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Abstract

In this paper we investigate the regularization properties of semiiterative reg-

ularization methods in Hilbert scales for linear ill-posed problems and perturbed

data.

It is well known that Landweber iteration can be remarkably accelerated by poly-

nomial acceleration methods leading to the notion of optimal speed of convergence,

which can be obtained by several efficient two-step methods, e.g., the ν−methods

by Brakhage. It was observed in [3] that a similar speed of convergence, i.e., similar

iteration numbers yielding optimal convergence rates, can be obtained if Landweber

iteration is performed in Hilbert scales.

Combining both ideas, we show that semiiterative methods can be further ac-

celerated yielding optimal convergence rates with only the square root of iterations

compared to semiiterative regularization methods or Landweber iteration in Hilbert

scales. We conclude with several examples and numerical tests confirming the the-

oretical results, including a comparison to the method of conjugate gradients.

1 Introduction

In this paper, we study inverse problems of the form

Tx = y, y ∈ R(K), (1.1)

where T : X → Y is a linear bounded operator between infinite dimensional Hilbert

spaces X and Y with range R(T ) ⊂ Y. It is well known (see, e.g., [6]) that, if R(T )

is not closed, the Moore-Penrose inverse T † defined on D(T †) = R(T ) + R(T )⊥, is

unbounded and the solution of (1.1) is ill-posed; i.e. a solution of (1.1) does not

depend continuously on the right hand side, thus it has to be regularized.

Especially for large scale problems, iterative regularization algorithms have turned

out to be an attractive alternative to Tikhonov regularization, which is probably the
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most well known regularization method (see, e.g., [4, 7]). Application of Landweber

iteration (cf. [12]),

xk = xk−1 + ωT ∗(y − Txk−1), k ≥ 1, (1.2)

with 0 < ω < 2/‖T ∗T‖ to the solution of inverse problems has been investi-

gated intensively in the literature (see, e.g., [1, 4, 9] and the references cited there).

Note that in finite dimensions, (1.2) corresponds to Richardson iteration (successive

approximation) applied to the normal equation

T ∗Tx = T ∗y. (1.3)

If y ∈ R(T ), then the iterates xk converge to T †y; if however only perturbed data

yδ with a known upper bound on the noise level

‖y − yδ‖ ≤ δ (1.4)

are known and yδ /∈ R(T ), which is most probable if (1.1) is ill-posed and R(T ) is

not closed, ‖xk‖ tends to infinity.

Iterative methods are turned into regularization algorithms by stopping the it-

eration after an adequate number k∗ of steps. Besides a priori stopping rules, which

require knowledge of the smoothness of x† − x0 in terms of spaces R((T ∗T )µ), the

discrepancy principle (cf. [4, 14])

‖yδ − Txk∗
‖ ≤ τδ < ‖yδ − Txk‖ , 0 ≤ k < k∗, (1.5)

with τ > 1 has turned out to be an appropriate a posteriori stopping rule yielding

optimal convergence rates for Landweber iteration for linear problems, i.e., if

x† − x0 ∈ R((T ∗T )µ), µ > 0 (1.6)

then

‖xδ
k∗

− x†‖ = o(δ
2µ

2µ+1 ) and k∗ ∼ δ−
2

2µ+1 , (1.7)

see, e.g., [4].

The main drawback of Landweber iteration is the large number of iterations

needed to obtain the optimal convergence rates, cf. (1.7). To speed up the method,

several semiiterative methods (polynomial acceleration methods) have been inves-

tigated (see, e.g., [8] for an overview ). In our numerical experiments, we will use

the ν−methods proposed by Brakhage [2], for which the number of iteration can be

bounded by

k∗ ∼ δ−
1

2µ+1 for 0 < µ ≤ ν − 1/2 (1.8)

in case of stopping with the discrepancy principle (1.5) (see Theorem 2.1). Thus

only the square root of the number of iterations as compared to Landweber iteration

have to be performed to get optimal convergence rates. However, the ν−methods

show a saturation phenomenon, which was not present for Landweber iteration, i.e.,

the optimal rates and (1.8) hold only for µ ≤ ν respectively µ ≤ ν − 1/2 if the

iteration is stopped according to (1.5).
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Regularization in Hilbert scales was introduced by Natterer [15] in the framework

of Tikhonov regularization for linear problems and it has been investigated for more

general regularization methods in [4, 20] by means of spectral theory. Originally,

Hilbert scale regularization was introduced to increase the range of optimal conver-

gence for Tikhonov regularization [15, 18] and Landweber iteration for nonlinear

inverse problems [19]. In [3], the case s ≤ 0 (undersmoothing) was focused, and it

was shown that the application of Hilbert scales can be understood as precondition-

ing in this case, i.e., the number of iterations needed to get optimal convergence can

essentially be reduced to (1.8). Additionally, the results were derived under more

general than the usual assumptions for regularization in Hilbert scales (cf. Section

3).

The aim of this paper is to show that polynomial acceleration methods in com-

bination with the Hilbert scale approach can lead to further acceleration of iterative

methods yielding optimal rates of convergence with the stopping index bounded by

k∗ ∼ δ
− 1

2(2µ+1) . In case of mildly ill-posed problems, i.e., if the singular values σn

of the operator T decay like O(n−α) for some 0 < α < 1, this bound is even better

than the one for the conjugate gradient method k∗ ≤ δ
− 1

(2µ+1)(1+α) , cf. [4, Theorem

7.14]. The faster convergence of a Hilbert scale ν−method is illustrated in Example

5.1 and 5.3.

The paper is organized as follows: In Sections 2 and 3, we shortly repeat the main

results on convergence of semiiterative regularization methods and regularization in

Hilbert scales. The convergence analysis for semiiterative methods in Hilbert scales

is given in Section 4. We conclude with numerical examples comparing the proposed

method with standard Landweber iteration and ν−methods, Landweber iteration

in Hilbert scales and the conjugate gradient method.

2 Accelerated Landweber methods

While for Landweber iteration (1.2) only information on the last iterate xδ
k−1 is used

to construct the new approximation xδ
k, semiiterative methods make use of the all

the approximations for T †y obtained so far: A basic step of a semiiterative method

has the form

xδ
k = µ1,kx

δ
k−1 + . . . + µk,kx0 + ωkT

∗(yδ − Txδ
k), k ≥ 1

∑k
i=1 µi,k = 1, ωk 6= 0.

(2.1)

By xk we denote the iterates obtained with yδ in (2.1) replaced by the exact data

y. Obviously xδ
k − x0 ∈ Kk(T

∗T, T ∗(yδ − Tx0)), where

Kk(T
∗T, p) := [p, T ∗Tp, . . . , (T ∗T )k−1p] (2.2)

denotes the kth Krylov subspace of T ∗T with respect to p. Consequently, there exist

polynomials gk(λ) and rk(λ) := 1 − λgk(λ) of degree (k − 1) respectively k, such

that

xk − x† = rk(T
∗T )(x0 − x†) and xδ

k − xk = gk(T
∗T )T ∗(yδ − y). (2.3)
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In other words, the approximation error xk − x† is determined by the residual

polynomials rk, while the propagated data error xδ
k − xk is determined by the iter-

ation polynomials gk. A semiiterative method (2.1) is said to have optimal speed of

convergence (cf. [8]) for x† −x0 ∈ R((T ∗T )µ), if ‖xδ
k − x†‖ = O(k−2µ). This can be

guaranteed, if

‖λµrk(λ)‖C[0,1] = ωµ(k) = O(k−2µ), (2.4)

see [4, Section 6.2]. The following theorem guarantees optimal convergence of semi-

iterative regularization methods:

Theorem 2.1 (See [4, Theorem 6.11]) Let y ∈ R(T ), and let the residual polyno-

mials rk satisfy (2.4) for some µ0 > 0. Then the semiiterative method (2.1) is a

regularization method of optimal order for T †y ∈ R((T ∗T )µ) with 0 < µ ≤ µ0 − 1/2

provided the iteration is stopped with k∗ = k∗(δ, y
δ) according to the discrepancy

principle (1.5) with fixed τ > supk∈N ‖rk‖C[0,1]. In this case we have k∗ = O(δ−
1

2µ+1 )

and ‖xδ
k − x†‖ = O(δ

2µ
2µ+1 ).

Note that also o(·) can be derived for the error ‖xδ
k −x†‖ (see [4]). Of particular

importance is the case when the residual polynomials {rk} are an orthogonal se-

quence with respect to some weight function. In this case, the residual polynomials

satisfy a three-term-recurrence, which also carries over to the iterates, i.e.,

xδ
k = xδ

k−1 + µk(x
δ
k−1 − xδ

k−2) + ωkT
∗(yδ − Txδ

k−1), k ≥ 1, (2.5)

with xδ
−1 = 0. A specific choice of such orthogonal polynomials defines the ν−methods

by Brakhage via µ1 = 0, ω1 = (4ν + 2)/(4ν + 1) and

µk = (k−1)(2k−3)(2k+2ν−1)
(k+2ν−1)(2k+4ν−1)(2k+2ν−3) ,

ωk = 4 (2k+2ν−1)(k+ν−1)
(k+2ν−1)(2k+2ν−1) , k > 1,

(2.6)

which have optimal speed of convergence for x† − x0 ∈ Xµ, 0 ≤ µ ≤ ν, i.e., (2.4)

holds with µ = ν.

Remark 2.2 The notion optimal speed of convergence is explained by the fact that

the minimal modulus of convergence ω∗
ν(k) = O(k−2ν) (see Brakhage [2]), thus no

faster faster convergence than O(k−2µ) can be expected for the approximation error

for semiiterative methods in general.

The 1/2−method of Brakhage corresponds to the Chebychev method of Ne-

mirovskii and Polyak, investigated somewhat earlier in [17].

Since the ν−methods have a finite qualification ν, i.e., they satisfy (2.4) only

for µ ≤ ν, it is not surprising that the discrepancy principle guarantees optimal

convergence rates only for 0 < µ ≤ ν − 1/2. In [4, Section 6], an improved a

posteriori stopping rule is investigated yielding optimal convergence for 0 < µ ≤ ν.

There also the relation of the ν−methods with iterated Tikhonov regularization is

discussed.
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3 Regularization in Hilbert scales

Before we recall some results on regularization in Hilbert scales, we shortly repeat

the definition of a Hilbert scale (see [11]):

Let L be a densly defined unbounded selfadjoint strictly positive operator in

X . Then (Xs)s∈R denotes the Hilbert scale induced by L if Xs is the completion

of
⋂∞

k=0 D(Lk) with respect to the Hilbert space norm ‖x‖ s := ‖Lsx‖X ; obviously

‖x‖0 = ‖x‖X (see [11] or [4, Section 8.4] for details).

Regularization in Hilbert scales was introduced by Natterer [15] in order to

improve convergence rates for Tikhonov regularization. In [19], Landweber iteration

for nonlinear problems, which exhibits similar saturation phenomena as Tikhonov

regularization (i.e., optimal convergence only for x† − x0 ∈ R((T ∗T )µ), µ ≤ 1/2)

has been shifted to Hilbert scales (with s > 0) in order to get rid of the restriction

µ ≤ 1/2.

In [3], the application of Hilbert scales to iterative regularization methods has

been investigated from a different point of view. There, the emphasis has been put

on the case s ≤ 0, in which case the Hilbert scale operator L−2s appearing in the

modified Landweber iteration

xδ
k+1 = xδ

k + L−2sT ∗(yδ − Txδ
k), k ≥ 0 (3.1)

acts as a preconditioner for the adjoint operator T ∗. As a consequence, the operator

Ms appearing in the preconditioned normal equation

Msx := L−2sT ∗Tx = L−2sT ∗yδ (3.2)

has a smaller degree of ill-posedness than T ∗T , while still being self-adjoint in Xs.

For a finite dimensional approximation, this means that the condition number of the

operator Ms is of the same order as the condition number of T , and substantially

smaller than the one of T ∗T appearing in the normal equations. This yields a

smaller stopping index determined by the discrepancy principle (1.5).

We shortly recall the main assumptions and convergence results for Landweber

iteration for linear problems in Hilbert scales (cf. [3]):

Assumption 3.1

(A1) Tx = y has a solution x†.

(A2) ‖Tx‖ ≤ m‖x‖−a for all x ∈ X and some a > 0,m > 0. Moreover, the

extension of T to X−a (again denoted by T ) is injective.

(A3) B := TL−s is such that ‖B‖X ,Y ≤ 1, where s ≥ −a.

Usually, for the analysis of regularization methods in Hilbert scales, a stronger

condition than (A2) is used, namely (cf, e.g., [15, 18])

‖Tx‖ ∼ ‖x‖−a for all x ∈ X , (3.3)

where the number a can be interpreted as the degree of ill-posedness. However, if

s ≤ 0, an estimate from below (possibly in a weaker norm), e.g.,

‖Tx‖ ≥ m‖x‖−ã for all x ∈ X and some ã ≥ a, m > 0, (3.4)
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is only needed to interpret the natural source condition x† − x0 ∈ X s
u , i.e.,

x† − x0 = L−s(B∗B)
u−s

2(a+s) w, for some w ∈ X (3.5)

in terms of the Hilbert scale {Xs}s∈R. The following proposition taken from [3]

draws some conclusions from Assumption 3.1.

Proposition 3.2 Let Assumption 3.1 hold. Then Condition (A2) is equivalent to

R(T ∗) ⊂ Xa and ‖T ∗w‖a ≤ m‖w‖ for all w ∈ Y . (3.6)

Moreover for all ν ∈ [0, 1] it holds that D((B∗B)−
ν
2 ) = R((B∗B)

ν
2 ) ⊂ Xν(a+s) and

‖(B∗B)
ν
2 x‖ ≤ mν ‖x‖−ν(a+s) for all x ∈ X (3.7)

‖(B∗B)−
ν
2 x‖ ≥ m−ν ‖x‖ν(a+s) for all x ∈ D((B∗B)−

ν
2 ) (3.8)

Furthermore, (3.4) is equivalent to

Xã ⊂ R(T ∗) and ‖T ∗w‖ ã ≥ m‖w‖
for all w ∈ N (T ∗)⊥ with T ∗w ∈ Xã

(3.9)

and if (3.4) holds, then it follows for all ν ∈ [0, 1] that Xν(ã+s) ⊂ R((B∗B)
ν
2 ) =

D((B∗B)−
ν
2 ) and

‖(B∗B)
ν
2 x‖ ≥ mν ‖x‖−ν(ã+s) for all x ∈ X (3.10)

‖(B∗B)−
ν
2 x‖ ≤ m−ν ‖x‖ν(ã+s) for all x ∈ Xν(ã+s). (3.11)

In our convergence analysis the following shifted Hilbert scale will play an im-

portant role:

Definition 3.3 Let a, s and B be as in Assumption 3.1. We define the shifted

Hilbert scale {X s
r }r∈R by

X s
r := D((B∗B)

s−r
2(a+s) Ls) equipped with the norm

|||x|||r := ‖(B∗B)
s−r

2(a+s) Lsx‖X .
(3.12)

Remark 3.4 Note, that for s 6= 0 {X s
r }r∈R is no Hilbert scale over X in general. In

particular, X s
−r is usually not the dual space of X s

r . Nevertheless, the spaces X s
r have

some properties (interpolation, embedding), that justify the notion shifted Hilbert

scale (see [10] for details). If T̃ denotes the extension of T to Xs and T̃ ∗ denotes the

adjoint operator with respect to the spaces Xs and Y, then X s
u = R((T̃ ∗T̃ )

u−s
2(a+s) ).

Hence, the spaces X s
u are natural spaces for sourcewise representations of x† − x0,

if the problem is considered on Xs. We will use this fact several times below.

The following convergence result for Landweber iteration in Hilbert scales is

taken from [3]. In the next section we will derive corresponding results also for the

class of semiiterative regularization methods.
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Proposition 3.5 Let Assumption 3.1 hold and −a/2 ≤ s ≤ 0. Additionally, as-

sume x† − x0 ∈ X s
u for some u > 0. Then

‖xδ
k − x†‖ ≤ c(δk

a
2(a+s) + k

− u
2(a+s) |||x† − x0|||u). (3.13)

If the iteration (3.1) is stopped according to the a priori rule k∗ ∼ (‖w‖δ−1)
2(a+s)

a+u

then

‖xδ
k − x†‖ = O(‖w‖ a

a+u δ
u

a+u ). (3.14)

If, alternatively, the iteration is stopped according to the discrepancy principle (1.5)

then

k∗ ∼ δ−
2(a+s)

a+u and ‖xδ
k − x†‖ = O(δ

u
a+u ). (3.15)

Remark 3.6 It was mentioned in [3] that, if the usual condition (3.3) holds instead

of (A1), then for 0 < u ≤ a+2s these rates are optimal, i.e., the best possible worst

case error bounds under the given source condition. To see that, observe that

for u ≤ min(a, a + 2s) we have x† − x0 ∈ X s
u = R((T ∗T )µ) with µ = u

2a ; hence

δ
u

a+u = δ
2µ

2µ+1 .

For s < 0, the stopping index of the Hilbert scale method is significantly smaller

than the one for Landweber iteration. E.g., the choice s = − a
2 (1 − ε) and using

u = 2aµ yields approximately the square root of iterations compared to standard

Landweber iteration under the weak source condition x†−x0 ∈ Xµ with 0 < µ ≤ ε/2.

For u > a+2s, the source condition (3.5) can in general no longer be interpreted

in terms of spaces R((T ∗T )µ).

4 Convergence rates for semiiterative regular-

ization methods in Hilbert scales

In this section we investigate the regularization properties of semiiterative methods

in Hilbert scales. Note, that under Assumption 3.1, the operator T can be extended

to an operator on Xs, and instead of (1.1) one could solve

Bz = TL−sz = yδ, x = L−sz. (4.1)

Applying polynomial acceleration methods to (4.1) yields

zk − z† = rk(B
∗B)(z0 − z†) and zδ

k − zk = gk(B
∗B)B∗(yδ − y), (4.2)

with z† = Lsx† and z0 = Lsx0 and consequently

xk − x† = L−srk(B
∗B)Ls(x0 − x†) and

xδ
k − xk = L−sgk(B

∗B)B∗(yδ − y),
(4.3)

where now the iterates xδ
k are calculated by the iteration

xδ
k = µ1,kx

δ
k−1 + . . . + µk,kx0 + ωkL

−2sT ∗(yδ − Txδ
k), k ≥ 1

∑k
i=1 µi,k = 1, ωk 6= 0.

(4.4)

As for Landweber iteration in Hilbert scales, the residuals T ∗(yδ −Txk) are precon-

ditioned with L−2s.
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Remark 4.1 Iterative methods are designed in a way such that the residual poly-

nomials rk(λ) approximate 0, while the iteration polynomials qk(λ) approximate

1/λ. As can be seen from (4.3), we use here the same polynomials as for standard

iterative methods. However, the spectrum of the operator B∗B is different from

the one of T ∗T , in particular, clustering of the eigenvalues at λ = 0 is somewhat

weaker. The application of L−s(·)Ls can also be interpreted as a change of basis.

We are now in the position to state the main results:

Proposition 4.2 Let Assumption 3.1 hold and −a/2 ≤ s ≤ 0 and let xδ
k be defined

by the semiiterative method (4.4) satisfying (2.4) for some µ0 > 0. Additionally,

assume x† − x0 ∈ X s
u , i.e.,

x† − x0 = L−s(B∗B)
u−s

2(a+s) w, (4.5)

for some w ∈ X and 0 < u ≤ 2(a + s)µ0. Then

‖xδ
k − x†‖ ≤ Cu(δk

a
(a+s) + k

− u
(a+s) ‖w‖). (4.6)

Proof. Using the source condition (4.5) and the representation (4.3), we get with

(3.8)

‖xk − x†‖ = ‖L−srk(B
∗B)(B∗B)

u−s
2(a+s) w‖

≤ c‖(B∗B)
u

2(a+s) rk(B
∗B)‖ ‖w‖ .

With spectral theory and (2.4) this yields the estimate

‖xk − x†‖ ≤ cuk
− u

(a+s) ‖w‖ , (4.7)

for the approximation error. Similarly, the propagated data error can be estimated

by

‖xδ
k − xk‖ = ‖L−sgk(B

∗B)B∗(yδ − y)‖
≤ cδ ‖(B∗B)

a+2s
2(a+s) gk(B

∗B)‖ .

Next, we give an estimate for ‖λµgk(λ)‖C[0,1]: Using rk(λ = 1 − λgk(λ)), we obtain

for 0 ≤ µ ≤ 1

λµgk(λ) = λµ−1(1 − rk(λ))

= [λ−1(1 − rk(λ))]1−µ[1 − rk(λ)]µ.

Now, by the Mean Value Theorem, one can find a λ̃ ∈ [0, 1] such that

λ−1(1 − rk(λ)) = −r′k(λ̃),

which together with Markov’s inequality (|r ′k(λ)| ≤ 2k2) and |rk(λ)| ≤ 2 for λ ∈ [0, 1]

yields

λµgk(λ) ≤ 2k2(1−µ) for λ ∈ [0, 1].
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Note that by −a/2 ≤ s ≤ 0 we always have 0 ≤ a+2s
2(a+s) ≤ 1 and thus

‖xδ
k − xk‖ ≤ 2cδk

a
a+s . (4.8)

In order to get convergence rates in terms of δ it remains to bound the number

of iterations k∗ in terms of δ. Note that Proposition 4.2 already guarantees conver-

gence, if k∗ is chosen such that δk
a

a+s → 0 with k → ∞. In order to derive optimal

rates in terms of δ, we can use the analogy of iterative methods in Hilbert scales

with iterations in Xs (cf. (4.2)).

Theorem 4.3 Let the assumptions of Proposition 4.2 be satisfied and xδ
k be gen-

erated by the semiiterative method in Hilbert scales (4.4) satisfying (2.4) for some

µ0 > 0. If the iteration is stopped according to the a priori stopping rule k∗ =

O(δ
a+s
a+u ) then

‖xδ
k − x†‖ = O(δ

u
a+u ) (4.9)

for x† − x0 ∈ X s
u with 0 < u ≤ 2(a + s)µ0 + s.

If, alternatively, the iteration is stopped according to the discrepancy principle

(1.5), then

k∗ = O(δ
a+s
a+u ) and ‖xδ

k − x†‖ = O(δ
u

a+u ) (4.10)

for x† − x0 ∈ X s
u with 0 < u ≤ 2(a + s)(µ0 − 1/2) + s.

Proof. The first result follows immediately with Proposition 4.2. For the second

result, observe that (4.4) can be interpreted as semiiterative method for the problem

T̃ x = yδ, with T̃ denoting the extension of T to Xs. The bound for k∗ then follows

by Theorem 6.11 in [4], observing that X s
u = R((T̃ ∗T̃ )

u−s
2(a+s) ).

Remark 4.4 Similar as in [3], the rate can also be proven for |||xδ
k∗

−x†|||0. Together

with |||xδ
k∗

− x†|||−a = O(δ) and interpolation arguments, one can derive the rates

|||xδ
k − x†|||r = O(δ

u−r
a+u ), for − a ≤ r ≤ u (4.11)

for the intermediate spaces Xr with −a ≤ r ≤ 0. Observing that X s
u = R((T̃ ∗T̃ )

u−s
2(a+s) )

we see that these rates are optimal under the given source condition. If additionally

the stronger condition (3.3) holds, then for −a ≤ u ≤ a + 2s the spaces X s
u and Xu

coincide with equivalent norms, and the rates (4.11) hold for −a ≤ r ≤ u (cf. [10]).

Using the improved a posteriori stopping rule given in [4, Section 6], the result

(4.10) holds for 0 < u ≤ 2(a + s)µ0, as in case of the a priori stopping rule.

Choosing s = −a/2, one has for x† − x0 ∈ R((T ∗T )µ) ∩ X s
u with u = 2aµ the

following bounds on the stopping index: k∗ = O(δ
2

2µ+1 ) for Landweber iteration,

k∗ = O(δ
1

2µ+1 ) for ν−methods (with ν ≥ µ+1/2) or Landweber iteration in Hilbert

scales, and k∗ = O(δ
1

2(2µ+1) ) for the Hilbert scale ν−methods (with ν ≥ µ + 1).

For s = 0, Theorem 4.3 reduces to the statement of Theorem 2.1.
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5 Examples and numerical tests

In this section we present several examples, where the conditions of Assumption

3.1 are satisfied and thus the results of Section 4 are applicable. We compare the

performance of the proposed Hilbert-scale ν−methods with standard Landweber

iteration and ν−methods, Landweber iteration in Hilbert scales and the method of

conjugate gradients. For our numerical tests, we choose a very fine discretization

by standard piecewise linear finite elements. In order to ensure that discretization

effects can be neglected, we performed the test on different discretization levels,

yielding almost identical results.

As a first example we consider the identification of a source term from distributed

measurements:

Example 5.1 Let Ω be a bounded domain in Rn, n = 2, 3 with sufficiently smooth

boundary (e.g., ∂Ω ∈ C1,1 or ∂Ω ∈ C0,1 and Ω convex) or let Ω be a parallelepiped.

Consider the operator T : L2(Ω) → L2(Ω) defined by Tf = u, with

Au := −∇ · (q∇u) + p · ∇u + cu = f, u|∂Ω = 0, (5.1)

and given, sufficiently smooth parameters q, p and c. Assume that A is uniformly

elliptic; then a solution to (5.1) has improved regularity u ∈ H2(Ω) ∩ H1
0(Ω) and

satisfies ‖u‖H2 ∼ ‖f‖L2 . Let X2 = H2(Ω) ∩ H1
0(Ω), with L2u = −∆u define the

Hilbert scale {Xs}s∈R over X = L2(Ω). Then we have T ∼ X2, thus Assumption

3.1 holds with a = 2. Moreover, the stronger condition (3.3) holds.

For our numerical tests, we set Ω = [0, 1]2, q = c = 1 and p = 0, and s =

−a/2 = −1. For the ν−methods we choose ν = 2; note that ν ≥ 3/2 is necessary to

apply Theorem 4.3 for u = 2aµ = 1/2 in our case. We try to identify the function

f † = (π2 + 1) sin(πx) + (4π2 + 1) sin(2πy)

corresponding u = sin(πx) + sin(2πy). As a starting value we choose f0 = 0.

With this setting, we have f † ∈ R((T ∗T )µ) for all 0 ≤ µ < 1/8, thus one would

expect the iteration numbers k∗ ∼ δ−8/5 for Landweber iteration, k∗ ∼ δ−4/5 for

Landweber iteration in Hilbert scales and the ν−methods, and k∗ ∼ δ−2/5 for the

Hilbert scale ν−method. For Ω = [0, 1]2, the singular values of T behave like

σm,n = O((m2 + n2 + 1)−1) = O(N−1), with N = mn. Thus stopping index for the

conjugate gradient method can be bounded by (cf. [4, Theorem 7.14] with α = 1)

k∗(cg) ≤ cδ
− 1

(2µ+1)(1+α) = cδ
− 1

2(2µ+1) , (5.2)

which is the same bound as for the proposed Hilbert scale ν−method. Finally, the

error should behave like ‖f δ
k∗

− f †‖ ∼ δ1/5 for all methods.
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δ/‖u‖ k∗(lw) k∗(nu) k∗(hs) k∗(hsnu) k∗(cg)

0.016 86 24 11 8 6

0.008 240 42 18 10 8

0.004 725 75 29 14 13

0.002 2150 130 51 18 19

0.001 6080 219 87 24 28

Table 1. Iteration numbers for Landweber iteration (lw), the

ν−method (nu), Landweber iteration in Hilbert scales (hs), the

proposed Hilbert scale ν−method and the conjugate gradient

algorithm (cg).

The numerically observed iteration numbers are k∗ = δ−1.54 for Landweber iter-

ation, k∗ = δ−0.80 for the 2−method, k∗ = δ−0.75 for Landweber iteration in Hilbert

scales and k∗ = δ−0.40 for the proposed Hilbert scale 2−method. As expected, the

iteration numbers for conjugate gradients and the Hilbert scale ν−method are of

the same order.

Note that for Ω ⊂ R3, the Hilbert scale method should outperform the conjugate

gradient algorithm, since there we only have α = 2/3 in (5.2) yielding k∗(cg) ∼
δ
− 3

5(2µ+1) while the estimate for the semiiterative method in Hilbert scales is still

k∗ ∼ δ
− 1

2(2µ+1) . Table 2 lists the iteration error ek∗
= ‖f δ

k∗

− f †‖ for our numerical

test:

δ/‖u‖ ek∗
(lw) ek∗

(nu) ek∗
(hs) ek∗

(hsnu) ek∗
(cg)

0.016 0.328403 0.33310 0.34812 0.34210 0.32499

0.008 0.283369 0.28547 0.29510 0.28842 0.27948

0.004 0.240430 0.24163 0.25057 0.24648 0.23434

0.002 0.205203 0.20668 0.21525 0.21041 0.20361

0.001 0.175605 0.17691 0.18289 0.17889 0.17137

Table 2. Iteration error ek∗
= ‖f δ

k∗

− f †‖for Landweber iteration

(lw), the ν−method (nu), Landweber iteration in Hilbert scales (hs),

the proposed Hilbert scale ν−method and the conjugate gradient al-

gorithm (cg).

The corresponding convergence rates are ek∗
∼ δ0.22 for Landweber iteration, ek∗

∼
δ0.23 for the other methods.

Originally, regularization in Hilbert scales was investigated only under the stronger

condition (3.3), which is satisfied in Example 5.1. However, in the case s ≤ 0, the

condition (A2) suffices to obtain the appropriate convergence rates. In the following

example, only a weaker estimate from below (3.4) holds. Note, that due to Propo-

sition 3.2 the source condition x† − x0 ∈ X s
u can still be interpreted in terms of the

spaces Xs.

Consider the solution of the following Fredholm integral equation of the first

kind:

Example 5.2 Let T : L2[0, 1] → L2[0, 1] be defined by

(Tx)(s) =

∫ 1

0
s1/2k(s, t)x(t)dt, (5.3)
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with the standard Green’s kernel

k(s, t) =

{

s(1 − t), 0 ≤ s < t ≤ 1

t(1 − s), 0 ≤ t ≤ s ≤ 1.

Without the additional weight function s1/2, application of the operator T would

correspond to the solution of the boundary value problem −xss = y with homoge-

neous boundary conditions (cf. Example 5.1). With

(T ∗y)(t) = (1 − t)

∫ t

0
s3/2y(s)ds + t

∫ 1

t
s1/2(1 − s)y(s)ds

we get

R(T ∗) = {w ∈ H2[0, 1] ∩H1
0[0, 1] : t−1/2w′′(t) ∈ L2[0, 1]}.

As Hilbert scale operator, we choose

Lsx :=

∞
∑

n=1

(nπ)s〈x, xn 〉xn, xn :=
√

2 sin(nπ·), (5.4)

and L2x = −x′′. This choice yields R(T ∗) ( X2 := H2[0, 1] ∩ H1
0[0, 1] and addi-

tionally, R(T ∗) ⊃ X2.5 := {w ∈ H2.5[0, 1] ∩ H1
0[0, 1] : ρ−1/2w′′ ∈ L2[0, 1]}, with

ρ(t) = t(1 − t). By Theorem 11.7 in [13], we have

‖w‖2
2.5 ∼ ‖w′′‖2

H1/2 + ‖ρ−1/2w′′‖2
L2

and thus

m‖x‖−2.5 ≤ ‖Tx‖ ≤ m‖x‖−2,

see [3] for details.

We consider the reconstruction of the unknown function

x†(s) = 2t − sign(2t − 1) − 1,

and choose s = −1 and x0 = 0. For brevity, we report only on the results obtained

with Landweber iteration in Hilbert scales, the Hilbert scale ν−method and the

conjugate gradient algorithm:

δ/‖y‖ k∗(nu) ek∗
(nu) k∗(hsnu) ek∗

(hsnu) k∗(cg) ek∗
(cg)

0.016 60 0.42317 11 0.38092 5 0.38866

0.008 100 0.37634 15 0.33851 6 0.33448

0.004 178 0.32480 21 0.28897 8 0.30918

0.002 313 0.28257 28 0.25193 11 0.26304

0.001 541 0.24696 36 0.22362 14 0.23447

Table 3. Iteration numbers k∗ and error ek∗
= ‖xδ

k∗

− x†‖ for the 2−method

(nu), the proposed Hilbert scale 2−method (hsnu) and the conjugate gradient

algorithm (cg).

The stopping indices behave like k∗ ∼ δ−0.8 for the ν−method, k∗ ∼ δ−0.43 for

the Hilbert scale ν−method and k∗ ∼ δ−0.38 for cg. The corresponding convergence

rates are ek∗
∼ δ0.2 for all examples. Again, the values are almost exactly the ones

predicted by the theory (µ = 1/8).
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Many linear inverse problems appearing in the framework of signal and image

processing, e.g., denoising or deconvolution, typically lead to Fredholm integral

equations of the first kind (cf. Example 5.2) and can be treated in a similar way.

In the next example we study the problem of Transmission Computerized To-

mography (see [16]):

Example 5.3 Let Ω ⊂ Rn, n = 2, 3 be a compact domain with spatially varying

density f . In a simple physical model the relative intensity loss along a distance ∆x

is assumed to satisfy
∆I

I
= f(x)∆x.

Denoting by I1(θ, s) and I0(θ, s) the intensities of the X-ray beams measured at the

detector and emitter connected by the line parameterized by the distance to the

origin s and the direction θ and located outside of the domain Ω, then one gets

(Rf)(θ, s) :=

∫

x·θ
= sf(x)dx = − log

I1(θ, s)

I0(θ, s)
, (5.5)

for w ∈ R2, ‖w‖ = 1 and t > 0. Determining the unknown density f from mea-

surements of the intensity drop g(θ, s) = I1(θ,s)
I0(θ,s) hence corresponds to inversion of

the Radon transformation. By [16, Theorem 5.1], we know that for each α there

exist positive constants c(α, n) and C(α, n) such that for f ∈ C∞
0 (Ωn)

c(α, n)‖f‖Hα
0 (Ωn) ≤ ‖Rf‖Hα+(n−1)/2(Z) ≤ C(α, n)‖f‖Hα

0 (Ωn),

with Ωn ⊂ Rn denoting the unit ball, and Z the cylinder Sn−1 ×R. This implies

(3.3) for an appropriate choice of spaces; e.g., for X = L2(Ωn) and Y = L2(Z), we

see that the Radon transformation behaves like differentiation of order one half in

dimension n = 2, and like one times differentiation in dimension n = 3.

If Ω is a circle with radius r and f(θ, s) = f(s), and consequently g(θ, s) = g(s),

are radially symmetric, then (5.5) can be reduced to the solution of an Abel integral

equation of the first kind (see [16]), whose solution we investigate numerically:

Let T : L2[0, 1] → L2[0, 1] be defined by

(Tx)(s) :=
1√
π

∫ s

0

x(t)√
s − t

dt, (5.6)

with data y and ”true” solution x† = T †y. One can show that (T 2x)(s) =
∫ s
0 x(t)dt,

thus inverting T amounts to differentiation of half order; more precisely, cf. [5],

R(T ) ⊂ Hr[0, 1], for all 0 ≤ r < 1/2.

Let the Hilbert scale operator L be defined by

L2sx =

∞
∑

n=0

λs
n〈x, xn 〉xn, with xn(t) =

√
2 sin(λnt), λn = (n + 1/2)π, (5.7)
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X = L2[0, 1] and X2 = {x ∈ H1[0, 1] : x(0) = 0}. Then R(T ) ⊂ Xr for all 0 < r < 1

and and 0 < a < 1 and −1/2 < s = −a/2 is possible. Thus, the iteration can be

preconditioned with L−a, which corresponds to differentiation of fractional order

and can be realized efficiently via (5.7) and FFT.

In the numerical test we set s = −1/2 (which is the limiting case of allowed

choices) and try to identify the unknown density

x†(s) = 2t − sign(2t − 1) − 1.

The iterations are started with x0 = 0. In this setting we have x† ∈ Xµ for all

0 ≤ µ < 1/2, thus we can expect the iteration numbers k∗ ∼ δ−1 for Landweber

iteration, k∗ ∼ δ−1/2 for the ν−method and Landweber iteration in Hilbert scales

and k∗ ∼ δ−1/4 for the proposed Hilbert-scale ν−method. The stopping index for

the conjugate gradient algorithm is bounded by k∗ ∼ δ−1/3. As mentioned in the

introduction, the bound for the Hilbert scale ν−method is stronger than the one

for the conjugate gradient algorithm if the singular values σn of T decay not faster

than n−α with some 0 < α < 1, which is the case here.

δ/‖u‖ k∗(lw k∗(nu) k∗(hs) k∗(hs1) k∗(hs2) k∗(cg)

0.016 37 16 9 7 6 6

0.008 75 24 12 9 8 8

0.004 146 33 15 14 10 10

0.002 300 48 21 19 12 14

0.001 643 71 31 26 15 19

Table 4. Iteration numbers k∗ for the Landweber iteration, the

2−method (nu), Landweber iteration in Hilbert scales (hs), the pro-

posed Hilbert scale ν−methods (hs1, hs2) and the conjugate gradient

algorithm (cg).

The numerically realized rates for the stopping index k∗ ∼ δ−1.0 for Landweber

iteration, k∗ ∼ δ−0.53 for the 2−method, k∗ ∼ δ−0.44 for Landweber iteration in

Hilbert scales and k∗ ∼ δ−0.4 for the cg-method are in good accordance with the

theoretically predicted ones. The two Hilbert scales ν−methods yield k∗ ∼ δ−0.48

for ν = 1 and k∗ ∼ δ−0.3 for the ν = 2. Note, that due to the restriction on the

qualification µ0 of the used method in Theorem 4.3, one has to choose

ν ≥ u − s

2(a + s)
+

1

2
= 2,

in order to get optimal number of iteration and convergence rates for the Hilbert

scale ν−method stopped with the discrepancy principle (1.5). This explains the

higher number of iterations needed for the Hilbert scale 1−method. Finally, for all

examples, the iteration error ek∗
= ‖xδ

k∗

− x†‖ decreases approximately like δ0.4 in

accordance to the the predicted rate δ
2µ

2µ+1 .

In the last example, we investigate the performance of the iteration methods for

an exponentially ill-posed problem: The solution of the backwards heat equation by

Landweber iteration in Hilbert scales was already investigated in [3]. We compare

the numerical results by the ones for ν−methods in Hilbert scales and cg.
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Example 5.4 Let Tx = y, T : L2[0, 1] → L2[0, 1] be defined by (Tg)(x) = y(x) =

u(x, t) for some t > 0 and

−ut + quxx = 0, u(0, t) = u(1, t) = 0, u(x, 0) = g.

Let Ls be defined by (5.4). Then we have

‖T ∗y‖r ≤ c(r)‖y‖0 for all r ∈ R,

but no estimate from below (3.4) exists.

We consider the numerical reconstruction and compare the numerically observed

convergence rates and iteration numbers for the example

g†(x) = 2x − sign(2x − 1) − 1,

and set g0 = 0. Note, that for exponentially ill-posed problems only a logarithmic

convergence rate can be expected under the weak source-condition of our example.

δ/‖u‖ k∗(lw k∗(nu) k∗(hs) k∗(hsnu) k∗(cg)

0.016 20 12 6 4 3

0.008 50 21 8 6 5

0.004 377 56 28 13 5

0.002 723 74 53 17 5

0.001 1116 88 80 21 5

Table 5. Iteration numbers k∗ for the Landweber iteration,

the 2−method (nu), Landweber iteration in Hilbert scales

(hs), the proposed Hilbert scale ν−method (hsnu) and the

conjugate gradient algorithm (cg).

The stopping indices are bounded by k∗ ∼ δ−1.54 for Landweber iteration,

k∗ ∼ δ−0.75 for the ν−method, k∗ ∼ δ−1.02 for Landweber iteration in Hilbert scales

and k∗ ∼ δ−0.63 for the Hilbert scale ν−method.

According to Theorem 7.14 in [4], the stopping index for the conjugate gradient

method can be bounded by k(δ, yδ) ≤ c(1 + log 1
δ ) for exponentially ill-posed prob-

lems, i.e. if the singular values σn of T decay like O(qn) with some q < 1. This

behaviour can also be seen in the numerical test.

The numerically observed convergence rates are approximately ‖xδ
k∗

−x†‖ ∼ δ0.05

in all our tests.
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