THE SUMMATION PACKAGE SIGMA:
UNDERLYING PRINCIPLES
AND A RHOMBUS TILING APPLICATION

CARSTEN SCHNEIDER

ABSTRACT. We give an overview of how a huge class of multisum identities can be proven
and discovered with the summation package Sigma implemented in the computer algebra
system Mathematica. General principles of symbolic summation are discussed.

We illustrate the usage of Sigma by showing how one can find and prove a multisum identity
that arose in the enumeration of rhombus tilings of a symmetric hexagon. Whereas this
identity has been derived alternatively with the help of highly involved transformations of
special functions, our tools enable to find and prove this identity completely automatically
with the computer.

1. INTRODUCTION

The overall object of this article is to give an introductory overview of how a huge class of
multisum identities can be proven and discovered with the summation package Sigma [Sch01],
which is based on the computer algebra system Mathematica. The algebraic platform of Sigma
is built on the constructive difference field theory of II¥X-fields [Kar81, Kar85, Bro00, Sch00,
Sch01, Sch04b] that not only allows to simplify indefinite and definite sums of (¢—)hyper-
geometric terms, like [Gos78, Zei90, PS95a, PWZ96, PRI7|, but of IIX-terms, i.e., rational
terms of arbitrarily nested indefinite sums and products. Due to the generality of IIX-terms,
this opens up a new class of symbolic summation problems that cannot be treated by the
algorithms and implementations [Weg97, Rie03] developed for (¢—)hypergeometric multisums
or by those [CS98, Chy00] developed for holonomic and 0-finite terms.

In the first part of this article we shall discuss relevant techniques of symbolic summation,

and we shall explain how these ideas can be applied in the difference field setting of 13-
fields and in difference ring extensions like (—1)"; see [Sch01, Sch04b]. More precisely, this
means that sequences, that may consist of rational terms of arbitrarily nested indefinite sums
and products, are translated in a natural way into the corresponding difference field/ring
setting [Kar85, Sch04b], and, by using a very general algebraic machinery [Kar81, AP94,
Bro00, Sch02b, Sch04a, Sch02a, Sch04c], the corresponding summation principles (telescoping,
creative telescoping, solving recurrences) are applied in this setting.
This allows to carry over Zeilberger’s paradigm from hypergeometric terms [PWZ96] to so-
called IIX-terms: given a definite nested multisum, find a recurrence and, if possible, solve
the recurrence in terms of simpler expressions than the definite sum itself. Then the right
combination of that solutions might give a closed form evaluation of the definite sum itself.
The interplay of these summation techniques in the difference field setting can be summarized
with the definite summation spiral that is graphically illustrated in Figure 1.
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In the second part of this article we shall demonstrate how these summation techniques
within Sigma enable the user to find an alternative, completely automatic proof of a non-trivial
multisum identity that arises in [FK00]. In this article, M. Fulmek and C. Krattenthaler count
the number of rhombus tilings of a symmetric hexagon with side lengths N, M, N, N, M, N,
with NV and M having the same parity, which contain a particular rhombus next to the center
of the hexagon. Within this counting there arises the subproblem of finding a closed form
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In order to achieve this, the authors in [FK00] derive closed form evaluations for these sums,
namely,
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for all n > 0. However, the proof of this identity, given in [FK00, Lemma 26], fills about four
pages involving highly complicated transformations of special functions.

In [FKO00], the authors were already aware that the sum identity (3) could be proven with
a prototype version [Sch00] of our Sigma package [SchO1]. At that time, we were able to

derive recurrence relations for the two sums Sy(Ll) and ST(LQ). Afterwards, we combined those
two recurrences using “gfun” (see [SZ94], or [Mal96] for a Mathematica implementation) to

one recurrence of order 10 which contains SS) + (ni'?)) S( ) as a solution. It is then a simple

task to check that the right hand side of identity (3) is also a solution of this combined
recurrence. The fact that both sides of the equation (3) agree with the first 10 initial values
finally shows the correctness of (3). However, at that time we were not able to find the
explicit evaluations (1) and (2). This has been changed partially in [Sch00], where we could
find those evaluations by assuming that the right hand sides of (1) and (2) depend on the
harmonic numbers H, = > 7 | 1

In this article we shall show that meanwhile also the task of finding the evaluations (1)
and (2) can be carried out with the summation package Sigma, without any guessing part,
but only with computer algebra methods. In other words, we present an alternative proof of
[FK00, Lemma 26] that not only shows the correctness of identity (3), but also delivers the
explicit evaluations of the sums in (1) and (2). Moreover we shall illustrate that the proof
of [FK00, Lemma 26] becomes completely automatic, if one uses Sigma, and hence feasible
without advanced knowledge of hypergeometric functions and their transformations.

In principle, a reader may jump directly to the rhombus tiling application in Section 3.
At every algorithmic step there, a pointer to the appropriate subsection of Section 2 is given
where the ideas behind are outlined.
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2. SYMBOLIC SUMMATION IN DIFFERENCE FIELDS

Symbolic summation usually is divided into two different subbranches, namely indefinite
and definite summation. In contrast to indefinite summation, definite summation problems
have closed form evaluations only for specifically chosen summation ranges. For instance, the
sum ZZ: a (Z) in general cannot be simplified further, whereas for the specific bounds a = 0
and b = n that sum evaluates to 2".

In the following two subsections we will explain in more details, how indefinite and definite
summation can be treated with the summation package Sigma [Sch01]. Moreover, additional
information is given in “IT¥-Remarks” how the summation problems are rephrased internally
in the difference field setting of II3-fields. Finally, we will summarize all these underlying

difference field aspects in Subsection 2.3.

2.1. Indefinite summation. Indefinite summation deals with the problem of eliminating
summation quantifiers without using any knowledge about the summation range. More pre-
cisely, following [PS95b], we are interested in the following problem. Given an indefinite sum
> p_o f(k) where f belongs to some “nice” domain of sequences and f(k) is independent of
n. Find g(k) in the same class or some suitable extension of it such that

S (k) = g(n).
k=0

Alternatively, indefinite summation asks for solving

! Problem T: Telescoping. !

Given f(k); find g(k) such that
g(k+1) —g(k) = f(k) (4)

holds within a certain range of k.

Then, given such a telescoper g(k) of f(k), one derives by telescoping
b

D f(k)=g(b+1) - g(a) (5)
k=a
if b—a € Ny.

There are various algorithms that solve Problem T for “nice” domains of sequences f(k),
like [Gos78, PS95a] for hypergeometric terms, [PR97] for ¢—hypergeometric terms, or [Chy00]
for holonomic and O-finite terms.

In the summation package Sigma the sequences f(k) and its telescoper g(k) are described in
the algebraic setting of difference fields, more precisely of I1X-fields [Kar81, Kar85], and cer-
tain difference rings; for more details see I13-Remark 1. This domain of sequences essentially
covers (g—)hypergeometric terms, see [Sch04b], and an important subclass of holonomic and
O-finite terms that occurs frequently in symbolic summation. More generally, our approach
allows to formulate sequences in terms of rational expressions consisting of arbitrarily nested
indefinite sums and products that are out of scope of [Gos78, PR97, CS98, Chy00].

Without going into more details, we call all those sequences f(k) IIX-terms (in k) that
can be described in terms of II3-fields. Typical examples for IIX-terms are for instance
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One of the crucial properties of a II¥X-term f(k) is that the sums and products in the shifted
version f(k+1) can be expressed by the sums and products given in f(k), like Hy11 = H, k+k+tl
or (k+1)! = (k+ 1)k!. On the contrary, sums like Zk

terms.

1T fk)4 are not in the scope of II¥-

I[I¥-Remark 1. In the sequel a brief introduction of 113 -fields is given; further information
can be found in [Kar81, Kar85, Bro00, Sch01, Sch02b, Sch04b]. A difference field [Coh65],
usually denoted by (F, o), is nothing else than a field! F together with a field automorphism
o :F — F. Karr built up a difference field theory in a completely constructive manner that
enables one to describe a huge class of nested multisums. In short, the class of IIX-fields
contains difference fields (F, o) that can be defined as follows. Basically F is constructed by
a tower of finite field extensions K = Ey < E; < --- < E,, = F with constant field K, i.e.,
K = {o(9) =g|g € F;} for all 0 < i < n. Moreover the following conditions for 1 < i <n
hold: E; := E;_1(¢;) is a transcendental extension of E;_; and we either have o(t;) = a;t;
(a product/Il-extension) or o(t;) = t; + a; (a sum extension) for some a; € E;_; \ {0}. In
other words the class of II¥-fields contains difference fields such as F := K(t1)(t2) ... (tn)
where F is a field of rational functions over K. Moreover these transcendental extensions
allow to describe recursively defined nested sums and products in rational terms. Besides
such product and sum extensions, a II¥-field can contain more general extensions of the type
o(t;) = a;t; + B; with ay, 3; € E\ {0} together with some technical side conditions that are
described further, for instance, in [Kar81, Kar85, Bro00, Sch01, Sch02b, Sch04b].

Clearly, rational functions as f(k) € K(k) with the shift operator o(k) = k+1 are contained
in the class of II¥-fields; also, most of the (¢-)hypergeometric terms like f(k) = 2¥ or f(k) = k!
can be rephrased in a II¥-field (K(k)(h),o) with o(h) = 2h or o(h) = (k + 1) h; for more
details see [Sch04b]. In particular, all the terms given in (6) can be formulated in II¥X-fields.

On the other hand, frequently used objects like (—1)* cannot be formalized in IT1¥-fields,
since we have the algebraic relation ((—1)¥)? = 1. To overcome this problem, Sigma allows to
handle objects like o, 1 # a an nth root of unity, in ring extensions of the type F[z] where
(F,0) is a II¥X-field with constant field K, « € K, o(z) = ax, and 2™ = 1. In particular, this
means that o : F[z] — F[z] is a ring automorphism, i.e., (F[z], o) forms a difference ring, or a
difference ring extension of (F, o). For more details see [Sch01, Sch04b]. O

For instance, with Sigma one can produce the right hand sides of the identities

Za: (14 (n - 20) ) (Z) — (n—a)H, (Z) +1, a>0, (7)

k=0

> (1+ 260 — 20, @ = 0, <n> v v

k=0

lp hroughout this article all fields will have characteristic 0.
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note that the special case a = n of theses identities is treated in [PS03]; see also [DPSW04a,
CD04, KR04].
We illustrate the usage of our package Sigma by discovering and proving identity (7). First
we start a Mathematica session by loading the package
In[l]:= << Sigma’
Sigma - A summation package by Carsten Schneider (©) RISC-Linz

and defining the sum S(a) = mySum on the left hand side of (7) as follows:
In[2]:= mySum = SigmaSum|[(1 + (n — 2k)SigmaHNumber[k])SigmaBinomialn, k|, {k, 0, a}]

n
Out[2]= 2(1 +(—2k+n) Hy) (k)

Generally, the functions SigmaSum and SigmaProduct are used to define ITX-terms (in addi-
tion we allow summation objects like (—1)™ that can be only formulated in difference ring ex-
tensions). For this purpose there are also several other functions available, like SigmaHNumber,
SigmaBinomial or SigmaPower to define harmonic numbers, binomials or powers in terms of
sums and products which itself can be converted into II¥-fields or certain difference ring
extensions. For instance, SigmaHNumber|k] produces the kth harmonic number Hj which
alternatively could be described by SigmaSum[1/i,{i,1,k}].

Then, by applying the Sigma-function SigmaReduce to mySum = S(a), we obtain the closed
form evaluation:

In[3]:= SigmaReduce mySum|
Out[3]=1+ (—a+n) H, (2)

I1¥-Remark 2. Internally, the Sigma-package proceeds as follows. 1. Construction of the

I1¥-field (F,0): Take the rational function field F := Q(n)(k)(b)(h) and define the field
automorphism o : F — F by o(c) = ¢ for ¢ € Q(n), o(k) = k+ 1, o(b) = Z—jr]f b and o(h) =
h+ k#“ Note that the k-shifts Sy, (}) = (lcil) = Z—j(g) and Sy Hy = Hyy1 = Hi + k+tl are
reflected by the action of o on b and h.

2. Solving the telescoping problem in (IF,o): Sigma [Sch02b] finds the solution g’ = b(hk — 1)

for the telescoping equation

olg)—g =1
with f’ = b(1 + (n — 2k)h). This means that g(k) = (kH), — 1)(}) is a telescoper for f(k) =
(1+ (n— 2k)Hy) (7). 0

Hence Sigma finds the telescoper g(k) = (kHj, — 1)(}) and the shifted version g(k + 1) =
(n — k)H(}). The correctness of (4) for 0 < k < a is immediate and therefore the closed
form is verified.

Similarly, one obtains a closed form of the sum

n k .
n[4]:= mySum = —_1k &
In[4] ySu kz:%(?)—i-Zk)( 1) J;j(zﬂ)’

by applying it to the function call SiémaReduce:

In[5]:= SigmaReduce mySum]

ot ~3(1+m) (2+n)+2 (3+3n+0?) (-1 +4 (1+n) (2+n)" (-1)" 2] _, rs
4 (1+4n) (2+4n)
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If one takes the shifted telescoper g(k + 1) of f(k) = (3 + 2k)(—1)* Zle j(l;jrjb to be the
expression in Out [6] with n replaced by k, the proof of identity?
> (34 2k) (-1

k=0 = i

LI 3 (n%+3n+3)(-1)" |
by -t 2(n+1)(n +2) +(n+2)(=1 ;i(wrz) ©)

for n > 0 can be carried out similarly to the proof of identity (7) from above.

In general, suppose that we are given a sum S(a,b) = Zzzaf(k) with a II¥-term f(k). If
mySum = S(a, b) is defined with Sigma-functions as carried out in In[2], by typing in

SigmaReduce[mySumn]

one looks for a telescoper g(k) in terms of sums and products that are given by the II¥-term
f(k). More precisely, first a II¥-field is constructed in which the sums and products occurring
in f(k) can be expressed formally. Afterwards one tries to solve the telescoping equation in this
I1¥-field. If such a g(k) can be computed, by telescoping, see (5), the outermost summation
quantifier in the sum S(a,b) can be eliminated.

I[I¥-Remark 3. More precisely, the following difference field machinery is activated in Sigma;
see also II¥X-Remark 2. First a concrete IIX-field (F, o) is constructed for the II¥-term f(k)
in (4). In particular, this means, one has to define a map which links the given summation
objects, i.e., sequences f(k), with elements f’, say, in the constructed II1X-field; in other words,
f" € F represents f(k); for more details see [Sch01, Chapter 2.5]. Given this translation
machinery, it is decided constructively, if there exists a solution ¢’ € F for the telescoping
problem

a(g)—g =f" (10)
If one finds such a ¢’, one constructs a sequence g(k) in terms of sums and products for
which (4) holds. This finally gives the evaluation in (5).
Based on Karr’s difference field theory [Kar81], the translation between II¥-terms and corre-
sponding IT¥-fields can be carried out completely automatically for most instances. Problem-
atic cases can be treated by building up the underlying IT¥-field manually; for more details
see [Sch04b]. This user controlled construction can be achieved by calling® SigmaReduce with
the option Tower — {s1(k),...,sk(k)}, where s;(k) are IT¥-terms in k. This means that Sigma
first tries to construct the IIX-field for the term s1(k) and then extends the field in order to
represent the remaining s;(k) following the input order; finally, the II¥-field is enlarged with
necessary extensions in order to represent also f(k).
Note that Sigma can also treat indefinite summation problems in terms of (—1)* that can be
only treated in difference rings. For more details we refer to Subsection 2.3. U

We want to point out that so far we only dealt with indefinite summation problems where
the telescoper g(k) is searched in the domain given by the input sequence f(k). But already
for the slightly more general sum expression

n k .
n[6]:= mySum = x)k &
In[6:= mySu l§<3+2k><) j;j(zﬂ)’

2Note that this sum simplification will play an important role in Section 3.
3Analogously, this translation process can be controlled in the Sigma-functions CreativeTelescoping,
GenerateRecurrence and SolveRecurrence that are explained later.
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we would fail to find such a telescoper in the ground field. Such kind of problems motivated
us to generalize the indefinite summation approach to the following refined version [Sch04c]:
with the Sigma-package one is able to decide constructively if certain classes of sum extensions
provide simpler solutions. More precisely, given a II¥-term f(k), Sigma can search for a
telescoper g(k) of f(k) that not only consists of sums and products given by f(k) but that
can contain sum extensions with the following property: they are not more nested than the
given II¥-term f(k) and their summands are composed by II¥-terms that occur in f(k).

By setting the additional option SimplifyByExt — Depth in the function call SigmaReduce
this refined algorithm can be activated.

In[7):= res = SigmaReduce[mySum, SimplifyByExt — Depth]

n n L1 n 1401) (—34+x—2 1142 x 1) x*t-

outl7l= x(-5—2n+3x+2nx)x" 2“21 - 1&:%) _ Zq:l (1+u) ( o2l )
(—1+x)°
k

In this example Sigma finds the additional sum extension F,(n) := > }_; (1‘*"@)(—3&92:2;6—&—2%)95
that allows to find the closed form evaluation given in Out [7] with the same nested depth
than the summand itself. (If one considers the special case x = —1, the sum E_;(x) can be

2 n
simplified further to 3 — % which finally gives (9).)

IT¥-Remark 4. In the difference field setting the following problem is solved in Sigma. First
a II3-field (T, o) is constructed in which the ITX-term f(k) can be represented with f’ € F.
Then it is decided constructively, if there exists a bigger II¥-field (F(xq,...,x.),0) with
o(z;)—x; € Fand a ¢’ € F(z1,...,z.) with o(¢') — ¢ = f’ where ¢’ is not more nested than
/! itself. If Sigma finds such a ¢’, it constructs a telescoper g(k) of f(k) in terms of additional
sums whose depth is not larger than the II¥X-term f(k) itself. For algorithmic details we refer
to [Sch01, Sch04c]. O

Further examples, like
In[8]:= mySum = Z H? Hf)

k=0
In[9]:= SigmaReduce/mySum, SimplifyByExt — Depth]

Out[9]:%(—6Hn+3H§in+(3(1+2n)73(1+2n)Hn+3( 2>+Z )
11=1 1
and
H |
In[10]:= mySum = ZH ZH +1),
j=1

In[11]:= SlgmaReduce[mySum SlmphfyByExt — Depth]
B TLL (B +30) (—in B, ) T, (24 L)
Out[ll]: (_m+(1+m) Hm) Z H3 +L1! 2 - Z H?l +L1!'2

11=1 3] . 11=1

show that these new ideas significantly enhance the algorithmic tool box.

2.2. Definite summation and the definite summation spiral. In general, the problem
of definite summation is harder than indefinite summation, since in addition one also has to
take into account the summation range. Up to now, all definite summation algorithms deal
with such kind of problems by following Zeilberger’s paradigm [PWZ96]: given a definite sum,
find a recurrence (with polynomial coefficients) that contains the definite sum as a solution.
If one can guess a closed form evaluation for a given definite sum, one may prove this identity
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definite sum

combinatign of solutions creative telescoping
simplified solutions recurrence
indefinite summation solving
1\ /

d’Alembertian solutions

FIGURE 1. The definite summation spiral.

by showing that the conjectured right hand side is also a solution of the computed recurrence
and checking that the first initial values are the same.

More generally, one also tries to find solutions of a derived recurrence. Here the crucial
point is that the computed solutions should be of a “simpler type” than the given definite sum
expression. If one succeeds in this, one cannot only prove identities but even derive “closed
form” evaluations.

Subsequently we will work out the interplay between those subproblems and methods that
can be summarized with our definite summation spiral in Figure 1. Finally, a concrete example
will illustrate these aspects in Section 3.

2.2.1. Creative telescoping. The first step in our definite summation spiral consists of solving
the following problem. Given a definite sum

b

S(n):=>_f(n,k) (11)

k=a

where a, b are of the form a = a1 n+a9 and b = by n+by with a1,b1 € Z and as, by independent
of n. Find a recurrence of the form

co(n) S(n) + -+ + ca(n) S(n + d) = h(n). (12)

Most relevant summation algorithms accomplish this task by solving Problem CT or vari-
ations of it.

! Problem CT: Creative Telescoping. !
Given f(n,k) and d € N; find ¢o(n),. .., cq(n), free of k and not all zero, and g(n, k) such that

holds within a certain range of n and k.
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The basic idea behind this is as follows. Suppose one succeeds in computing such ¢;(n) and
g(n, k) for given f(n,k) and d. Then summing equation (13) over k from a to b gives

b b

g(n,b+1) — g(n,a) = co(n) Zf(n, k)4 -+ cq(n) Zf(n—F d,k). (14)

k=a k=a

Then with some mild extra conditions, one can express the sums S20_ f(n+4,k) in (13) in
terms of S(n+4). This implies a not necessarily homogeneous recurrence (12) for the definite
sum S(n). A concrete example in Remark 2 illustrates in details how this transformation
from (13) to (12) can be carried out.

Summarizing, solving Problem CT for a sequence f(n, k) with a fixed d € N enables one to
construct a recurrence of order d that contains the above defined sum S(n) as solution. Note
that d must be specifically chosen for each attempt to solve Problem CT. Usually, one first
tries to solve Problem CT for d = 1, and increments d until one finds a solution.

Originally, creative telescoping has been introduced in [Zei90] for hypergeometric terms
f(n, k) and g(n, k); for a Mathematica implementation see for instance [PS95a]. Various other
approaches in more general settings, like [PR97] for ¢—hypergeometric terms, [CS98, Chy00]
for holonomic and J-finite terms, or [Weg97, Rie03] for (¢—)hypergeometric multisum terms
follow this idea of creative telescoping or related paradigms.

With the summation package Sigma one can try to solve Problem CT for a given d € N
and a II¥-term f(n,k) in k, which also depends on an extra parameter n, if the following
property holds*: also the shifted versions f(n +4,k) for 1 < i < d are II¥-terms in k and all
those ITX-terms can be represented in a common II¥-field. Then, given such a d and f(n, k),
one can search for a solution of Problem CT, where g(n, k) consists of sums and products that
occur in f(n, k). Due to the generality of the input class of IIX-terms, this approach opens
up the possibility to tackle various definite summation problems that cannot be treated by

the earlier approaches [PR97, CS98, Chy00, Weg97, Rie03].

II1¥-Remark 5. Given a II¥-term f(n, k) and d € N, creative telescoping is handled in Sigma
as follows. First a II1X-field (F, o) is constructed with constant field K(n), n transcendental
over K, in which the IIX-terms f(n +4,k) in k can be expressed by f/ € F for 0 < i < d.
Then one decides constructively, if there exist ¢;(n) € K(n), not all zero, and a ¢’ € F with

o(g) — g =co(n) fo + - +caln) fi. (15)

If one succeeds in finding such solutions ¢;(n) and ¢’, a IIX-term g(n, k) is constructed that
gives a solution for Problem CT. We want to remark that with Sigma one can search for
creative telescoping solutions also in algebraic difference ring extensions like (—1)™. O

Suppose that we are given d € N and a definite sum S(n) = S 0__ f(n, k) as in (11)
where f(n +i,k) is a IIX-term in k for 0 < i < d. Then, if mySum = S(n) is defined with
Sigma-functions as carried out in In[2], by typing in

creaSol = CreativeTelescoping[mySum,n, RecOrder — d]

4Note that this property holds for almost all IIY-terms f(n, k) in k.
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a set of creative telescoping solutions with (13) is searched where each found solution is
encoded in the form® {co(n), c1(n), ..., cq(n), g(n,k)}. Moreover, by entering

TransformToRecurrence|[creaSol, mySum, n|

one obtains the resulting recurrences of the form (12) for the sum S(n) that one can compute
from the creative telescoping solutions. All these steps can be carried out in one stroke by
using the Sigma-function call®

GenerateRecurrence[mySum,n, RecOrder — dJ.

As example we refer to the computation steps In[13], In[14] and In[22] in the Mathematica
session that will be carried out in Section 3. Further examples can be found in [Sch01, PS03,
DPSWO04a, DPSWO04b)].

We want to emphasize that for our input class of IIX-terms, i.e., indefinite nested sums and
products, we can verify the correctness of the obtained recurrence by the following recipe:
check that the computed telescoping equation of Problem CT is correct for all k£ with a < k <
b. Then it suffices to verify that the inhomogeneous part h(n) in (12) is correctly determined.
In Remark 2 we will illustrate with a concrete example how these verification steps can be
carried out with the computer.

2.2.2. Solving recurrences. Suppose that we have derived a recurrence for a definite sum, say
S(k), of the type

am (k) S(k+m)+--- +ao(k) S(k) = b(k) (16)

where the coefficients a;(k) and the inhomogeneous part b(k) are IIX-terms; note that exactly
this type of recurrences can be computed with the Sigma-function call GenerateRecurrence.
The next step in Figure 1 asks for solving the recurrence in terms of simpler expressions than
the definite sum itself. Then the right linear combination of those solutions might give the
closed form evaluation of the definite sum itself.

With the package Sigma there are various possibilities to achieve this task. The simplest
strategy is to search for the solutions in the ground field given by the coefficients and the
inhomogeneous part in (16). Namely, if a recurrence of the form (16) is inserted properly in
the computer algebra system Mathematica, say in the variable rec like in In[15], using the
function call

SolveRecurrence[rec, S[K|]

the user can look for all solutions in terms of sums and products given by the a;(k) and b(k).
The result of this function call is of the form

{{0,h: (%)}, ..., {0,he(k)}} or {{0,hy(K)},...,{0,hr(k)}, {1, g(k)}} (17)

where {hi(k),...,h.(k)} gives a solution set of the homogeneous version of the recurrence
and g(k) gives a particular solution of the recurrence itself. Concrete applications can be
found in the computation steps In[16] and In[24].

5In our implementation the trivial solution {0,...,0,1} with 1—1 =0 f(n, k) +--- 40 f(n +d, k) is always
included in the set of output solutions. There might be several non-trivial solutions, if d is chosen too big.

OIf the option RecOrder — d is omitted in the function calls CreativeTelescoping or GenerateRecurrence,
Sigma tries to solve Problem CT first for d = 1 and then for d = 2,3,... until a solution is found; the
termination is not guaranteed in this case.
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II¥-Remark 6. Internally, a II¥-field (F,o) is constructed in which the coefficients a;(k)
and the inhomogeneous part b(k) can be expressed by a; € F and o € F. Then in Sigma all
solutions ¢’ € F with

o™ (g) + -+ ahg = b (18)
are searched. More precisely, a solution set {h/,...,h.} C F, linearly independent over the
constant field {¢ € F|o(c) = ¢}, is computed for the homogeneous version of (18). Moreover,
a particular solution ¢’ € F for (18) is searched. The found solutions are then reinterpreted
in form of II¥-terms h;(k), g(k) that give the solutions (17) for the original recurrence. Note
that the search of the solutions for (18) can be also carried out in algebraic extensions like
(—1)%, i.e., the a;(k) and b(k) may depend on (—1)*. O

In many instances the underlying difference field is too small in which the solutions S(k)
are searched. Therefore, Sigma provides the possibility to extend the underlying solution
domain manually. Namely, by the function call

SolveRecurrencelrec, S[k|, Tower — {s1,...,Se}]

one can search for all solutions S(k) in terms of sums and products occurring in the a;(k) and
b(k) together with the additional sums and products given by s;(k); see also IIX-Remark 3.
The application of this feature is demonstrated in the computation steps In[19], In[25],
and In[28].

However, the guessing of additional II¥-terms is a highly non-trivial task. In order to
dispense the user from extending the underlying difference field manually, the following two
possibilities should be applied.

e Finding (q—)hypergeometric solutions. Due to the pioneering work [Pet92, vH98, APP9g],
one has powerful solvers in hand that allow to find all solutions S(k) in (¢—)hypergeometric
terms of a homogeneous recurrence with polynomial coefficients in k or ¢*. These solvers
perfectly complement the summation package Sigma.

e Finding nested sum solutions and d’Alembertian solutions. With the function call
SolveRecurrence[rec, Sk, Tower — {si,..., S}, NestedSumExt — o]

the user can compute all nested sum solutions of a given recurrence rec of the form

n ko kr—1
> bi(k) Y ba(ka) - Y (k) (19)
k1=0 ko=0 kr=0

where the b;(k;) are II¥-terms in terms of sums and products given by the s; and by the a;(k)
and b(k) in the recurrence (16). Typical sum solutions can be found in Out [17] and Out [26].

Remark 1. Internally, those solutions can be obtained by factorizing its linear difference
equation as much as possible into linear right factors over the given difference field or ring; then
each factor corresponds basically to one indefinite summation quantifier; see [AP94, Sch01].
An important result is that the class of “linearly” nested sum solutions (19) over the given
IIX-terms contains also all solutions that consist of rational terms of arbitrarily nested sums
over the given II¥-terms; for the rational case see [HS99] and for the general II¥-field case
see [Sch01]. Note that the class of sum solutions is contained in the class of d’Alembertian
solution [AP94] which again is included in the class of Liouvillian solutions [HS99].

An important special case is the “rational case”, i.e., the coefficients of the recurrence are
in the field K(k) with the shift operator S(k) = k + 1. Then the d’Alembertian solutions
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are of the type (19) where b;(k;) are hypergeometric terms over K(k;). Here the crucial
observation is that a hypergeometric term solution of a recurrence gives also a linear right
factor of a recurrence. Therefore, the application of algorithms like [Pet92, vH98] might
contribute to a refined factorization of a given recurrence into linear right factors, and thus
to further solutions of the recurrence; see [AP94, Sch01]. In combination with [AP94, Sch01]
and manual extensions of the solution domain (with the option Tower), the user can compute
all those d’Alembertian solutions with the summation package Sigma; for further details and
illustrative examples we refer to [PS03, DPSWO04b]. O

2.2.3. Indefinite summation. Nested sum solutions and d’Alembertian solutions consist of
non-trivial and highly nested indefinite sums of the form (19). If such solutions contribute to
the closed form evaluation of the original definite sum expression, in most instances the found
evaluation is not simpler, but even more complex, namely more nested. In order to overcome
this problem, one has to reduce those nested sums to expressions which are less nested than
the originally given definite multisum. It turns out that all nested sum solutions and many
d’Alembertian solutions can be expressed in IIX-fields or difference ring extensions like (—1)%;
see [Sch04b]. In this case one can apply our indefinite summation algorithms described in
Section 2.1 in order to simplify those sum solutions and d’Alembertian solutions further. This
simplification step is carried out, for instance, in In[18] and In[27].

2.2.4. Combination of solutions. Now assume that we managed to compute a recurrence of
order d for a definite sum S(n) that holds for all n > ng, ng an integer, and we found a
set of solutions of that recurrence that holds for all n > ng. More precisely, suppose that
in a Mathematica session mySum stands for our definite sum S(n) and recSol for our set of
solutions of the recurrence that is given in the form (17) with k replaced by n. Then with

FindLinearCombination[recSol,mySum,d,MinInitialValue — ng]

the user can try to find a linear combination of the solutions of the homogeneous version of
the recurrence plus one particular solution of the inhomogeneous recurrence that evaluates to
the same initial values for n € {ng,ng+1,...,n9+d — 1} as the given definite sum. If Sigma
succeeds in finding such a linear combination, this expression equals S(n) for all n > ng. Note
that Sigma might fail to find this linear combination if a particular solution or some solutions
of the homogeneous version of the recurrence are missing in recSol.

2.3. The “Master Problem” for symbolic summation in difference fields. The sum-
mation problems sketched in the previous II3-Remarks can be summarized by

Problem PLDE: Solving Parameterized Linear Difference Equations.

Given a [IX-field (F, o) with constant field K, ao,...,an € F, and fo,..., fq € F;
find all g € F and all ¢, ...,cq € K with a,, 6™ (g) +---+a0g =co fo+ -+ ca fa-

Namely, specializing to d = 0 and m = 1 with a; = 1 and as = —1, one considers the
telescoping problem (10) for indefinite summation. Moreover, specializing to m = 1 with
a; = 1 and az = —1, one can formulate the creative telescoping problem (15) if K = K'(n)

and f; € F stands for the IIX-term f(n+i,k) € Fin k for 0 < i < d. Furthermore, if one sets
d = 0, one considers the problem to solve linear difference equations (18) of order m.
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In [Kar81, Kar85], M. Karr developed a complete algorithm that solves Problem T in the
general I1X-field setting; only some additional properties are required for the constant field,
that are worked out in [Sch04b]. In some sense, Karr’s algorithm [Kar81] is the summation
counterpart to Risch’s algorithm [Ris69, Ris70] for indefinite integration.

In [Sch00, Sch01], it was observed for the first time that Karr’s algorithm not only can solve
Problem T but also Problem CT in II3-fields. More precisely, Karr’s algorithm can solve
Problem PLDE with m = 1. Analogously to the fact that the extended version of Gosper’s
algorithm [Zei90] represents a significant generalization to definite hypergeometric summation,
with this observation Karr’s algorithm can be viewed as a major step forward with respect
to definite summation in general.

Based on results in [Bro00], Karr’s algorithm was streamlined in [Sch01, Sch02b] to a more
compact and efficient algorithm. Moreover, in [Sch02b, Sch04a, Sch02a] together with results
from [Bro00], this streamlined algorithm was generalized to a method that enables the user
to search for all solutions of Problem PLDE for an arbitrary order m. Although there are
still open problems in the resulting algorithms, one finds eventually all the solutions for
Problem PLDE by repeating the computation process and increasing step by step the range
in which the solutions may exist; these ideas are presented in [Sch02b].

Furthermore we want to emphasize that Sigma provides methods that enable the user to
search for solutions of Problem PLDE in difference ring extensions, like (—1)¥, that contain
zero-divisors, like (1 — (—1)¥)(1 4 (—1)¥) = 0; for more details see [Sch01]. Those ideas are
partially needed in the computation steps In[5], In[18], In[19], In[25], and In[28].

3. A RHoMBUS TILING APPLICATION

In the sequel we will prove the multisum identities (1) and (2) that arise in [FKO00]. Fol-
lowing our definite summation spiral in Figure 1, those identities will not only be proven with
our package Sigma, but we will also find their right hand sides.

First we set up the summation problem ST(LI)
Hy 3+k+n) (-1 (—1)™

(1+k)!?(2+k) (~k+n)!

= mySuml as carried out in In[2].

n

In[12]:= mySuml = Z —
k=1

Finding a recurrence with creative telescoping

Given this sum expression, we are able to compute a recurrence relation of order three by
solving the creative telescoping problem; see Problem CT.
In[13]:= creaSoll = CreativeTelescoping[mySum1, n, RecOrder — 3]
Out[13]= {{0,0,0,0,1}, {(2 +n) (3 +n) (4 +n)2 (5+mn) (94 2n),
—(3+mn) (44+n) (5+n) (9+2n) (13+8n+n?),
—(3+mn) (44+n) (5+n) (5+2n) (6+6n+n?),
(3+n)?(4+n) (5+n)* (5+2n),—(2 (1 +k) (5+n) (5+2n)
(7+2n) (9+2n) ((-3+k—n) (4+k+n)+k (3+n) (4+n) Hy)
(B+x+n) (1) (—1)*)/
(1—%+n) (2-k+n) 3—k+n) (1+k)!*(~k+n))}}
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Here the second entry in the output of Out [13], say {co(n),c1(n), ca(n), cz(n), g(n, k)}, gives
the solution of Problem CT for d = 3 and the summand
k) = _ Hi(n+k+3)/(=D)*(-1)"
T (k+2)(k+D)12(n - k)!

of 57(11) = >, f(n,k). Then, as described in Subsection 2.2.1, we can generate from this
)

In[14]:= TransformToRecurrence[creaSoll, mySum]l, n]
Out[14]= {(1 +n) (2+n)® (3+n) (4+n) (9+2n) n! SUMn]—

(1+n) (24n) (3+n) (9+2n) (13+8n+n?) n! SUM[1+n|—

(1+n) (2+n) (3+n) (5+2n) (6+6n+n°)n! SUM2+n]+

(14+n) (2+n) (3+n)’ (5+n) (5+2n) n!. SUM[3 +n] ==

—2(54+2mn) (74+2n) (9+2n) 3+n)! (-1)"}

This means that SUM[n| = StV (=mySum1) satisfies the output recurrence Out [14]. We could
also carry this out in one step by the call GenerateRecurrencemySum, n,RecOrder — 3| which
just gives the same recurrence as in Out [14].

We want to emphasize that the user can verify the correctness of recurrences independently
of the steps of the algorithm, see the following remark.

(20)

result a recurrence for 57(11 with the function call

Remark 2. With the ¢;(n) and g(n, k) given in Out [13] one can show that S is a solution
of the recurrence Out[14] as follows. For (20) observe that f(n + i,k) = f(n,k) fi; where

f(]:l’

f _ n+d+k by = (n+44+k)(n+5+k) (n+4+k)(n+5+k)(n+6+k)
YTThF ok T i+ 1—k)m+2—k) m+1—k)n+2—k)n+3—k)

Moreover note that the II¥-term g(n, k) shifted in k can be rewritten as

2(k+1)(n+5)(n+4+k)(2n+5)(2n+T7)(2n +9)
(k+2)(n+2—k)

fs=-

gn,k+1)=

(n+Ek+3)(=1)k(=1)"
(k+1)12(n —k)!

by using the relations H, 1 = H, + 7#1 and (—1)"*! = —(—1)". Then with these represen-
tations, we verify that (13) with d = 3 holds for all 0 < k < n. First we check that there do
not occur any poles during the evaluation in the chosen representations of g(n, k), g(n,k+1)
and f(n +i,k) for 0 < ¢ < 3 within the range 0 < k < n. Then we substitute those specific
terms in g(n,k+1) — g(n, k) — (co(n) f(n, k) +---+c3(n) f(n+3,k)), bring these expressions
over a common denominator, and check symbolically that the polynomial expression in the
numerator vanishes. This shows the correctness of (13) for 0 < k < n. Moreover, summing
equation (13) over k from 0 to n gives

X (Hp(n® 4+ Tn +12) + k +2)

co(n) Y f(nk) +---+ec3(n) > f(n+3,k) = g(n,n + 1) — g(n,0).
k=0 k=0
Then with '
Sf:_gi:Zf(n+i,k:)+2f(n+i,n+j) (21)
k=0

J=1
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for i > 0, the correctness of the recurrence rec with SUM[n] = S follows for all n > 0. O

Dividing the output recurrence in Out [14] by the non-zero factor (n+3)(n+2)(n+ 1)n! (for

n > 0) gives the simplified version:

In[15:=recl = (2+mn) (4+n) (9+2n) SUM[n] — (9+2n) (13+8 n+n?) SUM[1 + n]—
(5+2n) (6+6n+n?) SUM[2+n]+ (3+n) (5+n) (5+2n) SUM[3 +n] ==
-2(5+2n)(7T+2n) (9+2n) (-1)*;

Solving the recurrence with sum solutions (d’Alembertian solutions)

In the next step we try to find solutions of the recurrence reci given in Out[15]. To
accomplish this task, Sigma provides the following function call; see Subsection 2.2.2.
In[16]:= SolveRecurrence[recl, SUM|n]]|
Out[16]= {{0,1},{0,(2+n) (-1)"}}
Internally Sigma constructs the underlying difference ring A = Q(n)[(—1)"] given by the ob-
jects in the recurrence and afterwards tries to solve the recurrence formulated in this algebraic
setting A. In this case Sigma finds two linearly independent solutions of the homogeneous
version of the recurrence, namely 1 and (n + 2)(—1)".

Obviously, those solutions are not sufficient to describe the whole set of solutions of the
given recurrence. Therefore we try to extend the underlying difference ring in form of sum
solutions by setting in addition the option” NestedSumExt — co; see Subsection 2.2.2.

In[17]:= SolveRecurrence[recl, SUM|[n|, NestedSumExt — oo, IndefiniteSummation — False]
u(ca)=

out[17)= {{0,1}, {0, (2+m) (=1)"},{0, = Y (3 +2u) (1) > p (2+L2)},

t1=0 Lp=1
n . L1 14 L
1,2 3+2 —1)™
(L2 Xerzm (0" 3 oo
In this example Sigma succeeded Completely since it was able to compute three linearly inde-
pendent solutions of the homogeneous version of the recurrence and one particular solution
of the inhomogeneous recurrence itself.

Simplifying the solutions with indefinite summation

Now the essential step is that those two sum solutions in Out [17] can be simplified further
with Sigma’s indefinite summation algorithm; see identity (9). By default, i.e., omitting
the option IndefiniteSummation — False, those sum solutions are simplified immediately
which results in:

In[18]:= SolveRecurrence[recl, SUM[n|, NestedSumExt — 0]
S S
2 (1+n)

out[18]= {{0,1},{0, (2+mn) (—1)" }, {0,
(3+3n+1?) (-1)* +2 (1+n) 2+0)° (1" X _,

t1=1 13 (2+4u1)
1,
{ (1+mn) (2+n) i3
Looking closer at this result, from the partial fraction decomposition of the summand

Zzn:(iziz - <Z Zz+2>

"Remarks concerning the option IndefiniteSummation — False are given in the next paragraph.
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one sees immediately that this sum can be expressed in terms of the harmonic numbers H,,.
This cosmetic change of the solution representation can be also achieved by solving the re-
currence again in the solution domain extended with H,,.

In[19]:= recSoll = SolveRecurrence[recl SUM[ ], Tower — {H,}]

—1n%2+2(1+n) (2+n n
out[19]= {{0, 1}, {0, 0,(2+n) (—1)™},
i (94+10n+302+2 (1 +n) (241n)° Hy) (1) 1
’ (14+n) (2+n)

Remark 3. We want to point out that the correctness of the solutions in Out [19] for n > 0
(or of the representations Out [17] or Out[18] from above) can be verified similarly as in
Remark 2 by substituting the solutions in the recurrence of Out[15] and checking equality
for the resulting equation. For instance, for the solutions given in Out[19], this can be
achieved by applying the relations H, 1 = H, + n+r1 and (—1)"t! = —(—1)". O

Finding a closed form evaluation by combining the solutions
So far we computed a recurrence relation of order 3 for the definite sum S,(Ll), that holds for
all n > 0 (see Remark 2), and found solutions for that recurrence, that hold for all n > 0 (see
Remark 3). Therefore a closed form of ST(LI) can be obtained by composing the particular linear
combination of the homogeneous solutions plus the inhomogeneous solution that matches the
first three initial values of Sg) for n = 0,1, 2; see Subsection 2.2.4.
In[20]:= FindLinearCombination[recSoll, mySum]1, 3, MinInitialValue — 0]
—5-3n—-2(1+n) (2+n)H + (5+2n—2n%-n®+2 (1 +n) (2+0n)° H,) (—-1)*

(1+n) (2+n)

Out[20]=
This shows that
—5—=3n—2(1+n)(2+4+n)H, + (5+2n —2n* —n® + 2(1 4+ n)(2 + n)*H,) (-1)"

S(l) — )
" (I1+n)(2+n)

or equivalently (1), holds for all n > 0.

In the same spirit we are able to find a closed form evaluation for the hypergeometric sum

n+k+®
_Z /<;+1 k+2) 2(n—k —1)!

where S = (1= (=1)"(n+2))T,. More precisely, we first compute a recurrence for T, =
mySum2.

n

Kk
In[21]:= mySum?2 = Z— (3+k+2)!' (=1) ;
= k(@4+k!" (~k+n)!

In[22]:= GenerateRecurrence[mySum2,n, RecOrder — 2]
Out[22]= {(1+n) (3+mn) (4+n) (7+2n) n!. SUMn] +6 (1+n) (3+ n)® n! SUM[1 4 n]—

(1+mn) (24+n) (3+n) (5+2n)n! SUM2+n]==-2(5+2n) (7+2n) (4+n)!}
This means that SUM[n] = T}, (=mySum2) satisfies the output recurrence Out [22] for n > 0.
Given the creative telescoping solution, the verification of this recurrence relation is imme-
diate and is omitted here. Note that this recurrence could have been computed with any
other implementation that can deal with creative telescoping for definite hypergeometric
sums [Zei90, PWZ96], like for instance [PS95a].
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Dividing the output recurrence Out [22] by the non-zero term (n + 1)(n + 3)n! (for n > 0)
gives the simplified version:
In[23]:=rec2 = —(4+n) (7+ 2 n) SUM|n] — 6 (3+n) SUM[1 + n]+

(24+n) (5+2n) SUM[2+n]==2(2+n) (4+n) (5+2n) (7+2n);

Subsequently we solve the recurrence rec2 given in In[23].
e In the underlying algebraic setting of the recurrence we obtain the following solution
In[24]:= SolveRecurrence[rec2, SUM|[n])
Out[24]= {{0,(1 4+ n) (2+n) (3+n)}}
which gives just a solution of the homogeneous recurrence.
e Next, we ask for hypergeometric solutions of the homogeneous version of the recurrence.
For instance, the implementations [Pet92, vHI8| give the additional solution (—1)™. This
gives the following result.
In[25]:= SolveRecurrence[rec2, SUM|[n|, Tower — {(—1)" }]
Out[25]= {{0, (1 +n) (2+n) (3+n)},{0,(—-1)™ }}

e Finally, we look for sum solutions of the recurrence and get additionally an inhomogeneous
solution.

In[26]:= SolveRecurrence[rec2, SUM|[n], Tower — {(—1)" },
NestedSumExt — oo, IndefiniteSummation — False]
Out[26]= {{0, (1 +n) (2+n) (3+n)},{0,(—1)"},

n L1
1

{120 Yo(6+18uroid+2a) (1" 3 -}

t1=0 Lp=0

Removing the option IndefiniteSummation — False in the previous function call, i.e., ap-
plying in addition Sigma’s indefinite summation algorithm, leads to:

In[27):= SolveRecurrence[rec2, SUM|[n], Tower — {(—1)™ }, NestedSumExt — oo]

out[27)= {{0, (1 +n) (2+n) (3+n)},{0,(—1)™},

{t,143n+n’+2(1+n) (2+n) (3+n) Y_ 1+, 1

t1=0

e In the end, we just solve the recurrence again in terms of H,, and (—1)" which gives:
In[28]:= recSol2 = SolveRecurrence[rec2, SUM|n|, Tower — {Hy, (—1)™ }]
Out[28]= {{0, (1 +n) (2+n) (3+n)} {o,(—1)™1,
{1,13+13n+3n°+2(1+n) (2+n) (3+n) Ha}}
The correctness of these solutions for n > 0 can be verified as sketched in Remark 3.

Combining the solutions gives the closed form evaluation of T}, = mySum2, namely
In[29]:= FindLinearCombination[recSol2, mySum2, 2, MinInitialValue — 0]
Out29)=1—-9n-9n*>-20n*+2 (1 +n) (2+n) (3+n) B, — (-1)"
which finally shows that (2) holds for all n > 0.

4. CONCLUSIONS

In this survey article we illustrated how closed form evaluations of a very general class
of definite multisums can be discovered with the summation package Sigma following the
definite summation spiral. As example, we derived and proved the closed form evaluations of

S,(Ll) and 57(12) from [FKO0O0] purely algorithmically with computer algebra methods. For these
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computations the user is completely dispensed from working explicitly in difference fields or
rings; instead one can work conveniently in terms of usual sum and product expressions.

Acknowledgement. 1 would like to thank Christian Krattenthaler for his valuable comments.
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