end with some conclusions and discuss
further investigations in Section 5.

2 Problem Formulation and the ACA-Method

2.1 Single Layer Potential Equation

Let Q C R? (d=2,3) be a bounded, simply connected domain with one closed
boundary piece I' = 9€) that is supposed to be sufficiently smooth. We consider
the boundary element technique by means of the interior/exterior Dirichlet
problem for Laplace’s equation:

Interior Dirichlet :

—Au(z) = 0 z €Q (1)
u(z) = g(z) zel
Exterior Dirichlet :
—Au(z) = 0 T € Q°=RAN\Q
u(z) = g(x) zel 2
lu(z)] = O(1/lz]) |z[— oo

Once the Neumann and Dirichlet data are available, it is possible to formu-
late the solution of the interior Dirichlet equation by the representation formula

o(y)u(y) = —/u(m)g—i(:v,y)dsx—l—/aa:x (2)E(x,y)ds,, ye€Q (3)
r

n
r

where n,, denotes the unit outward normal vector and E(z, y) is the fundamental

solution for the Laplace equation, i.e.

—Llogle—y| zyeR W
L1 T,y € R3.

Blaw ={ 1
47 |z—y|
For y € ) (as mentioned above) we have o(y) = 1, for y ¢ Q it changes to
o(y) = 0. In the case of y € I we have o(y) = ©/27 where © denotes the angle
enclosed by the domain Q at the point y. For smooth I' we will obtain o = 1/2.
In order to get a convenient formulation of (3) we introduce the follow-
ing boundary integral operators. Let us define v = du/0n and let H~'/(T),
H'/?(T') be the usual Sobolev spaces with fractional indices, see [1]. Then we
consider the single layer potential operator V : H~1/2(I") — H'/?(T")

(Vo)(y) = /F Bz, y)v(z)ds, (5)
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and in addition the double layer potential operator K : H'/?(I') — H'/?(T")

OF

(Ku)w) = | 5= @ p)u(e)dss. ®

Consequently, on the boundary representation formula (3) gives the equation
for calculating the missing Neumann data

1
Vvo=f:= (§I+K)g. (7)
Similarly, we obtain the operator equation for the exterior Dirichlet problem

for the Laplace equation which reads as

Vo = (—%I-I—K)g. (8)

Let us now assume that the boundary I' € C%! is Lipschitz. Then several
properties for the single layer potential operator can be observed (see, e.g., [19]):

1. The operator V is self-adjoint in the Lo(I') inner product, i.e.

(0, Vu) oy = (Vo,u) pyry  Vu,v € H_I/Z(I‘).

2. In the case of Q C R? the single layer potential is positive definite, i.e.
Juy >0 (v, Vo)r,mr) > ,uv||U||fq—1/2(F) Vv e H'/2(ID).

If we consider Q C R? then V will not be positive definite in general.
Nevertheless, ellipticity can be obtained if the condition diam © < 1 is
satisfied. But this condition can easily be fulfilled by an appropriate
scaling of the domain 2.

2.2 Galerkin BEM and Adaptive Cross Approximation (ACA)

The Galerkin discretization of (7) with the use of piecewise constant trial func-
tions {¢;} leads to the Galerkin equation:
Find v, = Zf\]:hl vip; € Xy, :=span{¢i,...,¢n, } C H~Y2(T") such that

1
(Vop, un) Lor) = <(§I+ K)g,un)rory Yun € Xp 9)

The Galerkin equations (9) are equivalent to the system of boundary element

equations:
Find v, = (v1,...,vy,)" € R¥ such that

1
Vv = [, = (§Ih + Kn)g, (10)

where g h is the discrete Dirichlet data obtained by linear interpolation, (V3):;; =
fF fr (x,y)dszdsy and (Kp)i; fr T anz (z,y)¢;(x)dsyds, with the linear
trial function ;. Since the system matrix V}, is symmetric positive definite,

4



we can use the common conjugate gradient (CG) algorithm for solving the
problem. At this point we have to notice that V}, is still fully populated and
the condition number is of order O(h~!). Hence, it is a quite difficult task to
solve (10) efficiently. To overcome the drawback of dense matrices we replace
the system matrix with some approximation matrix provided from the ACA-
algorithm discussed in the next paragraph.

The adaptive cross approximation is a very elegant method to approximate
matrices originating from boundary element discretization. On the contrary to
other matrix approximation techniques, an explicit description of the integral
kernel is not necessary. More precisely, only a procedure for evaluating selected
matrix entries has to be available, the rest are simple algebraic operations.

The basic idea is to decompose the computational domain into smaller clus-
ters D; and classify the interaction of two clusters into a near-field part and a
far-field part of the generated matrix, respectively. Furthermore, the far-field
submatrices can be approximated by a sum of dyadic products of the vectors
u;, v;, i.e. one matrix block A € R? has the following representation of rank-1
corrections

A:Zuw;— u; € R", v; € R™, r...rank of A. (11)
=1

Thus, we take a closer look to the domain decomposition and the approxi-
mation of the resulting system matrix. The notations connected with the ACA
are directly adopted from [3, 2].

Based on geometrical information we split the index set I = {1,..., N}
into index clusters ¢; C I which corresponds to the partitioning of the domain
Q = |J; D;. In order to select the blocks which can be approximated by low-
rank matrices, we give an admissibility condition that classifies clusters-pairs
into a near-field part and a far-field part. Roughly speaking, if the distance
of a cluster-pair (D, D2) is large enough, it will be counted to the far-field.
Otherwise, the effect of the singularity in the kernel cannot be neglected and
therefore, one has to calculate the matrix entries directly (near-field).

Definition 2.1. Let (D1, Ds) be a cluster pair with D1, Dy C R, then (D1, Ds)
1s called n - admissible if

diam D2 S n diSt(Dl, DQ) (12)
In addition, we define n-admissibility for index cluster pairs (t1,t2)
diam D}' < ndist(D}!, D;2). (13)

As usually dist(X,Y) = inf{|z —y|,z € X,y € Y}

Assuming that a block matrix A = (aij)i=1,..n, j=1,..,m satisfies condition
(12) then only few matrix entries have to be calculated and thus the cost of
storage and CPU-time for matrix-by-vector multiplication will decrease essen-
tially. If a cluster pair does not fulfill n-admissibility the according matrix will



be calculated directly. The following variant of the ACA algorithm is called
partially pivoted ACA. It is obvious that only those entries of the vectors u;
and v; have to be calculated, which are actually used for the construction of
the approximated matrix. In [4] we find the following Algorithm 1 and more
detailed information.

Algorithm 1 Partially Pivoted ACA
=10
for allk =1,2,... do

let ix € {1,...,m}, if possible i), = argmax;_; _,|(u)i|, ix ¢

with Qi — ;cz_ll(ul)ik (’Ul)j 7é 0, 5=1,...,m

if i;, does not exist then
stop the algorithm

else

T =TU{i}
~ k—1 .

(szwm—thWMwmaJZanm
set v = (1")16)]; Oy, with jp = argmax;_; _,[(9x);]
(ur)i = aij, — Zfz_ll(ul)i(vl)jka i=1,...,n

end if

end for

A proper stopping criterion in practice is ||ug| r|lvkl]|r < €||Sk||r, where
|l.|lF denotes the Frobenius norm, u, v, the calculated ACA vectors and S
the approximation after the k' step, cf. (11).

Both, the clustering procedure and the approximation algorithm will cause
a overall complexity of O(e"*N;**) with an arbitrarily small positive a.

Based on the splitting of the system matrix V}, into a near-field matrix
Vyeor and a far-field matrix Vhf “" we are able to construct an approximated
system matrix Vh. Since the proposed adaptive cross approximation technique
provides a low-rank approximation of Vhf “" consisting of submatrices which are
n-admissible we obtain the result

Vi = Vypear 4 V5. (1)

Starting from this representation we are able to present an appropriate con-
struction of multigrid methods in the next section. Finally, we refer to (3, 2, 4]
for more detailed proofs and further remarks concerning the ACA-technique.

3 Multigrid Methods

In the previous section we showed, that our system matrix coincides with the
approximated discretized single layer potential operator V3, which is the most
interesting case concerning our multigrid approach. Hence, we have to solve

Viv, = f, inRM (15)

with v, are the unknown Neumann data and f, the corresponding load vector.
In order to make multigrid methods really efficient, it is necessary to adapt the



multigrid components properly according to the underlying physical problem
and variational formulation. In the following we are discussing the multigrid
components by means of a twogrid algorithm. The indices h and H denote the
fine grid and coarse grid quantities, respectively.

In fact, the efficiency of multigrid methods depends on a clever interaction
of smoothing sweeps on the fine level and coarse grid correction on the coarse
level. Once a grid hierarchy (GMG) or a matrix hierarchy (AMG) is available
we can apply multigrid methods. An simple two-grid procedure consists of one
smoothing step on the fine level. After restricting the defect on the coarse level
and solving the defect equation with some coarse grid solver (often a direct
solver), the update will be prolongated and added to the approximation of
the solution. A recursive application results in the well-known V-cycle, which
is presented in Algorithm 2. The coarsest level is denoted by the variable
COARSELEVEL therein.

Algorithm 2 Multigrid V-Cycle
MG (u, i Iz £)
if £ = COARSELEVEL then
calculate u, = (K,)~! [, by some coarse grid solver
else
smooth vr times on Keu, = f,
calculate the defect dy = f, — Kou,
restrict the defect to the next coarser level £ +1:d,, | = Pld,
set up, 1 =0
call MG(uy, 1,dp, 1,4+ 1)
prolongate the correction s, = Ppu, ¢
update the solution u, = u, + s,
smooth vp times on Koy, = f,
end if

Since the single layer operator represents a pseudo-differential operator of
order minus one, the eigenvalues and eigenvectors act conversely compared to
those of finite element matrices. Therefore, standard smoothing procedures
like damped Jacobi or Gauf-Seidel does not provide a satisfying smoothing
sweep. Bramble, Leyk and Pasciak [5] present an appropriate approach to this
problem class of operators. In order to reduce the highly oscillating components
of the error we introduce a matrix A, € RV»*Nr being some discretization of
the Laplace-Beltrami operator on the boundary I'. Consequently, we obtain a
smoothing iteration of the form

up < up + 7h - An(f), — Vaup) (16)
with a well chosen damping parameter 75, see e.g. [15, 13].

In the case of algebraic multigrid we need a matrix hierarchy which repre-
sents a 'virtual’ grid on each level. Therefore, we first construct prolongation
operators Py : Rﬁ — RhN by exploiting a sparse auxiliary matrix By which in-
cludes geometrical information [14]. Then, we are applying Galerkin’s method

Vy = PV, P, (17)



to obtain the system matrix Vi on the coarse level. In addition, the restriction
of a fine ACA matrix V), immediately leads to matrices on the coarse level

Vﬁear — P};I—thearph’

- Np . .

Vi = 35 PTub (Bui)T (18)
i=1j5=1

where Ng denotes the number of admissible blocks ang r; the rank of the i*"
block. Thus, the approximated coarse system matrix Vg has also a near-field
contribution V/**" and an low-rank far-field matrix 17}1;‘”". Due to the exact
preserving of representation (14) on the coarse grid, we are able to use the
same ACA-datastructures in our numerical realization.

On the other hand in the geometrical version of our multigrid approach a
nested mesh-hierarchy is available. In this case we are calculating the discretized
single layer potential on each grid separately. Strictly speaking, we apply the
ACA-algorithm level by level to obtain the approximated single layer potential
operators. Again we provide a set of data-sparse system matrices, which are
used within the V-cycle.

Finally let us remark, that for the coarse grid correction a direct solver is
used. That implies to eliminate the data-sparse representation of the coarse
system matrix. Therefore, the low-rank approximation will be evaluated on
each position of the far-field matrix entries.

4 Numerical Studies

In order to show the efficiency of the suggested multigrid approach we present
some results in 3D for the interior Dirichlet boundary value problem for the
Laplace equation. The Galerkin boundary element matrices are generated by
the software package OSTBEM developed by O. Steinbach, cf. [20], the AMG-
preconditioner is realized within the software package PEBBLES [11]. Let us
mention, that the multigrid algorithm is often used as a preconditioner in an
iterative solver (e.g. PCG). This variant turned out as the most efficient one.
In particular, we use the symmetric V(1,1)-cycle, i.e. one pre-smoothing and
one post-smoothing step with the BLP-smoother per CG-cycle. The iteration
error is measured in the V,C," 1V, energy norm for the CG-solver. Finally, the
algorithm will stop, if the iteration error is reduced by the factor 10E-6. All
calculations are done on a PC with 2000 MHz AMD Athlon(tm) processor.

For our numerical comparison of the geometrical multigrid preconditioner
and the algebraic multigrid preconditioner, we choose a few rather simple 3D
geometries, see Figure 1. Nevertheless, these domains include a wide spectrum
of problem classes, for e.g. smooth boundaries, edges, corners, convex and
non-convex domains.

First of all, we compare the times for constructing the AMG matrix hier-
archy by Galerkin projection and building up the ACA matrices for GMG on
the coarser grids. These CPU-times are almost of the same order, see Table 1.
It is obvious, that most of the assembling time is needed for construction the
system maftrix Vj.



(a) Sphere (b) Cube (c) L-Shape
(d) Fichera-Corner
Figure 1: 3D Geometries
L-Shape AMG (sec) GMG (sec)
Number of || Assembling | Galerkin | Assembling | Matrix-
Unknowns \%3 Projection Vi hierarchy
1792 6.0 2.0 6.0 0.9
7168 32.5 7.5 32.5 6.9
28672 158 30 158 40

Table 1: Assembling Vh and Setup Times for L-Shape

Secondly, we compare the numbers of iterations, that are needed within the
preconditioned conjugate gradient (PCG) method. Moreover, the CPU-time of
one single PCG-iteration for different numbers of unknowns are listed in Table 2.
The efficiency of our multigrid preconditioners is impressively reflected, for our
GMG-preconditioners as well as for the AMG-preconditioners. One can clearly
observe the expected almost linear increase of the CPU-times for one iteration
with respect to the number of unknowns. Considering the time for one PCG-
iteration, we notice, that the GMG variant is faster for larger problems.

Furthermore, we obtain constant iteration numbers for a wide range of prob-
lem sizes. That implies that our data-sparse multigrid preconditioner for the
single layer potential operator is of high quality. In the case of AMG precon-
ditioning we also have small iteration numbers, nevertheless they are slightly
increasing. Because the coarser matrix levels are produced in a purely algebraic
way, it is hardly possible to preserve corresponding ’virtual’ coarse grids of the
original geometry.

A closer look to the matrix or grid hierarchy is given in Table 3. For each
level we present the number of unknowns of the underlying system of equations.
Geometrical multigrid yields the finer grids by dividing the coarse triangles into
four smaller one. In order to guarantee a regular refinement this is done by



Number of AMG GMG
Unknowns | PCG-Cycle (sec) | Iterations | PCG-Cycle (sec) | Iterations
Sphere
1920 0.1 8 0.1 8
7680 0.8 8 0.5 9
30720 4.1 10 2.9 9
L-Shape
1792 0.1 6 0.1 7
7168 0.8 6 0.6 7
28672 4.2 9 2.9 7
114688 - - 33*) 7
Cube *) memory exceeded - cache effects
3072 0.2 5 0.2 6
12288 1.7 8 1.1 7
49152 9.0 11 5.7 7
Fichera-Corner
1920 0.1 14 0.1 15
7680 0.8 15 0.6 15
30720 5.0 17 3.2 15

Table 2: Key data for AMG/GMG Preconditioner

connecting the midpoints of their edges. Considering the AMG column, the
matrices are larger on comparable levels. Therefore, one preconditioning step
involves more effort with respect to the CPU-time. According dates in Table 2
confirm this assertion.

5 Conclusions and Further Remarks

In this paper we presented a geometrical multigrid and algebraic multigrid ap-
proach for the solution of large-scale boundary element equations. For that
purpose an approximation of the boundary element matrices is absolutely es-
sential. Our numerical experiments have been realized by the adaptive cross
approximation technique which guarantees that the effort for storing the ma-
trices and for a single matrix-by-vector multiplication can be reduced to almost
O(Np). The discretized single layer potential operator yields symmetric positive
definite matrices in the original dense version as well as in the ACA represen-
tation. Therefore, the system of boundary element equations can be solved by
means of multigrid preconditioned CG-algorithms.

Due to the sparse representation of our matrices, we had to adapt each com-
ponent of our AMG-algorithm properly. In order to set up the matrix hierarchy
and the corresponding transfer operators an auxiliary matrix was constructed
for the AMG method. On the other hand the matrices were built accordingly to
the grid hierarchy in the GMG method. The smoothing procedure was realized
by the proposed BLP-smoother for pseudo-differential operators of order minus
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Level | AMG | GMG
Cube
fine 1 || 49152 | 49152
2 || 23828 | 12288
3 || 7311 | 3072
4 | 2025 768
coarse 625 -
Fichera-Corner
fine 1 || 30720 | 30720
2 || 14995 | 7680
3 || 4677 | 1920
coarse 4 || 1282 480

Level [ AMG | GMG
Sphere
fine 1 || 30720 | 30720
2 || 14963 | 7680
3 || 4660 | 1920
coarse 4 || 1233 480
L-Shape
fine 1 || 28672 | 28672
2 || 14011 | 7168
3| 4369 | 1792
coarse 4 || 1189 448

Table 3: Number of Unknowns for Matrix/Grid Hierarchy

one.

The overall algorithm provides interesting numerical results. One can notice
small constant iteration numbers for the GMG method and also small (but
slightly increasing) iteration numbers for the AMG approach. That confirms
the high quality of our multigrid preconditioners. In addition, the CPU time
for a single iterative step almost grows like O(N). As expected, the GMG
variant is faster than the AMG version.

The presented multigrid techniques, both the algebraic and the geometrical,
induce an almost optimal solver for boundary element equations arising from
3D boundary value problems. In the case of the single layer potential oper-
ator, only an appropriate realization of the Laplace-Beltrami operator on the
corresponding surface of a 3D domain and a sufficiently accurate coarse equa-
tion system will ensure an optimal precondition step which is necessary for a
fast convergence of the PCG. Finally, we mention that efficient multigrid pre-
conditioner for the discrete single layer potential operator are very important
as building blocks in primal and dual domain decomposition preconditioners
[8, 16, 17].
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