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Abstract

For a numerically given parametrization we cannot compute an exact implicit equa-
tion, just an approximate one. We introduce a condition number to measure the
worst effect on the solution when the input data is perturbed by a small amount.
Using this condition number the perturbation behavior of various implicitization
methods can be analyzed.
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1 Introduction

The implicit formulation of curves and surfaces has several advantages: The
implicit equation of curves and surfaces essentially unique, and the degree is
apparent from their implicit equation. We can also easily determine whether
a point lies on a curve or on a surface using the implicit form. Many curves
and surfaces used in computer aided design are given in parametric form. In
principle rationally given curves and surfaces can always be implicitized, e.g.
they have an algebraic representation. The conversion from the parametric
form to the implicit one is called implicitization. The reverse problem is called
parametrization. Both representations has its own advantages and disadvan-
tages. To avoid the weaknesses of these representations and to exploit the
strength of both of them, the conversion problem is of fundamental impor-
tance.
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There are several symbolic implicitization techniques based on resultants (Busé,
2001; Marco and Mart́ınez, 2002), Gröbner–basis (Alonso et al., 1995; Buch-
berger, 1988), moving surfaces (Zheng et al., 2003), or on residue calculus
(Elkadi and Mourrain, 2004). For a given parametric representation of a sur-
face Gi(y1, y2, y3), i = 1 . . . 4, we can find the implicit form F (x1, x2, x3, x4) = 0
such that F (G1, G2, G3, G4) = 0.

In geometric applications the input data is often given in terms of floating
point numbers. However for numerically given parametrization we can never
compute the exact implicit equation, but an approximate one (Busé et al.,
2003; Chen, 2003; Corless et al., 2001; Dokken, 2001; Dokken and Thomassen,
2003).

Given numeric input data the question is how precise we can say something
about the output. Typically the output error can be upper estimated by the
input error times a constant, called condition number, which measures the
stability of the problem (or the algorithm).

Normally the condition number depends on the algorithm. The condition num-
ber for the best possible algorithm is the condition number of the problem
itself: no matter which algorithm we use, we can not say anything more on
the accuracy of the output than described by this condition number.

In this paper we introduce the condition number of the implicitization prob-
lem. It depends not only on the input, but also on the estimation of the degree
of the implicit form. Such an estimation must always be used, see Corless et al.
(2001), Dokken (2001).

The paper is organized as follows. In Section 2 we define the condition number
of the implicitization problem and we give an algorithm for the computation.
In Section 3 we show, how the condition number can be used to bound the
difference of the computed, and the nominal implicit equation. This section
contains two theorems, which provide an error analysis using the defined con-
dition number. We also give an example to demonstrate the usage of these the-
orems. Section 4 contains observations and remarks on the condition number.
Furthermore, we propose a way how to guess the implicit degree numerically.

2 Definition and computation of the condition number

In this section we define a constant, called condition number, for the surface
implicitization problem, and we show how to compute it. Throughout this
paper we work in the projective setting over the real numbers.
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2.1 Definition of the condition number–special case

Let n,m ∈ Z. Let P be the set of four–tuples of polynomials of degree n in
the variables y1, . . . , y3 over R. Let I be the set of all homogenous polynomials
of degree m in the variables x1, . . . , x4 over R; and we denote by R the set
of homogenous polynomials of degree nm in the variables y1, . . . , y3 over R.
(The letters P, I, R stand for parametrization, implicitization, and residuals
respectively.) The sets P, I, R are real vector spaces and come with an inner
product, which depends on the choice of a basis. We usually choose either the
monomial or the Bernstein basis. We define an evaluation map ev : I×P → R
by (H,G) 7→ ev(H,G) = H(G). Note that the evaluation map is linear in the
first entry, but not linear in the second.

Assume that G ∈ P , ‖G‖ = 1 is a parametrization and F ∈ I is the implicit
equation of the same surface. Then F is the unique solution H of ev(H,G) = 0.
Let

F⊥ := {J ∈ I|〈F, J〉I = 0}.
(Recall, that F⊥ depends on the chosen basis.) Then ev(J,G) is a nonzero
vector for all J ∈ F⊥. The following amount:

κ := min
J∈F⊥,‖J‖I=1

‖ev(J,G)‖V

is a numerical measurement of the uniqueness of the implicitization prob-
lem. If κ = 0, then there are several linearly independent equations H with
ev(H, G) = 0. If κ is small, we are close to such a case. The condition number
is defined as:

K := 1/κ,

in the case where we have a parametrization G and the implicit equation F
of the same surface.

If ‖G‖ 6= 1, then the condition number is always the condition number of the
normed equation .

2.2 General definition and computation of the condition number

For any F ∈ I, G ∈ P we can write

ev(F,G) = MG · F

where MG is a matrix depending on G of size m̄× n̄, where m̄ = (mn+1)(mn+2)
2

,

n̄ = (m+1)(m+2)(m+3)
6

. We can write it as U · Σ · V t, where Σ ∈ Rm̄×n̄ is di-
agonal, U ∈ Rm̄×m̄, V ∈ Rn̄×n̄ are orthogonal matrices, by singular value
decomposition.
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Proposition 1 If G ∈ P , ‖G‖ = 1 is a parametrization and F ∈ I, ‖F‖ = 1
is the implicit equation of the same surface, then the following are true:

• The smallest singular value is zero.
• The right singular vector belonging to the smallest singular value is F .
• F⊥ is spanned by the first n̄− 1 right singular vector.
• The second smallest singular value is κ.
• The right singular vector belonging to the second smallest singular value

minimizes the function H 7→ ev(H, G) in the unit sphere of F⊥.

For an arbitrary nonzero vector G ∈ P , ‖G‖ = 1 we define the condition
number K as the reciprocal of the formally second smallest singular value of
MG. With “formally second smallest singular value”, we mean that we take
multiplicities into account. For instance, if 0 is a multiple singular value, then
the condition number is infinity. Note that the condition number K depends
not just on G, but also on the integer m.

Remark 1 To compute the condition number of an implicitization problem,
the implicit equation of the parametrically given surface does not need to be
computed. Computation of the formally second smallest singular value is easier
than the computation of the implicit equation, at least numerically, because
the singular value is numerically stable, whereas the implicitization problem
can be very bad conditioned. The last step in the condition number computa-
tion, taking inverse, can also be very bad conditioned, when the singular value
is small.

Here is an algorithm to compute the condition number.

Algorithm ”Condition Number”

Input: A quadruple of polynomials G = (G1, . . . , G4) of total degree n in the
parameters y1, y2, y3, such that ‖G‖ = 1, and an m ∈ Z.
Output: Condition number of the implicitization problem.

(1) Initialize MG by an empty matrix.
For each bi in the basis BI of I, i = 1, . . . , n̄
(a) substitute G into bi,
(b) expand the result in the basis BR of R
(c) append the column to MG

(Now we constructed the matrix MG)
(2) Compute the singular value decomposition of the matrix MG.

(3) 1/σn̄−1 is the condition number, where n̄ = (m+1)(m+2)(m+3)
6
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2.3 An example

As we originally started this research with the error analysis of a particular
implicitization method for cubic surfaces, and we already had experimented
with some implicitization tools (Berry and Patterson, 2001; Dokken et al.,
2001; Zheng et al., 2003) for this class of surfaces, we decided to take cubic
surfaces as test examples. This class of algebraic surfaces admit both paramet-
ric and implicit representation (with the exception of a cone over an elliptic
cubic curve). In the following example we compute the implicit condition num-
ber of a cubic surface given in parametric form. The computation is done using
monomial basis.

The example we chose consist of a quadruple of cubics through the points as in
the table below. These base points determine the cubics up to a linear change of
coordinates. (We do not write out the cubic polynomials here because of space
reason.) It is well–known that four cubics through six base points parameterize
in general a cubic surface, see Sederberg (1990). Hence we have n = m = 3.

base points: [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1], [1, 2, 3], [2,−1, 1]

κ = σ19: 0.29202 · 10−1

condition number: 34.24411

Let b1, . . . , bn̄ denote the basis of I, and b̄1, . . . , b̄m̄ the basis of R, where n̄ =
20, m̄ = 55. Furthermore let G1, . . . , G4 denote the cubics through the base
points mentioned above. To compute the i -th element of the j -th column
of MG, substitute G1, . . . , G4 into bj, and take the coefficient with respect to
b̄i. In the singular value decomposition of MG we get the following singular
values:

0.34594, 0.32343, 0.26387, 0.23315, 0.20552, 0.18776, 0.18361,

0.17378, 0.17310, 0.12436, 0.11745, 0.10767, 0.082498, 0.078262,

0.056372, 0.053370, 0.042189, 0.032242, 0.029202, 0.18272 · 10−10

The smallest but one singular value gives κ, its inverse 34.24411 provides
the condition number, which is small for the class of cubic surfaces. (The last
singular value is zero, the result above is due to numerical errors in the singular
value decomposition.)
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3 Error analysis based on the condition number

The condition number can be used to give an upper bound for the error in the
computed implicit equation. We show, if there are two parametrizations close
to each other, then the difference between the computed implicit equations
can be estimated by the condition number.

Theorem 2 Let G1 be a quadruple of homogenous polynomials of parametric
degree n in y1, y2, y3, with ‖G1‖ = 1. Let F1 ∈ I be a homogenous polynomial
of degree m in the variables x1, . . . , x4 with ‖F1‖ = 1, such that ‖ev(F1, G1)‖ ≤
ε1. Then for any parametrization G2 and implicitization F2, where ‖G2‖ = 1,
‖F2‖ = 1 and ‖ev(F2, G2)‖ ≤ ε1, with ‖G1 − G2‖ ≤ ε2, we have one of the
following

‖F1 − F2‖ ≤ K · cm,n ·max{ε1, ε2}

‖F1 + F2‖ ≤ K · cm,n ·max{ε1, ε2}
where K is the condition number of G1 and cm,n is a constant.

Proof:

Let F3 be such that ‖F3‖ = 1 and ‖ev(F3, G1)‖ is minimal. It follows that
‖ev(F3, G1)‖ ≤ ‖ev(F1, G1)‖ ≤ ε1

Let

R1 := F1 − λ1F3,

R2 := λ2F3 − F2,

where λ1 := 〈F3, F1〉, λ2 := 〈F3, F2〉. Then R1, R2 ∈ F⊥
3 .

From the definition of κ we have

‖ev(Ri, G1)‖ ≥ κ · ‖Ri‖

‖Ri‖ ≤ ‖ev(Ri, G1)‖/κ (1)

for i = 1, 2.

To estimate ‖R1‖ we write:

‖R1‖ = K · ‖ev(R1, G1)‖ = K · ‖ev(F1 − λ1F3, G1)‖
≤ K · (‖ev(F1, G1)‖+ ‖ev(λ1F3, G1)‖)
≤ K · (1 + λ1)ε1,

(2)
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Let µ : R4
(n+1)(n+2)

2 → Rn̄×m̄, G 7→ MG. The map µ is differentiable.

‖ev(F2, G1)− ev(F2, G2)‖ ≤ ‖MG1 −MG2‖ · ‖F2‖
= ‖MG1 −MG2‖
= ‖µ(G1)− µ(G2)‖
≤ ‖Jac(µ)(G)‖ · ‖G1 −G2‖
≤ c̄m,n · ‖G1 −G2‖,

Here c̄m,n = max
‖G‖=1

‖Jac(µ)(G)‖

To estimate ‖R2‖ we write:

‖R2‖ = K · ‖ev(R2, G1)‖ = K · ‖ev(λ2F3 − F2, G1)‖
≤ K · (‖ev(λ2F3, G1)‖+ ‖ev(F2, G1)‖)
≤ K · (λ2ε1 + ‖ev(F2, G1)− ev(F2, G2)‖+ ‖ev(F2, G2)‖)
≤ K · (λ2ε1 + c̄m,n · ε2 + ε1),

(3)

Let cm,n = 4(4 + c̄m,n). We distinguish two cases.

Case1: ‖λ1‖, ‖λ2‖ ≥ 1/2

Combining (1), (2), (3) we get the following:

‖F1 − F2‖ ≤ ‖F1 − F3‖+ ‖F3 − F2‖
≤ ‖R1‖/λ1 + ‖R2‖/λ2

≤ ‖ev(R1, G1)‖/λ1κ + ‖ev(R2, G1)‖/λ2κ

≤ (λ1 + 1)ε1/λ1κ + ((1 + λ2)ε1 + c̄m,n · ε2)/λ2κ

≤ 2K · ((λ1 + 1)ε1 + (1 + λ2)ε1 + c̄m,n · ε2)

≤ 2K · ((2 + λ1 + λ2) ·max{ε1, ε2}+ c̄m,n ·max{ε1, ε2})
= 2K · (2 + λ1 + λ2 + c̄m,n) ·max{ε1, ε2}
≤ K · 2(4 + c̄m,n) ·max{ε1, ε2}
≤ K · cm,n ·max{ε1, ε2},

Case2: One of the λi is less than 1/2.

Case2.1: Assume λ1 < 1/2.

Then R1 >
√

3/2. Combining it with (1), (2) we have:
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√
3 < ‖R1‖ ≤ 2K(1 + λ1)ε1 ≤ 4Kε1

‖F1 − F2‖ ≤ 2

< 2
√

3

< 4‖R1‖
< 4K(1 + λ1)ε1

< 8Kε1

< 2K · (4 + c̄m,n) · ε1

< 2K · (4 + c̄m,n) ·max{ε1, ε2}
< K · cm,n ·max{ε1, ε2}

Case2.2: Assume λ2 < 1/2.

Then R2 >
√

3/2. Combining it with (1), (3) we have:

√
3 < 2K((1 + λ2)ε1 + c̄m,nε2) < 2K(2ε1 + c̄m,nε2)

‖F1 − F2‖ ≤ 2

< 2
√

3

< 4K(2ε1 + c̄m,nε2)

< 4K(2ε1 + c̄m,nε2) + 8Kε1

< 4K · (4 + c̄m,n) ·max{ε1, ε2}
< K · cm,n ·max{ε1, ε2}

2

Remark 2 The computation of the constant cn,m is cumbersome and very
technical, but it can be computed for each parametric degree n and implicit
degree m. An upper estimate gives cn,m ≤ n2 · (m!)3. If max{ε1, ε2} is small
enough we can use first order approximation and the constant cm,n becomes
smaller by a factor of 4.

Example We continue our example from the previous section. The theorem
above allows to give a stability test of various implicitization techniques. The
output error can be computed by applying the technique to a slightly per-
turbed input. If it is bigger than the upper bound in Theorem 2, then the use
of the technique is responsible for the output error, and therefore the stability
test rejects the technique for the given input. If it is smaller, than we cannot
say anything (hence this test is only able to reject unstable techniques, but it
cannot prove that a certain technique is stable).

For n = m = 3 we have c3,3 = 1.8. We compare the numerical stability of the
following methods:
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M1: Implicitization technique due to Berry and Patterson (2001)
M2: Moving planes method using Gauss elimination (Zheng et al., 2003)
M3: Dokken’s method using SVD (Dokken et al., 2001)

input error: 0.80000 · 10−9

error bound: 0.10255 · 10−6

output error using different algorithms:

M1: 0.11371 · 10−8

M2: 0.42242 · 10−8

M3: 0.14239 · 10−8

After introducing some error in the coefficients of the parametric form, the
output error using all three methods is smaller than the worst case bound in
Theorem 2. Thus in this example all three methods are accepted. We should
point out that the test does not allow to rank the three methods, because the
example is not statistically significant.

In the introduction we claimed that the condition number K is not a condition
number of a particular algorithm, but a condition number of the implicitization
problem. To justify this statement, we need to show that big output errors do
arise when the condition number is big. Here is the precise statement.

Theorem 3 Let G1 be as in the previous theorem, and F1 ∈ I with ‖F1‖ = 1,
such that ‖ev(F1, G1)‖ ≤ ε1. Then there exists a parametrization G2, ‖G1 −
G2‖ ≤ ε2, and F2 ∈ I with ‖F2‖ = 1, such that ‖ev(F2, G2)‖ ≤ ε1, and

‖F1 − F2‖ ≥ 1

2
· ε1 ·K

Proof:

Let MG1 the matrix belonging to G1 in the matrix- vector decomposition. We
choose F1 as the right singular vector belonging to the smallest singular value
of the matrix MG1 . Then ‖F1‖ = 1, and ‖ev(F1, G1)‖ = σm̄, where σm̄ is the
smallest singular value of MG1 .

Let G2 := G1. Then we have ‖G1−G2‖ ≤ ε2 for any ε2 > 0. (This is the reason
why ε2 does not appear in the bound for the output error.) Let F2 := F1+δ ·R,
where R is the right singular vector corresponding to the smallest but one
singular value of the matrix MG1 . We assume that ε1 ≥ 2 · σr, and choose
δ = 1

2
· ε1 ·K.
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Then

‖ev(F2, G2)‖ = ‖ev(F2, G1)‖ =
√
‖ev(F1, G1)‖2 + δ2 · ‖ev(R, G1)‖2

≤
√

ε2
1

4
+

1

4
· ε2

1 ·K2 · κ2

=

√
ε2
1(

1

4
+

1

4
)

= ε1 ·
√

2

2

The ‖ev(F2, G2)‖ ≤ ε1 requirement is fulfilled.

By the choice of δ above we have F2 = F1 + 1
2
· ε1 ·K ·R. From this it follows

that

‖F1 − F2‖ ≥ 1

2
· ε1 ·K

2

4 Observations and remarks on the condition number

In most of our testing examples the condition number was between 1 and 100,
in less examples between 100 and 500, and in some cases over 500. The best
conditioned example we have found had condition number 18.137085.

In our test examples the cubic surfaces were given by six base points. Choosing
different basis for the linear system passing through the given base points we
got different condition numbers. If two basis differed only by an orthogonal
linear transformation, the condition numbers only slightly changed. Changing
the basis by a nonorthogonal transformation resulted in a noticeable change
in the condition number. More precisely it seems that our condition number
gets multiplied by a factor which is proportional to the square of the condition
number of the nonorthogonal transformation.

The question how the geometry of the base points effect the condition number
seems more difficult. This is a topic of future research. Maybe the methods in
Castro et al. (2002) are useful for this investigation.

Due to our observations singularities do not effect the stability of the implici-
tization, i.e. surfaces with singularities do not have big condition number. To
illustrate this behavior, we show an example.

Example In Table 1 we show two surfaces. The first one is a singular one as
three of the base points are on a line. In Table 1 (b) we can see a modified
example. One of the base points is slightly moved so that no three points are
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on a line. As the condition number shows, this problem has nearly the same
stability as the previous one. The singular point does not destroy the stability
of the problem.

(a) singular case

base points (1, 1, 1), (2, 2, 1), (3, 3, 1), (−1, 1, 1), (−1,−2, 1), (2,−2, 1)

κ = σ19: 0.28113 · 10−1

K: 35.57099

(b) nonsingular case

base points (1, 1, 1), (2, 2.01, 1), (3, 3, 1), (−1, 1, 1), (−1,−2, 1), (2,−2, 1)

κ = σ19: 0.30226 · 10−1

K: 33.08406

Table 1
Comparing singular and nonsingular examples

The following example shows that being nonsingular is not a sufficient criterion
to have a well-conditioned problem.

Example

As the base points are generic, i.e. no three are on a line, not all of them lie
on a conic,

[1, 0, 0], [5, 4, 1], [9,−1, 1], [12, 2, 1], [−4, 5, 1], [−8,−4, 1],

the surface is nonsingular. One would expect numerical stability, however,
we get quite big condition number, K = 9638.33951, i.e. the implicitization
problem is not stable in this case. There are small perturbations of the input
which lead to big changes in the output. (The authors have not found any
explanation yet.)

4.1 Numerical degree guessing

The condition number K depends on the integer m, which is the estimate of
the implicit degree of the surface. In this section we describe a way of obtaining
information that allows more accurate guessing of the degree.

Let G be an element of P . We compute the singular values of the matrix
MG,m for m = 1, 2, . . . until the last singular value is sufficiently small. Then
we know that for this value of m there is an equation F such that ev(F, G)
is small (namely the right singular vector belonging to the smallest singular
value). We distinguish two cases.
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First case: The second smallest singular value is big. In this case the impliciti-
zation problem is well conditioned, and we can say that the equation F above
is the solution of the implicitization problem.

Second case: The second smallest singular value is small. The implicitization
problem is ill conditioned. There are at least two equations F1, F2 for which the
residuum is small. There are two possible explanations. Either G is numerically
close to a parametrization of a curve (namely the intersection of F1 and F2). Or
some small perturbations of F1 and F2 have a common factor. This common
factor F3 has degree smaller than m, and ev(F3, G) is small, therefore this case
should have been noticed before.

(a) first case

degree σn̄ σn̄−1

1 big big

2 big big
...

...
...

m− 1 big big

m small big
...

...
...

(b) second case

degree σn̄ σn̄−1

1 big big

2 big big
...

...
...

m− 1 big big

m small small
...

...
...

Example Let G be the following quadruple:

p1 = 0.33014 y2
1y2 + 0.11889 y2

1y3 − 0.62851 y1y2y3 + 0.23483 y1y
2
2

− 0.53898 y2
3y1 + 0.33994 y2

2y3 + 0.14368 y2y
2
3

p2 = 0.0091976 y2
1y2 + 0.17598 y2

1y3 + 0.17918 y1y2y3 − 0.58353 y1y
2
2

− 0.090543 y2
3y1 + 0.67456 y2

2y3 − 0.36484 y2y
2
3

p3 = − 0.071139 y2
1y2 + 0.61051 y2

1y3 + 0.22714 y1y2y3 − 0.32573 y1y
2
2

− 0.44603 y2
3y1 − 0.36177 y2

2y3 + 0.36702 y2y
2
3

p4 = 0.39218 y2
1y2 + 0.18953 y2

1y3 − 0.49534 y1y2y3 − 0.47488 y1y
2
2

+ 0.53353 y2
3y1 − 0.22121 y2

2y3 + 0.076182 y2y
2
3

The table below shows the last two singular values computed for the corre-
sponding implicit degree m.

m σr σr−1

1 0.5 (big) 0.5 (big)

2 0.87627 · 10−1 (big) 0.12182 (big)

3 0.33475 · 10−6 (small) 0.29202 · 10−1 (big)
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Hence m = 3 is the correct degree.

The right singular vector belonging to the smallest singular value gives the
implicit surface.

F = 0.12037 x3
1 + 0.234111 x2

1x2 − 0.28728 x2
1x3 + 0.21993 x2

1x4 − 0.33179 x1x
2
2

− 0.287875 x1x2x3 + 0.26653 x1x2x4 + 0.16530 x1x
2
3 − 0.04950 x1x3x4

− 0.12789 x1x
2
4 − 0.028536 x3

2 − 0.37570 x2
2x3 + 0.12459 x2

2x4

− 0.20386 x2x
2
3 − 0.36427 x2x3x4 + 0.32183 x2x

2
4 + 0.086380 x3

3

+ 0.036834 x2
3x4 + 0.13637 x3x

2
4 − 0.16410 x3

4
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