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Abstract

In this paper we investigate convergence of Landweber iteration in Hilbert scales
for linear and nonlinear inverse problems. As opposed to the usual application of
Hilbert scales in the framework of regularization methods, we focus here on the
case s ≤ 0, which (for Tikhonov regularization) corresponds to regularization in a
weaker norm. In this case, the Hilbert scale operator L−2s appearing in the itera-
tion acts as a preconditioner, which significantly reduces the number of iterations
needed to match a stopping criterion. Additionally, we carry out our analysis un-
der significantly relaxed conditions, i.e., we only require ‖Tx‖ ≤ m‖x‖−a instead of
‖Tx‖ ∼ ‖x‖−a, which is the usual condition for regularization in Hilbert scales. The
assumptions needed for our analysis are verified for several examples and numerical
results are presented confirming the theoretical ones.

1 Introduction

In this paper we study inverse problems of the form

F (x) = y, (1.1)

where F : D(F ) ⊂ X → Y is an operator between Hilbert spaces X and Y. For
linear equations, we will use the notation F (x) = Tx. We assume that Problem (1.1)
is ill-posed, i.e., that solutions do not depend continuously on the data. Thus, they
have to be regularized in order to obtain reasonable approximations. Additionally,
we suppose that only approximate data yδ with a known upper bound on the noise
level

‖yδ − y‖Y ≤ δ (1.2)

are available.
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Tikhonov regularization is certainly the most well-known regularization method
for ill-posed problems (cf., e.g., [1, 3]). It has been observed that convergence of
Tikhonov regularization can be accelerated, when regularizing in norms stronger
than the usual norm in X (see, e.g., [11, 12]).

Based on spectral theory, more general regularization methods in Hilbert scales
for linear inverse problems have been investigated in [1, 14].

For large-scale inverse problems, iterative regularization methods (e.g. Landwe-
ber iteration, see [5, 7]) are an attractive alternative to Tikhonov regularization.
Like for Tikhonov regularization, the convergence rates for Landweber iteration for
nonlinear inverse problems can be improved by performing the iteration in a Hilbert
scale (see [13]). Before we formulate this modified iteration process, we shortly recall
the definition of a Hilbert scale:

Let L be a densly defined unbounded selfadjoint strictly positive operator in
X . Then (Xs)s∈R denotes the Hilbert scale induced by L if Xs is the completion
of

⋂∞
k=0D(Lk) with respect to the Hilbert space norm ‖x‖ s := ‖Lsx‖X ; obviously

‖x‖0 = ‖x‖X (see [8] or [1, Section 8.4] for details).
Considering F ′ as an operator mapping from Xs into Y, i.e., taking the adjoint

with respect to these spaces, yields the following modified Landweber iteration

xδ
k+1 = xδ

k + L−2sF ′(xδ
k)

∗(yδ − F (xδ
k)), k ≥ 0, (1.3)

where F ′(xδ
k)

∗ denotes the adjoint operator with respect to the spaces X and Y. In
the linear case, F ′(xδ

k) is simply replaced by T . The iteration (1.3) is performed as
long as k ≤ k∗(δ, y

δ), where k∗ is determined from a discrepancy principle

‖yδ − F (xδ
k∗

)‖ < τδ ≤ ‖yδ − F (xδ
k)‖ , 0 ≤ k < k∗, (1.4)

for some τ > 2.
In this paper, we investigate convergence rates of Landweber iteration in Hilbert

scales (1.3) for linear and nonlinear inverse problems under significantly relaxed con-
ditions on the linear (respectively linearized) operator T (:= F ′(x†) in the nonlinear
case), i.e., we only require ‖Tx‖ ≤ m‖x‖−a instead of ‖Tx‖ ∼ ‖x‖−a, which is the
usual condition for regularization in Hilbert scales (cf. [13]).

We draw our attention to the choice s ≤ 0, which we always assume in the
sequel. For Tikhonov regularization, this would amount to regularization in a weaker
norm. We will show below that the modified iteration (1.3), which is the usual
Landweber iteration for the operator F considered as operator from Xs into Y, is
well-defined as iteration in X . As mentioned above, regularization in Hilbert scales
was introduced to improve convergence rates, if the exact solution x† of (1.1) is very
smooth. However, if the solution has only poor smoothness properties, it turns out
that it suffices to regularize in a weaker norm than the one in X to still obtain the
appropriate rate. Choosing s ≤ 0 has the advantage that the embedding operator
L−2s acts as a preconditioner for the smoothing operator F ′(xδ

k)
∗ (cf. Example 4.2,

Section 4), yielding a fewer number of iterations to satisfy the stopping criterion
(1.4).

In the next Section, we will extend well-known results of regularization in Hilbert
scales for linear problems to our more general conditions. Section 3 then deals with
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convergence rates for nonlinear problems, generalizing the results of [13] to the case
s ≤ 0 and ‖F ′(x†)x‖ ≤ m‖x‖−a.

We conclude with some examples underlining the importance of the above gen-
eralizations and present numerical tests confirming the theoretical results.

2 Linear Problems

As mentioned in the introduction, we consider T = F (·) in (1.1) as operator on Xs

with adjoint L−2sT ∗ and replace the Landweber method by the modified iteration

xδ
k+1 = xδ

k + L−2sT ∗(yδ − Txδ
k), k = 0, 1, 2, . . . . (2.1)

In order to prove convergence rates, we need some basic conditions:

Assumption 2.1

(L1) Tx = y has a solution x†.

(L2) ‖Tx‖ ≤ m‖x‖−a for all x ∈ X and some a > 0,m > 0. Moreover, the
extension of T to X−a (again denoted by T ) is injective.

(L3) B := TL−s is such that ‖B‖X ,Y ≤ 1, where s ≥ −a.

Usually, for the analysis of regularization methods in Hilbert scales, a stronger
condition than (L2) is used, namely (cf, e.g., [11, 12])

‖Tx‖ ∼ ‖x‖−a for all x ∈ X , (2.2)

where the number a can be interpreted as the degree of ill-posedness. However, (L2)
might still be satisfied, even if (2.2) does not hold. It might also be possible that
an estimate from below can be given in a weaker norm, e.g.,

‖Tx‖ ≥ m‖x‖−ã for all x ∈ X and some ã ≥ a, m > 0, (2.3)

see Example 4.1 below. (L3) is a simple scaling condition. In order to guarantee
that the iteration (2.1) is well-defined as iteration in X for general yδ ∈ Y, we
additionally have to assume s ≥ −a/2 (see Proposition 2.4).

Before we state the main result of this section, we draw some conclusions from
Assumption 2.1:

Proposition 2.2 Let Assumption 2.1 hold. Then Condition (L2) is equivalent to

R(T ∗) ⊂ Xa and ‖T ∗w‖a ≤ m‖w‖ for all w ∈ Y . (2.4)

Moreover for all ν ∈ [0, 1] it holds that D((B∗B)−
ν
2 ) = R((B∗B)

ν
2 ) ⊂ Xν(a+s) and

‖(B∗B)
ν
2 x‖ ≤ mν ‖x‖−ν(a+s) for all x ∈ X (2.5)

‖(B∗B)−
ν
2 x‖ ≥ m−ν ‖x‖ν(a+s) for all x ∈ D((B∗B)−

ν
2 ) (2.6)
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Furthermore, (2.3) is equivalent to

Xã ⊂ R(T ∗) and ‖T ∗w‖ ã ≥ m‖w‖
for all w ∈ N (T ∗)⊥ with T ∗w ∈ Xã

(2.7)

and if (2.3) holds, than it follows for all ν ∈ [0, 1] that Xν(ã+s) ⊂ R((B∗B)
ν
2 ) =

D((B∗B)−
ν
2 ) and

‖(B∗B)
ν
2 x‖ ≥ mν ‖x‖−ν(ã+s) for all x ∈ X (2.8)

‖(B∗B)−
ν
2 x‖ ≤ m−ν ‖x‖ν(ã+s) for all x ∈ Xν(ã+s). (2.9)

Proof The proof follows the lines of Corollary 8.22 in [1] noting that the results
there not only hold for s ≥ 0 but also for s ≥ −a.

In our convergence analysis the following shifted Hilbert scale will play an im-
portant role:

Definition 2.3 Let a, s and B be as in Assumption 2.1. We define the shifted
Hilbert scale {X s

r }r∈R by

X s
r := D((B∗B)

s−r
2(a+s)Ls) equipped with the norm

|||x|||r := ‖(B∗B)
s−r

2(a+s)Lsx‖X .
(2.10)

In Proposition 3.2 below, we will summarize some properties of this shifted Hilbert
scale.

We are now in the position to state the main results of this section:

Proposition 2.4 Let Assumption 2.1 hold and −a/2 ≤ s ≤ 0. Additionally, as-
sume x† − x0 ∈ X s

u , i.e.,

x† − x0 = L−s(B∗B)
u−s

2(a+s)w, (2.11)

for some w ∈ X and u > 0. Then

‖xδ
k − x†‖ ≤ c(δk

a
2(a+s) + k

− u
2(a+s) |||x† − x0|||u). (2.12)

Proof For the propagated data error we get the closed form expression

xδ
k − xk =

k−1∑

j=0

L−s(I −B∗B)jB∗(yδ − y)

and similarily for the approximation error

xk − x† = L−s(I −B∗B)kLs(x0 − x†).

By (2.6) and −a/2 ≤ s ≤ 0, we have ‖L−sv‖ ≤ m− s
a+s ‖(B∗B)

s
2(a+s) v‖. The result

is then proven in the same way as Theorem 8.23 in [1]. Note that the results of
Section 8.5 in [1] apply to Landweber iteration when α is replaced by 1/k.

As an immediate consequence we have at least convergence if the iteration is

stopped at k ≤ k∗(δ) with δ · k
a

2(a+s)
∗ → 0.
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Remark 2.5 Under our assumptions, the source condition x†−x0 ∈ X s
u is stronger

than the usual source condition x† − x0 ∈ Xu. Therefore, the usual restriction
u ≤ a+2s can be dropped (cf. [14]). If however (2.2) holds then for 0 < u ≤ a+2s
the spaces Xu and X s

u coincide (with equivalent norms). In case only the weaker
estimate (2.3) is valid, one still has X s

u ⊂ Xu, with u = (u−s) ã+s
a+s +s. In particular,

since s ≤ 0, an estimate (2.3) from below is only needed to interpret the source
condition (2.11) in terms of the Hilbert scale {Xs}s∈R.

In order to derive convergence rates in terms of δ, it remains to bound the
number of iterations:

Theorem 2.6 Let the assumptions of Proposition 2.4 hold. If the iteration (2.1)

is stopped according to the a priori rule k∗ ∼ (‖w‖δ−1)
2(a+s)

a+u then

‖xδ
k − x†‖ = O(‖w‖ a

a+u δ
u

a+u ). (2.13)

If, alternatively, the iteration is stopped according to the discrepancy principle (1.4)
then

‖xδ
k − x†‖ = O(δ

u
a+u ). (2.14)

Proof Note that (x† − x0) ∈ X s
u is equivalent to (x† − x0) ∈ R(T̃ ∗T̃ )

u−s
2(a+s) ), where

T̃ denotes the extension of T to Xs (s < 0). Thus by Theorem 6.5 in [1] we have

k∗(δ, y
δ) = O(δ−

2(a+s)
a+u ), when (2.1) is considered as the usual Landweber iteration

for the operator T̃ : Xs → Y. The rates now follow directly from Proposition 2.4.

Remark 2.7 In analogy to Theorem 8.25 in [1] it is even possible to derive o(·)-
bounds in (2.14). If (2.2) is valid, the rates are optimal, i.e., the best possible worst
case error bounds under the given source condition.

Note, that the convergence rates do not depend on s, while the stopping index
k∗ does. This suggests to choose s as small as possible, i.e., s = −a/2, in which case

the number of iterations is bounded by k∗ ∼ δ−
a

a+u . If the stronger condition (2.2)
holds, we have X s

u = Xu = R((T ∗T )µ) with µ = u
2a as long as u ≤ min(a, a + 2s).

Thus, we get k∗ ∼ δ−
1

2µ+1 , which is the square-root of the number of iterations
needed for the standard Landweber iteration and is of the same order than the
optimal number of iterations for accelerated Landweber methods (cf. [1, Section
6]), e.g., the ν−methods (see [4]).

In case s = −a/2 and if (2.2) holds, the backprojection operator L−2sT ∗ is not
smoothing any more; to be more specific, we have

‖L−2sT ∗y‖ ∼ ‖(T ∗T )−
1
2T ∗y‖ ∼ ‖y‖Y .

This means that L−2s is an optimal preconditioner for T ∗ and the operator Ms

appearing in the preconditioned normal equation

Msx := L−2sT ∗Tx = L−2sT ∗yδ (2.15)

has the same smoothing properties as the operator T in the original equation Tx = y,
while being selfadjoint when considered as operator on Xs.

Note, that it is not possible to choose s = −a, in which case one would have
‖Msx‖ ∼ ‖x‖. In particular, if s < −a/2, the iteration (2.1) is not even well-defined
for general yδ ∈ Y.
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3 Nonlinear Problems

Convergence of Landweber iteration for nonlinear inverse problems has been in-
vestigated in [5]. There, convergence rates are proven under the range invariance
condition

F ′(x) = RxF
′(x†), x ∈ Bρ(x0), (3.1)

with ‖Rx − I‖ ≤ C ‖x − x†‖ for all x ∈ Bρ(x0). Additionally, the following source
condition is assumed:

x† − x0 = [F ′(x†)∗F ′(x†)]µw, (3.2)

with some µ > 0 and ‖w‖ small enough.
We will require similar, slightly more general conditions for our analysis below.

For the solution of nonlinear inverse problems (1.1), we consider the iteration

xδ
k+1 = xδ

k + L−2sF ′(xδ
k)

∗(yδ − F (xδ
k)), k = 0, 1, 2, . . . . (3.3)

Similar to the conditions in Assumption 2.1 for linear problems, we require the
following conditions:

Assumption 3.1

(N1) F : D(F )(⊂ X ) → Y is continuous and Fréchet-differentiable in X .

(N2) F (x) = y has a solution x†.

(N3) ‖F ′(x†)x‖ ≤ m‖x‖−a for all x ∈ X and some a > 0,m > 0. Moreover, the
extension of F ′(x†) to X−a is injective.

(N4) B := F ′(x†)L−s is such that ‖B‖X ,Y ≤ 1, where s ≥ −a.

Under this Assumption, Proposition 2.2 holds verbatim for the linearized oper-
ator T := F ′(x†). The next proposition summarizes basic properties of the shifted
Hilbert scale defined in (2.10):

Proposition 3.2 Let Assumption 3.1 hold and let (X s
r )r∈R be defined as in (2.10).

(i) The space X s
q is continuously embedded in X s

p for p < q, i.e., for x ∈ X s
q

|||x|||p ≤ γp−q |||x|||q , (3.4)

where γ is such that

〈 (B∗B)
− 1

2(a+s)x, x 〉 ≥ γ‖x‖2 for all x ∈ D((B∗B)
− 1

2(a+s) ) .

(ii) The interpolation inequality holds, i.e., for all x ∈ X s
r

|||x|||q ≤ |||x|||
r−q
r−p
p |||x|||

q−p
r−p
r , p < q < r . (3.5)

(iii) The following estimate holds:

‖x‖r ≤ m
r−s
a+s |||x|||r for all x ∈ X s

r ⊂ Xr if s ≤ r ≤ a+ 2s. (3.6)
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In particular, we obtain

‖x‖0 ≤ m
−s
a+s |||x|||0 for all x ∈ X s

0 ⊂ X0 if − a/2 ≤ s ≤ 0 . (3.7)

Moreover,

|||x|||−a = ‖F ′(x†)x‖ for all x ∈ X . (3.8)

(iv) If in addition (2.3) holds, the following estimates hold with p = s+ r−s
a+s(ã+s):

‖x‖p ≥ m
r−s
a+s |||x|||r for all x ∈ Xp ⊂ X s

r if s ≤ r ≤ a+ 2s. (3.9)

Proof The proof follows from Proposition 8.19 in [1] and Proposition 2.2.

Note that in general X s
−b is not the dual space of X s

b , as would be the case for a
Hilbert scale. Thus the spaces X s

r are no Hilbert scale in general.

For the following convergence rate analysis for nonlinear problems, we need some
smoothness conditions on the solution x† and additional conditions on the Fréchet-
derivative of F :

Assumption 3.3

(N5) x0 ∈ B̃ρ(x
†) := {x ∈ X : x − x† ∈ X s

0 ∧ |||x − x†|||0 ≤ ρ} ⊂ D(F ) for some
ρ > 0.

(N6) ‖F ′(x†) − F ′(x)‖X s
−b,Y ≤ c |||x† − x|||β0 for all x ∈ B̃ρ(x

†) and some b ∈ [0, a],
β ∈ (0, 1], and c > 0.

(N7) x† − x0 ∈ X s
u for some a−b

β < u ≤ b + 2s, i.e., there is an element v ∈ X so
that

Ls(x† − x0) = (B∗B)
u−s

2(a+s)v . (3.10)

Before we start our analysis we want to discuss the conditions above.

Remark 3.4 First of all we want to mention that, if (2.2) holds, then the conditions
in Assumptions 3.1 and 3.3 are equivalent to the ones in Assumption 2.1 in [13].

Note that, due to (3.8), F ′(x†) has a continuous extension to X s
−a ⊃ X−a.

Therefore, condition (N6) implies that F ′(x) has at least a continuous extension
to X s

−b ⊃ X in a neighborhood of x†. By definition of the space X s
−b, this condition

is equivalent to

‖(B∗B)
− b+s

2(a+s)L−s(F ′(x†)∗ − F ′(x)∗)‖Y ,X ≤ c |||x† − x|||β0 . (3.11)

By virtue of (2.4) and Proposition 3.2 (iii), this implies that L−2sF ′(xδ
k)

∗ maps Y
at least into X s

b+2s ⊂ Xb+2s and hence F ′(xδ
k)

∗ maps Y at least into Xb while F ′(x†)∗

maps Y into Xa.

Note that, if s = 0, (N6) reduces to

‖(F ′(x†)∗F ′(x†))−
b
2a (F ′(x†)∗ − F ′(x)∗)‖Y ,X ≤ c‖x† − x‖β

0 ,
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compare to [5, (3.18)]. Moreover, if b = a and β = 1, this condition is equivalent to
(3.1) with ‖Rx − I‖ replaced by ‖(Rx − I)Q‖ , where Q is the orthogonal projector

from Y onto R(F ′(x†)).
Condition (N7) is a smoothness condition for the exact solution comparable to

(3.2). In case of regularization in Hilbert scales and under the usual assumption
‖Tx‖ ∼ ‖x‖−a, this coincides with x† − x0 ∈ Xu.

If b = a, then u ≤ a+2s is allowed, which is the usual restriction for regulariza-
tion in Hilbert scales. For s = 0 and if (2.2) is valid, u ≤ a+2s reduces to µ ≤ 1/2,
which is the known restriction for optimal convergence of Landweber iteration for
nonlinear problems under condition (3.1).

We will now state the main results of this section (cf. [7]):

Proposition 3.5 Let Assumptions 3.1 and 3.3 hold. Additionally, let k∗ = k∗(δ, y
δ)

be chosen according to the stopping rule (1.4) with τ > 2 and let |||x† − x0|||u be
sufficiently small. Then

|||xδ
k − x†|||r ≤ 4(τ−1)

τ−2 |||x† − x0|||u(k + 1)
− u−r

2(a+s) (3.12)

for −a ≤ r ≤ 0 and

‖yδ − F (xδ
k)‖ ≤ 2τ2

τ−2 |||x† − x0|||u(k + 1)
− a+u

2(a+s) (3.13)

for all 0 ≤ k < k∗. Moreover, for δ > 0,

k∗ ≤
(

2τ
τ−2 |||x† − x0|||u δ−1

) 2(a+s)
a+u

(3.14)

In the case of exact data (δ = 0), the estimates above hold for all k ≥ 0.

The proof of these statements is given in the appendix. For a slightly more general
statement see [7].

Combining the results of Proposition 3.5 and (3.7) yields the following

Theorem 3.6 Under the assumptions of Proposition 3.5 the following estimate
holds for −a ≤ r ≤ 0 and some positive constant cr:

|||xδ
k∗

− x†|||r ≤ cr |||x† − x0|||
a+r
a+u
u δ

u−r
a+u . (3.15)

In particular, if s ≤ 0,
‖xδ

k∗
− x†‖0 = O(δ

u
a+u ). (3.16)

4 Examples and numerical tests

In this section we give some examples where the results of Sections 2 and 3 can be
applied and give sufficient conditions for the validity of Assumption 2.1 respectively
Assumptions 3.1 and 3.3. For the numerical tests of Example 4.2-4.4, we chose a
very fine discretization by standard piecewise linear finite elements. In order to

8



ensure that discretization effects have no significant influence, we compared the
results for different discretization levels.

We start with two examples concerning linear problems:

Example 4.1 The first problem under consideration is the solution of a linear
Fredholm integral equation of the first kind. Let T : L2[0, 1] → L2[0, 1] be defined
by

(Tx)(s) =

∫ 1

0
k(s, t)x(t)dt, (4.1)

with kernel

k(s, t) = s1/2

{
s(1 − t), 0 ≤ s < t ≤ 1
t(1 − s), 0 ≤ t ≤ s ≤ 1.

It is well-known (see, e.g., [9]) that Fredholm integral operators of the first kind
with L2 kernel are compact on L2[0, 1], and thus the solution of (4.1) is ill-posed.
We next give sufficient conditions for Assumption 2.1 to hold: Let us assume that
y = Tx† (L1); we show (L2) for an appropriate choice of a Hilbert scale: With

(T ∗y)(t) = (1 − t)

∫ t

0
s3/2y(s)ds+ t

∫ 1

t
s1/2(1 − s)y(s)ds

we get (T ∗y)(0) = (T ∗y)(1) = 0. Differentiation yields

(T ∗y)′(t) = −
∫ t

0
s3/2y(s)ds+

∫ 1

t
s1/2(1 − s)y(s)ds

and
(T ∗y)′′(t) = −t1/2y(t).

Thus, we have R(T ∗) ⊂ H2 ∩H1
0 . More specifically, it is easy to see that

R(T ∗) = {w ∈ H2[0, 1] ∩H1
0 [0, 1] : t−1/2w′′(t) ∈ L2[0, 1]}.

As Hilbert scale operator, we choose

Lsx :=
∞∑

n=1

(nπ)s〈x, xn 〉xn, xn :=
√

2 sin(nπ·), (4.2)

and L2x = −x′′.
With this choice, we get R(T ∗) ( X2 := H2[0, 1] ∩ H1

0 [0, 1] and additionally,
R(T ∗) ⊃ X2.5 := {w ∈ H2.5[0, 1]∩H1

0 [0, 1] : ρ−1/2w′′ ∈ L2[0, 1]}, with ρ(t) = t(1−t).
By Theorem 11.7 in [10], we have

‖w‖2
2.5 ∼ ‖w′′‖2

H1/2 + ‖ρ−1/2w′′‖2
L2 .

This yields

‖T ∗y‖2
2.5 ∼ ‖(·)1/2y‖2

H1/2 + ‖ρ−1/2(·)1/2y‖2
L2

≥ ‖(·)1/2y‖2
L2 + ‖ρ−1/2(·)1/2y‖2

L2

= c

(∫ 1

0
ty(t)2dt+

∫ 1

0
(1 − t)−1y(t)2dt

)
≥ c‖y‖2

L2
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Summarizing, we have

m‖x‖−2.5 ≤ ‖Tx‖ ≤ m‖x‖−2.

Note, that Proposition 3.2 yields |||x†|||u ≤ c‖x†‖s+ u−s
2+s

(2.5+s) for s ≤ u ≤ 2a + s,

which gives a sufficient condition for (N7) in terms of the Hilbert scale {Xs}s∈R.

Example 4.2 With the second example we want to demonstrate that even for
exponentially ill-posed problems preconditioning with a Hilbert scale operator L−2s

may be numerically advantageous. Consider the backwards heat equation Tx = y,
with T : L2[0, 1] → L2[0, 1] defined by (Tg)(x) = y(x) := u(x, t) with some t > 0
and

−ut + quxx = 0, u(0, t) = u(1, t) = 0, u(x, 0) = g.

A solution of the heat equation has the Fourier expansion

u(x, t; g) =

∞∑

n=1

exp(−qtπ2n2)〈 g, xn 〉xn,

with the basis functions xn as in Example 4.1. Let Ls be defined by (4.2). Then we
have

‖T ∗y‖r ≤ c(r)‖y‖0 for all r ∈ R.
For the numerical tests we set s = −1. We shortly discuss, in which sense L−2s = −(·)′′
works as a preconditioner. For this purpose, let us approximate T by a truncated
singular value expansion, i.e.,

T ∼ TN :=

N∑

n=1

exp(−qtπ2n2)〈 ·, xn 〉xn.

Assume that g†N ∈ XN := {xn : n = 1, .., N} is the solution to TNg
†
N = yN ∈ XN .

The number of iterations for an iterative solution of TNg = yN is coupled to the
condition number of the iteration operator, which is T ∗

NTN for Landweber iteration,
L−2sT ∗

NTN for the Hilbert scale version, and TN for the method of successive ap-
proximation (also known as Richardson iteration; investigated by Fridman [2] for
compact selfadjoint positive semidefinite operators), note that T ∗ = T in our ex-
ample. Using the singular value expansion of T and denoting a = qtπ2, we get the
following condition number estimates:

cond(T ∗
NTN ) ≤ ea(2N2−1), cond(TN ) ≤ ea(N2−1).

and

cond(L−2T ∗
NTN ) ≤





e2a(N2−1))/N2, 1/2 ≤ a,

e2a−1/(2a), a < 1/2, e2a(N2−1) < N2,

e2aN2−1/(2aN2), else.

Note that although for N → ∞, the condition numbers of Landweber iteration and
the Hilbert scale version have the same assymptotic behaviour, for small N the
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Hilbert scale problem may even be better conditioned than the successive approx-
imation hence yielding a fewer number of iterations. This means that for recon-
structing low frequency components, the Hilbert scale iteration may be faster than
successive approximation (and much faster than usual Landweber iteration). The
following numerical test demonstrates this behaviour:

We consider the problem of reconstructing the initial condition

g†N = sin(2πx) + sinNπx, N = 3, . . . , 7.

The data y are calculated analytically (with q = 0.01, t = 1) and additional noise
is added, such that ‖y − yδ‖ ≤ 0.001. The iteration is stopped according to the
discrepancy principle (1.4) with τ = 2.1.

N (lw) cond (hs) cond (sa) cond

3 17 4.85 6 4.54 6 2.20
4 63 19.31 6 2.74 12 4.39
5 292 114.14 21 10.37 25 10.68
6 1652 1000.97 87 63.13 50 31.63
7 > 5000 13027.51 357 603.62 83 114.14

Table 1. Iteration numbers and condition number estimates

for Landweber iteration (lw), the Hilbert scale method (hs)

and successive approximation (sa).

In the second table, we compare the numerically observed convergence rates and
iteration numbers for the example

g†(x) = 2x− sign(2x− 1) − 1.

δ k∗(lw)
‖gδ

k∗
−g†‖

‖g†‖
k∗(hs)

‖gδ
k∗

−g†‖

‖g†‖

0.008 26 0.504 4 0.479
0.004 46 0.487 5 0.474
0.002 180 0.471 9 0.464
0.001 962 0.429 34 0.429
0.0005 1784 0.418 63 0.417

Table 2. Iteration numbers and relative error

for Landweber iteration (lw) and the Hilbert scale

method (hs).

Although x† /∈ X s
u for any u > 0, we still observe the following convergence rates

numerically: k∗ ∼ δ−1.66 and ‖gδ
k∗

− g†‖ ∼ δ0.07 for Landweber iteration and k∗ ∼
δ−1.07 and ‖gδ

k∗
−g†‖ ∼ δ0.05 for the Hilbert scale version. We emphasize that usually

only logarithmic rates can be expected for exponentially ill-posed problems (see, e.g.,
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[6]) under reasonable source conditions, which explains the small exponents in the
numerical example.

Since the eigenvalues of T decrease like exp(−an2), only components correspond-
ing to N 2 ≤ log(1/δ)/(2a) can be reconstructed reliably and until the stopping
criterion is reached, the operator T behaves essentially like TN . For δ = 0.0005 we
have N ∼ 6 (compare to the iteration numbers of Table 1).

Example 4.3 A nonlinear Hammerstein integral equation. The following example
is taken from [13]. It has been observed there that convergence of Landweber
iteration can be accelerated when the iteration is performed in a Hilbert scale Xs

with s ≥ 0 and x†−x0 is sufficiently smooth. However, if x†−x0 is not very smooth,
optimal convergence can occur even for s < 0.

Let F : H1[0, 1] → L2[0, 1] be defined by

(F (x))(s) =

∫ s

0
x(t)2dt.

The adjoint of the Fréchet derivative is then given by

(F ′(x)∗w) = 2A−1

[
x(·)

∫ 1

·
w(t)dt

]
,

where A : D(A) = {ψ ∈ H2[0, 1] : ψ′(0) = ψ′(1) = 0} → L2[0, 1] is defined by
Aψ := −ψ′′ + ψ; note that A−1 is the adjoint of the embedding operator from
H1[0, 1] in L2[0, 1]. Assuming that x† ≥ γ > 0 a.e., we get (see [13, Section 4] for
details)

R(F ′(x†)∗) = {w ∈ H3[0, 1] : w′(0) = w′(1) = 0, w(1) = w′′(1)}.

We choose the Hilbert scale induced by L2x := −x′′ + x, and X0 = H1[0, 1]. With
this choice, we have

R(F ′(x†)∗) ⊂ X2

and therefore can set s = −1. This yields

L−2sF ′(x)∗w = 2x(·)
∫ 1

·
w(t)dt,

in particular we have

F ′(x) = Rx(x†)F ′(x†),

with

‖Rx(x†) − I‖ ≤ C ‖x− x†‖0 ≤ c |||x− x†|||0.
Thus, (N6) holds wit b = a and β = 1.

For the first numerical test we set x†(t) := 3/2−|-erf(4t−2)|, where erf(·) denotes
the standard error function, and x0 = 1/2. To avoid inverse crimes, the data are
calculated on a finer grid.
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δ k∗(lw)
‖xδ

k∗
−x†‖

‖x†−x0‖
k∗(hs)

‖xδ
k∗

−x†‖

‖x†−x0‖

0.02 479 1.895 10 1.085
0.01 1504 0.815 21 0.620
0.005 4001 0.744 37 0.402
0.0025 12333 0.530 56 0.365

Table 3. Iteration numbers and relative errors

for Landweber iteration (lw) and the Hilbert scale

method (hs).

The numerical test gives the following rates: k∗ ∼ δ−1.54 and ‖xδ
k − x0‖ ∼ δ0.56

for standard Landweber and k∗ ∼ δ−0.83 and ‖xδ
k −x0‖ ∼ δ0.53 for the Hilbert scale

version, i.e., the number of iterations for the Hilbert scale iteration is approximately
the square-root of that for standard Landweber, as predicted by the theory. Note
that by setting s = −1 = −a/2, we have u ≤ a+2s = 0. Thus we can actually proof
convergence rates only in spaces Xr with −a ≤ r < 0, e.g., in Hs[0, 1] for 0 ≤ s < 1.

Note that in this example the application of the Hilbert scale operator L−2 in
fact makes the iteration even simpler, i.e., application of A−1, which is the main
numerical effort in the Landweber iteration, can be avoided while simultaneously
the number of iterations is reduced.

The case, when the restriction u ≤ a+2s becomes active is demonstrated in the
following example, which is taken from [13]: Let

x†(t) = t+ 10−6(196145 − 41286t2 + 19775t4 + 70t6 + 436t7).

It was shown in [13] that standard Landweber iteration yields a convergence rate

of ‖xδ
k − x0‖ = O(δ−

1
2 ). For the Hilbert scale iteration with s = −1 we can not

guarantee convergence in X0 = H1[0, 1]. However, Theorem 3.6 yields convergence
rates in X−1 = L2[0, 1], which is also observed numerically.

δ k∗(lw) ‖e∗‖0 ‖e∗‖−1 k∗(hs) ‖e∗‖0 ‖e∗‖−1

0.004 1 0.0356 0.0107 16 0.740 0.0586
0.002 9 0.0301 0.00883 42 0.918 0.0489
0.001 39 0.0177 0.00474 118 1.170 0.0401
0.0005 70 0.0128 0.00293 338 1.509 0.0322
0.00025 113 0.0102 0.00189 922 1.927 0.0262

Table 4. Iteration numbers and relative errors e∗ = xδ

k∗

− x† for

Landweber iteration (left) and the Hilbert scale method (right) in X0 =

H2[0, 1] and X−1 = L2[0, 1].

The corresponding convergence rates for Landweber iteration are:
‖xδ

k − x†‖0 ∼ δ0.48 and ‖xδ
k − x†‖−1 ∼ δ0.66; for the Hilbert scale version we have

‖xδ
k − x†‖0 ∼ δ−0.35 respectively ‖xδ

k − x†‖−1 ∼ δ0.30.
Note, that the Hilbert scale iterates are not bounded in X0. This could only be

guaranteed, if

x† − x0 ∈ X s
0 = R(L−2T ∗) ⊂ {w ∈ H1[0, 1] : w(1) = 0},
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which is not the case for our choice of the Hilbert scale. Instead, we only have
x† − x0 ∈ H1/2−ε[0, 1] ⊂ X s

−1/2−ε. Thus, with Theorem 3.6 and u < −1/2, one can

expect at most a rate of δ
1
3 for the error in X−1 = L2[0, 1], which was also observed

numerically.

Example 4.4 Parameter identification. In this example, which is taken from [5],
we want to estimate the parameter c in

−∆u+ cu = f in Ω,
u = g in ∂Ω,

(4.3)

where Ω is an intervall in R1 or a bounded domain in R2 or R3 with smooth
boundary (or a parallelepiped), f ∈ L2(Ω) and g ∈ H3/2(∂Ω). The nonlinear oper-
ator F : D(F ) ⊂ L2(Ω) → L2(Ω) is defined as the parameter-to-solution mapping
F (c) = u(c), which is well-defined and Fréchet differentiable on

D(F ) := {c ∈ L2(Ω) : ‖c− c‖ ≤ γ for some c ≥ 0 a.e.}

where u(c) denotes the solution of (4.3) and γ > 0 has to be sufficiently small. With
this setting, we have

F ′(c)∗w = u(c)A(c)−1w,

where A(c) : H2(Ω) ∩ H1
0 (Ω) → L2(Ω) is defined by A(c)u = −∆u + cu. Using

X2 := H2(Ω) ∩H1
0 (Ω) and L2 = −∆ we get

R(F ′(c)∗) ⊂ X2.

If u(c†) ≥ κ > 0 a.e. in Ω, then for all c with ‖c− c†‖ ≤ ρ ≤ γ (see [5] for details)

F ′(c)∗ = F ′(c†)Rc(c
†),

with

‖Rc(c
†) − I‖ ≤ C ‖c− c†‖0 ≤ c |||c− c†|||0.

The last inequality follows by Proposition 3.2 (iii). This proofs (N6); additionally
we have in this case

‖F ′(c†)∗w‖2 ∼ ‖w‖0,

and thus (N7) reduces to x† − x0 ∈ Xu (= H2u
0 (Ω) for 0 ≤ u < 3/4).

For the numerical test we set s = −1. Note, that in this case we get the restric-
tion 0 ≤ u ≤ a+2s = 0. Thus, the results of Section 3 do not guarantee convergence
rates in L2(Ω). However, as in the first test case of Example 3, convergence rates
are observed in the numerical results. In order to ensure convergence rates also
theoretically, one could alternatively set s > −1 and use a multilevel technique to
implement L−2s.

We consider c† = sign(x − 0.5) · sign(y − 0.5) and Ω = [0, 1]2 and start with
x0 = 1.
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δ k∗(lw)
‖xδ

k∗
−x†‖

‖x†−x0‖
k∗(hs)

‖xδ
k∗

−x†‖

‖x†−x0‖

0.004 6 0.937767 2 0.844723
0.002 18 0.750728 4 0.697871
0.001 33 0.690766 7 0.612904
0.0005 118 0.615639 11 0.553232
0.00025 410 0.517045 21 0.472961

Table 5. Iteration numbers and relative errors for

Landweber iteration (lw) and the Hilbert scale method

(hs).

The corresponding rates are k∗ ∼ δ−1.63 and ‖xδ
k − x†‖ ∼ δ−0.21 for Landweber

iteration respectively k∗ ∼ δ−0.86 and ‖xδ
k −x†‖ ∼ δ0.2 for the Hilbert scale version.

Note, that we only have x† − x0 ∈ H
1/2−ε
0 = X s

1/2−ε, thus the optimal convergence

rate u
a+u = 1

5 −O(ε) under the given source condition is realized numerically.

This numerical result and the first test of Example 3 suggest that the restriction
u ≤ a + 2s, which is only needed in the nonlinear case, can possibly be relaxed in
some cases (cf. [5, (3.18)]).

Appendix

For the proof of Proposition 3.5 we need the following Lemma (cf. [13])

Lemma A.1 Let Assumptions 3.1 and 3.3 hold. Moreover, let k∗ = k∗(δ, y
δ) be

chosen according to the stopping rule (1.4) with τ > 2, and assume that |||eδ
j |||0 ≤ ρ

and that |||eδ
j |||u ≤ ρu for all 0 ≤ j < k ≤ k∗ and some ρu > 0, where eδ

j := xδ
j − x†.

Then there is a positive constant γ1 (independent of k and δ) such that for all
0 ≤ k ≤ k∗ the following estimates hold:

|||eδk|||0 ≤ |||x† − x0|||u(k + 1)
− u

2(a+s) + δk
a

2(a+s)

+γ1

k−1∑

j=0

(k − j)
− a+2s

2(a+s) |||eδj |||
b
a
−a |||eδj |||

a(1+β)−b
a

0 (A.1)

+ γ1

k−1∑

j=0

(k − j)
− b+2s

2(a+s) ( |||eδj |||
b
a
−a |||eδj |||

a(1+2β)−b
a

0 + |||eδj |||−a |||eδj |||β0 )

|||eδk|||−a ≤ (k + 1)
− a+u

2(a+s) |||x† − x0|||u + δ

+ γ1

k−1∑

j=0

(k − j)−1 |||eδj |||
b
a
−a |||eδj |||

a(1+β)−b
a

0 (A.2)

+ γ1

k−1∑

j=0

(k − j)
− b+a+2s

2(a+s) ( |||eδj |||
b
a
−a |||eδj |||

a(1+2β)−b
a

0 + |||eδj |||−a |||eδj |||β0 )
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Proof From (3.3) we immediately obtain the representation

eδk+1 = (I − L−2sF ′(x†)∗F ′(x†))eδk + L−2sF ′(x†)∗(yδ − y − qδ
k) + L−2spδ

k

with

qδ
k := F (xδ

k) − F (x†) − F ′(x†)eδk (A.3)

pδ
k := (F ′(xδ

k)
∗ − F ′(x†)∗)(yδ − F (xδ

k)) (A.4)

and furthermore the closed expression

eδk = L−s(I−B∗B)kLs(x0−x†)+

k−1∑

j=0

L−s(I−B∗B)k−j−1(B∗(yδ −y−qδ
j )+L−spδ

j) .

Together with (1.2), (2.10), and (3.10) we now obtain the following estimates

|||eδk|||0 ≤ ‖(B∗B)
u

2(a+s) (I −B∗B)k‖ ‖v‖

+

k−1∑

j=0

‖(B∗B)
a+2s

2(a+s) (I −B∗B)k−j−1‖(δ + ‖qδ
j‖) (A.5)

+

k−1∑

j=0

‖(B∗B)
b+2s

2(a+s) (I −B∗B)k−j−1‖ ‖(B∗B)
− b+s

2(a+s)L−spδ
j‖

and

|||eδk|||−a ≤ ‖(B∗B)
a

2(a+s) (I −B∗B)k‖ ‖v‖ +

+
k−1∑

j=0

‖(B∗B)(I −B∗B)k−j−1‖(δ + ‖qδ
j‖) (A.6)

+

k−1∑

j=0

‖(B∗B)
a+b+2s
2(a+s) (I −B∗B)k−j−1‖ ‖(B∗B)

− b+s
2(a+s)L−spδ

j‖0 .

Next we derive estimates for ‖qδ
j‖ and ‖(B∗B)

− b+s
2(a+s)L−spδ

j‖ . Assumption (N6),
(3.5), and (A.3) imply that

‖qδ
j‖ ≤

∫ 1

0
‖F ′(xδ

j + ξ(x† − xδ
j)) − F ′(x†))eδj‖ dξ (A.7)

≤ c
β+1 |||eδj |||−b |||eδj |||β0 ≤ c

β+1 |||eδj |||
b
a
−a |||eδj |||

a(1+β)−b
a

0 .

Since τ > 2, (1.2) and (1.4) imply that for all 0 ≤ k < k∗

‖yδ − F (xδ
k)‖ < 2‖y − F (xδ

k)‖ .
Thus, we obtain together with (3.8), (3.11), (A.3), (A.4), and F (x†) = y (cf. As-
sumption (N2)) that

‖(B∗B)
− b+s

2(a+s)L−spδ
j‖0 ≤ 2c‖y − F (xδ

j)‖ |||eδ
j |||β0

≤ 2c(‖qδ
j‖ + |||eδ

j |||−a) |||eδj |||β0 (A.8)

≤ γ̃( |||eδ
j |||

b
a
−a |||eδj |||

a(1+2β)−b
a

0 + |||eδj |||−a |||eδj |||β0 )
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for all 0 ≤ j < k.
Combining the estimates, using spectral theory and Lemma 2.9 in [13] now yield

the assertions (A.1) and (A.2).
We are now in the position to proof Proposition 3.5:

Proof[Proof of Proposition 3.5]
We proceed similar as in the proof of Theorem 2.3 in [13] and show by induction

that
|||eδj |||0 ≤ η(j + 1)

− u
2(a+s) |||x† − x0|||u , 0 ≤ j ≤ k∗ , (A.9)

and
|||eδj |||−a ≤ η(j + 1)

− a+u
2(a+s) |||x† − x0|||u , 0 ≤ j < k∗ , (A.10)

hold if |||x† − x0|||u is sufficiently small and

η =
4(τ − 1)

τ − 2
. (A.11)

The assertion holds for j = 0, if |||x† − x0|||u is small enough. Furthermore, if
|||x† − x0|||u is so small that γ−uη |||x† − x0|||u ≤ ρ then by (3.4) xj ∈ B̃ρ(x

†) and the
iteration (3.3) is well-defined. Now assume (A.9), (A.10) are valid for 0 ≤ j < k ≤
k∗. Then by virtue of Lemma A.1 the estimates

|||eδk|||0 ≤ (1 + γ2 |||x† − x0|||βu) |||x† − x0|||u(k + 1)
− u

2(a+s) + δk
a

2(a+s) (A.12)

|||eδk|||−a ≤ (1 + γ2 |||x† − x0|||βu) |||x† − x0|||u(k + 1)
− a

2(a+s) + δ (A.13)

hold for some γ2 > 0 (independent of k). Here, we also have used the restriction
a−b
β < u ≤ b+ 2s.

We will now derive an estimate for k in terms of δ: Similar to (A.8) we get

(τ − 1)δ ≤ c̃ |||eδ
j |||

b
a
−a |||eδj |||

a(1+β)−b
a

0 + |||eδj |||−a (A.14)

for all 0 ≤ j < k ≤ k∗ and hence (A.9) and (A.10) for j = k − 1 yield that

δ ≤ τ
2(τ−1)ηk

− a+u
2(a+s) |||x† − x0|||u (A.15)

provided that c̃ηβ |||x† − x0|||βu ≤ τ−2
2 . This already proofs (3.14).

Together with (A.11) and (A.12) we obtain

|||eδk|||0 ≤ |||x† − x0|||u(1 + γ2 |||x† − x0|||βu + τ
2(τ−1)η)(k + 1)

− u
2(a+s)

≤ η |||x† − x0|||u(k + 1)
− u

2(a+s)

if γ2 |||x† − x0|||βu ≤ 1 which we again assume to hold in the following. Similarly, we
obtain that

|||eδk|||−a ≤ 2(τ−1)
τ−2 (k + 1)

− a+u
2(a+s) |||x† − x0|||u(1 + γ2 |||x† − x0|||βu)

≤ η(k + 1)
− a+u

2(a+s) |||x† − x0|||u.
The estimate (A.10) follows by similar to (A.8). Thus, if |||x† − x0|||u is sufficiently
small, then the assertion holds for all j ≤ k∗. In the case of exact data (δ = 0), the
estimates hold for all k ≥ 0, since then Lemma A.1 holds for all k ≥ 0.

17



References

[1] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse Problem.
Kluwer Academic Publishers, 1996.

[2] V. Fridman. Methods of successive approximations for Fredholm integral equa-
tions of the first kind. Uspekhi Mat. Nauk, 11:233–234, 1956. in Russian.

[3] C. W. Groetsch. The Theory of Tikhonov Regularization for Fredholm Equa-
tions of the First Kind. Pitman, Boston, 1984.

[4] M. Hanke. Accelerated Landweber iterations for the solution of ill-posed equa-
tions. Numer. Math., 60:341–373, 1991.

[5] M. Hanke, A. Neubauer, and O. Scherzer. A convergence analysis of the
Landweber iteration for nonlinear ill-posed problems. Numer. Math., 72:21–37,
1995.

[6] T. Hohage. Iterative Methods in Inverse Obstacle Scattering: Regularization
Theory of Linear and Nonlinear Exponentially Ill-Posed Problems. PhD thesis,
University of Linz, 1999.

[7] B. Kaltenbacher, A. Neubauer, and O. Scherzer. Iterative Regularization Meth-
ods for Nonlinear Problems. in preparation.

[8] S. G. Krein and J. I. Petunin. Scales of Banach spaces. Russian Math. Surveys,
21:85–160, 1966.

[9] R. Kreß. Linear Integral Equations. Springer, Berlin, 1989.

[10] J. L. Lions and E. Magenes. Non-Homogeneous Boundary Value Problems and
Applications: Volume I. Springer, Berlin - Heidelberg, 1972.

[11] F. Natterer. Error bounds for Tikhonov regularization in Hilbert scales. Appl.
Anal., 18:29–37, 1984.

[12] A. Neubauer. Tikhonov regularization of nonlinear ill-posed problems in Hilbert
scales. Appl. Anal., 46:59–72, 1992.

[13] A. Neubauer. On Landweber iteration for nonlinear ill-posed problems in
Hilbert scales. Numer. Math., 85:309–328, 2000.

[14] U. Tautenhahn. Error estimates for regularization methods in Hilbert scales.
SIAM J. Numer. Anal., 33:2120–2130, 1996.

18


