SOLVING PARAMETERIZED LINEAR DIFFERENCE EQUATIONS
IN TERMS OF INDEFINITE NESTED SUMS AND PRODUCTS

CARSTEN SCHNEIDER

ABSTRACT. The described algorithms enable one to find all solutions of parameterized linear
difference equations within II¥-fields, a very general class of difference fields. These algo-
rithms can be applied to a very general class of multisums, for instance, for proving and
simplifying.

1. INTRODUCTION

Solving parameterized linear difference equations (problem PLDE) covers various prominent
subproblems in symbolic summation [PWZ96|. For instance, by using PLDE-solvers for the
rational case [Abr89b, Abr89a, Pet92, Hoe98| or its g-analog version [Abr95] one can find sum
solutions of (¢—)difference equations, see [AP94, HS99, Sch01], or one can deal with telescoping
and creative telescoping for O-finite summand expressions, see [Chy00]. Moreover, telescoping
and creative telescoping algorithms for (¢—)hypergeometric terms, like [Gos78, Zei90, Pet94,
PS95, PR97|, or its mixed case, like [BP99], are nothing else than special purpose solvers for
certain instances of problem PLDE.

More generally, in [Kar81| algorithms have been developed that solve the first order case

of problem PLDE for I1¥-extensions. Within these difference fields one cannot only consider
(g-)hypergeometric terms, see [Sch04d], but rational terms consisting of arbitrarily nested
indefinite sums and products; see [Sch00]. Karr’s algorithm is, in a sense, the summation
counterpart of Risch’s algorithm [Ris70] for indefinite integration.
Another approach is [Bro00] where one can try to solve problem PLDE for a subclass of mono-
mial extensions that covers besides indefinite nested products (II-extensions) also differential
fields; see also [Sin91]. The only restriction is that one cannot consider indefinite nested sums
and products (II¥-extensions) that arise frequently in symbolic summation.

In this article we shall develop new methods that can treat problem PLDE for this important
class of II¥-extensions. More precisely, we shall derive the following results.

e We obtain a simplified and streamlined version of Karr’s algorithm, see Theorem 4.3, by
using a denominator bound from [Bro00]. Based on this we were able to develop extended
summation algorithms in [Sch04f] and [KS04].

e We generalize the reduction techniques presented in [Kar81] from the first order to the
higher order case. This gives an algorithm, see Theorem 4.1, that solves problem PLDE for
unimonomial and II¥-extensions if certain subproblems can be solved in the ground field.

e For general I1X-extensions and I1X-fields there are still some building blocks missing to turn
our reduction strategies to a complete algorithm. More precisely, there are no algorithms so
far which determine a common denominator of all the rational solutions and which bound
the degree of the numerator of those solutions. However, there are algorithms that can
approximate those bounds in IIX-fields. This allows us to search systematically for all
solutions by increasing step by step the domain of the possible solutions. We show that
after finitely many steps one eventually finds all solutions; see Theorem 5.2.
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Our new methods significantly enhance the summation approaches mentioned above or
given in [Chy00, Weg97, Rie03]. Namely, we can handle telescoping, creative telescoping and
recurrence solving in IIX¥-extensions; see [Sch04e]. Moreover, we can apply telescoping and
creative telescoping for O-finite expressions in terms of II¥-extensions; see [Sch04c].

All these methods are available in the summation package Sigma, which is based on the
computer algebra system Mathematica. The wide applicability of Sigma is illustrated for
instance in [Sch01, DPSW04a, DPSW04b, APS04]. We will illustrate our results by non-
trivial examples from [PS03| and [Sch04c| throughout this paper.

The general structure is as follows. In Section 2 we supplement the key problem PLDE by
various illustrative examples. In Section 3 we present reduction strategies for problem PLDE
in unimonomial and II¥-extensions. This leads us to algorithms in Section 4 if certain sub-
problems can be solved in the ground field. In section 5 we introduce algorithms that enable
us to search systematically for all solutions of problem PLDE in II3-fields.

2. PARAMETERIZED LINEAR DIFFERENCE EQUATIONS AND SYMBOLIC SUMMATION

Let (F, o) be a difference field, i.e., a field* F together with a field automorphism o : F — F.
Furthermore, define the constant field K of (F, o) by K = const,F := {k € F|o(k) = k}. Then

we are interested in the following problem?.

! PLDE: Parameterized Linear Difference Equations. !
e Given (F, o) with K := const,F, 0 £a=(a1...,am) EF™ and f = (f1,..., fn) € F".
e Find all g € F and (c1,...,¢,) € K™ with

algm_l(g)+"'+amg:61fl+"'+Cnfn- (1)

Note that in any difference field (IF, o) with K := const,F, the field F can be interpreted as a
vector space over K. Hence problem PLDE can be described by the following set.

Definition 2.1. Let (F, o) be a difference field with K := const,F and V be a subspace of F
over K. Let 0 # a = (a1,...,ay) € F™ and f = (f1,..., fn) € F". We define the solution
space for a, f in V by V(a, f,V) ={(c1,...,¢n,9) € K" x V: (1) holds}.

It is easy to see that V(a, f,V) is a vector space over K. Moreover, in [Sch02] based on [Coh65,
Thm. XII (page 272)] it is proven that the dimension of this vector space is at most m+mn — 1.
Summarizing, problem PLDE is equivalent to find a basis of V(a, f,F).

So far, various PLDE-solvers have been developed for symbolic summation, like the al-
gorithms in [Abr89b, Abr89a, Pet92, Hoe98| for the rational case, i.e., F = K(k) with
o(k) = k + 1, or the algorithms in [Abr95| for the g-analogue version, i.e., F = K(¢)(x)
with ¢ transcendental over K and o(z) = qz. Besides this, special purpose solvers have been
developed for telescoping and creative telescoping for (¢—)-hypergeometric terms, see [Gos78,
Zei90, PS95, PR97], and for mixed hypergeometric terms, see [BP99]. Moreover, by using the
methods in [Bro00] one can attack problem PLDE for Il-extensions.

In this article we complement all these approaches by considering problem PLDE in 1I3-
extensions and II¥-fields. As illustrated in [Sch04e, Sch04c]| these algorithms substantially
enhance the algorithmic tool box of symbolic summation.

Example 2.1. Consider the following elementary problem. Eliminate the sum-quantifier in
> p_o Hi where Hy, = Zle % denotes the kth harmonic number. In order to accomplish this
task, we construct the difference field (E, o) where E = Q(k)(h) is a rational function field and
the field automorphism o : E — E is uniquely defined by o(k) = k+1 and o(h) = h—l—k%rl. Note

1Throughou‘c this paper all fields will have characteristic 0.
2For the analysis of difference equations in difference rings we refer to [PS97).
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that the shift S, H, = Hy + k%rl is reflected by the action of o on h. Given (E, o), we compute
by our algorithms, see Example 3.1, the solution g = kt — k for o(g) — g = h. Reinterpreting
g as the sequence g(k) = kHj — k we get the telescoping equation g(k + 1) — g(k) = Hy.
Summing this equation over k from 0 to n gives > ;' Hy = (Hp41 — 1)(n +1).

Example 2.2. In [PS03] we have proved a family of identities including

n n 3
> (1300 20m) () = (-1 ®

k=0
note that this family occurs in a generalized form in [KR04]. In order to find (2), we computed
for the definite sum S(n) := >"}_, f(n, k) with f(n, k) := (1—-3(n—2k)Hy) (2)3 the recurrence
(n+2)Sn+2)+(2n+3)S(n+1)+(n+1)S(n) =0 (3)

by creative telescoping. More precisely, we consider the difference field (E,o) with the ra-
tional function field E = Q(n)(k)(b)(h) and the automorphism o defined by const,E =

Qn), o(k) = k+1, o(b) = "5 and o(h) = h + 43 note that the shift Sy (7)" =

(k+1)3
—((Z;]f)): (2)3 is reflected by the action of o on b. Using S, (2)3 = % (Z)3 we can represent
(f(n7 k)a f(n +1, k)? f(n + 2, k)) in (E70> as

b(1+7n)>(1 + h(3 — 6k +3n)) b(1+n)*(2+n)*(1+ (6 — 6k + 3n))
(1—k+n)? " (24 k24 k(=3 —2n) 4+ 3n +n?)®
Given this representation we compute the basis {(n + 1,2n + 3,n+2,¢),(0,0,0,1)} with

£ = (b(1 + h(—6k + 3n)), ).

g = bk?(1 + n)(—72 + 104k + 72hk — 63k* — 102hk* 4 18k> + 72hk> — 2k* — 24hk*
+ 3hk® — 192n + 208kn + 192hkn — 84k*n — 195hk>n + 12k%n 4+ 90hk>n — 15hk*n
— 186n° + 134kn® 4 186hkn® — 27k*n® — 120hk>n® + 27hk*n”

— 78n% + 28kn® 4 7T8hkn® — 24hk*n® — 12n* + 12hkn*) /(1 — k +n)*(2 —k +n)®) (4)
of the solution space V((1, —1), f,E); see Example 3.2. Reinterpreting g and o(g) as sequences
g(n,k) and g(n,k + 1) in terms of (2)3 and Hj, we get the creative telescoping equation

gn,k+1)—g(n, k) =(n+1)f(n, k) + 2n+3)f(n+ 1,k) + (n+2)f(n+2,k)

which holds for all 0 < k < n. Summing this equation over k from 0 to n gives (3).
To this end, any of the algorithms in [Pet92, Hoe99| finds the solution (—1)" of (3). By
checking initial values we obtain (2).

Example 2.3. In [Sch04c, Exp. 3| the following problem has been considered. Given a

sequence T'(k) for k > 1 that satisfies the recurrence relation

—3(3 + 2k + Hy(2 + 3k + k?)) (k) — 4(3 4 2k + Hyp(2 + 3k + k2))
Hi(14+k)(2+k) (24 k)(1+ Hp(1+k))

find a closed form evaluation of the definite d-finite sum S(n) = >_7_; (})T(k). The crucial
step in this approach is to derive the recurrence relation

T(k+2)= T(k+1),

12n(1 4+ n)2S(n) + 6n(1 +n)(3 +2n)S(1 4+ n) + 3n(1 4+ n)(2 + n)S(2 + n)
= 3(6 + 22n + 13n*)T(1) + 2(2 + Tn + 4n*)T(2). (5)
Then, by solving this recurrence in terms of d’Alembertian solutions, see [AP94, HS99, Sch01,
Sch04e], one can discover and prove the identity

S(n) = 27T (1) +6T(2) 1

. 1
5 + 15 (3T(1) +27(2)) (-2) [Hn - Z; i(—2)i]’ n>1 (6)
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In order to find (5), we have designed algorithms in [Sch04c] whose essential step consists
of solving problem PLDE. More precisely, in [Sch04c, Example 9], we needed a non-trivial
solution of V(a, ¢, E) where (E, o) is defined as in Example 2.2 and « and ¢ are given by

b(—k+n) b(1+n) b(1+n)2+n)
¢= < 1+k  1+k ’(1—|—k)(1—k—|—n)> and
o <—3(11 + 6h + 12k + 11hk + 3k + 6hk* + hk®) —4(3 + 2h + 2k + 3hk + hk?) _1>
(14 h+ hk)(6 + 5k + k2) ’ (24 k)(1 + h+ hk) ’ '
In Example 3.3 we will show how this non-trivial solution can be computed.

We define ITX-extensions and IT13-fields as follows. A difference field (E,o’) is a difference
field extension of (F, o) if F is a subfield of E and o'(g) = o(g) for g € F; note that from now
on o and ¢’ are not distinguished anymore since they agree on F.

Then we are interested in unimonomial extensions®/first order linear extensions [Kar8l,
Kar85|, i.e., difference field extensions (F(t), o) of (F, o) where F(t) is a rational function field,
o is defined by o(t) = at + 3 for some a € F*, § € F, and const,F(t) = const,F.

In particular, we are interested in the following special cases of unimonomial extensions; for
more details see [Kar81, Kar85, Bro00, Sch01].

e [I-extensions, i.e., unimonomial extensions with 3 = 0.
e Y *-extensions, i.e., unimonomial extensions with o = 1.
e Y.-extensions, i.e., unimonomial extensions with «, 3 € F* where the following two properties

hold: (1) there is no g € F with o(g) —ag = 3, and (2) if there is an n # 0 and a g € F* with

a = % then there is a g € F* with a = %; note that any X *-extension is a Y-extension.

o [[3>-extensions, i.e., t is either a II- or 3-extension.

More generally, we consider these extensions in a nested way.

o (F(ty)...(te),0)isa (nested) unimonomial (resp. IIX-/I1-) extension of (F, o) if the extension
(F(t1,...,ti—1)(t;),0) of (F(t1,...,ti—1),0) is an unimonomial (resp. IIX-/II-) extension for
all 1 <i < n;fori=0 we define F(¢;)...(¢t;—1) =F.

o (F,0) is an unimonomial (resp. II1X-) field over Kif F = K(¢1) ... (te), (F,0) is an unimono-
mial (resp. IIX-) extension of (K, o) and const,K = K.

Typical examples of I13-extensions and I3 -fields are given in Examples 2.1, 2.2 and 2.3.

We want to emphasize that [IX-extensions and I1X-fields have two important aspects:
e They contain those unimonomial extensions that are needed to express indefinite nested
sums (X*) and products (II).
e And they can be constructed in an automatic fashion if the constant field K is o-computable,
i.e., the following three properties hold. (1) For any k € K one can decide if k € Z, (2) there

is an algorithm that can factorize multivariate polynomials in K[tq,. .., t.], and (3) there is an
algorithm that can compute a basis of the submodule {(n,...,ny) € Z*|c]* -+ - cf* = 1} of
7 over 7Z for any (c1,...,cx) € KF. For instance, any rational function field K = A(zy,...,z,)

over an algebraic number field A is o-computable; see [Sch04d].
For further details concerning the construction of IT¥-fields we refer to [Kar81, Sch04b|. Re-
fined constructions of II3¥-fields are given in [Sch04d, SchO04f].

Finally, we introduce some additional notation. Let F be a field and f = (f1,..., fn) € F™.
If ¢ € F we define cf = (cf1,...,cfn); if ¢ € F", we define the vector product cf :=
o cifi. With M ft € F™ we denote the usual multiplication of a matrix M € F™*" with
the transposed vector f!; if it is clear from the context, we also write M f. For a function
0:F —TF and g € F we define o(f) := (o(f1),...,0(fn)) €F" and 059 := f1o" (g) + -+

3Note that in [Bro00] unimonomial extensions are defined in a more general context that covers also differ-
ential extensions. Moreover our special case restricts to those extensions with const,[F(¢) = const,F.
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fng € F. Id,, stands for the identity matrix and 0,, stands for the zero-vector of length n.
Let K be a subfield of F. Then we define the subspace Nullspaceg (f) of K" given by

Nullspaceg (f) := {k € K" | fk = 0}.
Moreover, let F[t] be a polynomial ring. We introduce
tPF = {t°f| f € F} and F[t]y := {f € F[t]| deg(f) < b}
for b € Ny; in particular, F[t]_; := {0}. Moreover, we define |f| := degb for f € F[t]*,

|0] :== —1, and | f| := maxi<i<p |b;] for f = (f1,..., fn) € F[t]". [p], gives the [-th coefficient
of p € F[t]. Furthermore, we denote

F(t)I*) == {2 |p,q € F[t] and [p] < [q]},

ie., F(t) = F[t] @ F(t)Y™) where F[t], F(t)/7%) are considered as subspaces of F(t) over K.
Let (F,0) be a difference field and f € F*. Then we define the o-factorial f(;y for a non-
negative integer by Hf;ol o'(f). The proof of the following lemma is left to the reader.
Lemma 2.1. Let (F(t),0) be an unimonomial extension of (F,o) with o(t) = at + 3. Then
for any non-negative integer we have o*(t) = gyt + b for some b € F.

3. THE REDUCTION STRATEGY

Given an unimonomial extension (F(t),o) of (F, o), we try to solve problem PLDE in the
following way. First we compute a common denominator of all the possible solutions in F(¢)
and afterwards we compute the “numerator” of the solutions over this common denominator.
More precisely, we propose a reduction strategy that can be summarized in

Theorem 3.1. Let (F(t),0) be an unimonomial extension of (F, o) with K := const,F. Then
one can solve problem PLDE in (F(t),0) if one can solve problems DenB and DegB, see
Subsection 8.2, and problems PLDE and NS in (F, o), see Subsection. 3.3.

Subsequently, let (F(¢),0) be an unimonomial extension of (IF,o) with o(t) = at + 3, K =
const,F, and let 0 # a = (a1,...,a,,) € F(t)™ and f € F(¢t)".

3.1. Simplifications and shortcuts. In a first step we try to decrease the order of the
parameterized linear difference equation, i.e., we try to decrease m. Moreover, we consider
two shortcuts which allow us to compute a basis in one stroke.

Simplification I. If aja,, = 0, we can reduce the order as follows. If a; # 0, set | := 1,
otherwise take that [ with 0 = a1 = -+ = a;_1 # a;. Similarly, if a,, # 0, set k := m,
otherwise take that k& with ay # ag+1 = -+ = a;, = 0. Then we have

vag=cf & @)™ (g) + -+ M (ap)g = ca"(F)
where 0%~ (a;) # 0 # o*"™(ay,). Therefore define a’ € F(t)¥~*+! and f’ € F(t)" by
a’ = (" "™(ap),...,d* ™(ax)) and f =" T(f), (7)

and find a basis of V(a/, f',F(t)), say {(ci1, ..., Cin, i) h<i<r € K" x F(t). Then we get the
basis of V(a, f, F(t)) with {(Cih ce ey Cin, O’mik(gi))}lgigr g K™ x F(t)
Hence we may suppose that a = (a1, ...,a,) € F(t)™ with aya,, # 0.
Shortcut I. If m = 1, we can produce a basis as follows. Define g := % Then it follows with

g = (g1,...,9r) and the i-th unit vector (0...,1,...,0) € K" that {(0...,1,...,0,9) }1<i<r C
K™ x F(t) is a basis of V(a, f,F(t)).

Therefore we may suppose that a = (ay,...,a,) € F(t)"™ with a1a,, # 0 and m > 1.
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Simplification II. If a¢; = 0 for all 1 < ¢ < m one is able to reduce the problem further to
a first-order linear difference equation problem. Here we use the fact that if (F(t),0) is an
unimonomial extension of (F,o) also (F(t),c™ ') is an unimonomial extension of (F,o™ 1)
and that V(a, f,F(t)) in (F(t),0) is equal to V := V((a1,an), f,F(t)) in (F(t),c™1).

Remark. Suppose that (F(¢),0) is a IIX-field over a o-computable K. Then by [Kar85, Thm:
page 314] (F(t),0™ 1) is a I1X-field over K, i.e., a basis of V can be computed by Theorem 4.3.

Clearing denominators and cancelling common factors. Compute a’ = (af,...,al,) €

F[¢]™ and f’ = (fi,..., fn) € F[t]" such that gedpy (f1,- .., f1, @), .., a;,) =1 and a’ = agq,
f' = fq for some q € F(t)*. Then V(a, f,F(t)) = V(a’, f',F(t)).

Thus we may suppose that the entries in 0 # a € F[t]™, f € F[t]” have no common factors.
Shortcut II. We have V(a, f,K) = Nullspaceg (h) for h := (f1,..., fn,— > i ;). Hence
this special case can be reduced to problem NS.

! NS: Nullspace !

e Given a rational function field F(¢) with subfield K and f € F[t]™.
e Find a basis of Nullspacex(f) = {k € K" | fk = 0} over K.

It is easy to see that one can solve problem NS with linear algebra methods if (IF,o) is an
unimonomial field over a o-computable K; see [Sch02, Lemma 5.3]. Hence we get

Lemma 3.1. Let (F,0) be a IIX-field over a o-computable K. Then one can solve problem NS
and problem PLDE in (K, o) with linear algebra methods.

3.2. Bounds for the solution space. In the second reduction step one tries to solve the
following problem.

! DenB: Denominator Bounding. !

e Given an unimonomial extension (F(t), o) of (F,0), 0 # a € F[t]™ and f € F[¢]™.
e Find a denominator bound of V(a, f,F(t)), i.e., a polynomial d € F[t]* that fulfills

V(c1, ... ¢n,g) € V(a, f,F(t)) : dg € F[t].

Since V(a, f,F(t)) is finite dimensional over K, a denominator bound must exist.
Suppose that we are given such a d and define
’ ai az am
= , ey —). 8
“ = Gty o 2@y ) (®)
Note that {(c;1, .-, Cin, 9i) }1<i<r is a basis of V(a’, f,F[t]) if and only if {(c;1, ..., cin, &) h1<i<r
is a basis of V(a, f,F(t)). Hence, given a denominator bound d of V(a, f,F(t)), we can re-
duce the problem to search for a basis of V(a, f,F(t)) to look for a basis of V(a’, f,F[t]).
By clearing denominators and cancelling common factors in a’ and f, as above, we may also
suppose that a = (a1, ..., ay) € F[t]™ with aja,, # 0, m > 1, and f € F[t]".
The next reduction step consists of bounding the polynomial degrees in V(a, f,F[t]).

! DegB: Degree Bounding !
e Given an unimonomial extension (F(t), o) of (F,0), 0 # a € F[t]™ and f € F[¢]™.
e Find a degree bound b € No U {—1}, i.e.,

Via, f,Fltly) = V(a, f,F[t]) and b > max(-1,|f] - [af). (9)

Again, since V(a, f,F[t]) is finite dimensional over K, a degree bound must exist.

Example 3.1 (Cont. Exp. 2.1). By [Sch04a, Cor. 1] a den. bound of V((1,—1), (h), Q(k)(h))
is 1 and by [Sch04b, Cor. 6] a degree bound of V((1,—1), (h), Q(k)[h]) is 2. Hence we have to
compute a basis of V((1,—1), (h),Q(k)(h)) = V((1,-1), (h),Q(k)[h]2); see Example 3.4.
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Example 3.2 (Cont. Exp. 2.2). Denote F := Q(n)(k)(b). By [Sch04a, Cor. 1] a den. bound
of V((1,—-1), f,F(h)) is 1 and by [Sch04b, Cor. 6] a degree bound of V((1,—1), f,F[h]) is 2.
Finally, in Example 3.5 we will compute a basis of V((1,-1), f,F(h)) = V((1,-1), f,F[h]2).

Example 3.3 (Cont. Exp. 2.3). Denote F := Q(n)(k)(b). By [Sch04a, Alg. 3] we compute
the denominator bound d = (k 4+ 1)k + 1 of V(a, ¢, F(h)). After adapting a and ¢ to

a=(-31+k>*2+k)(-1+k—n),—4(1+k)*B+k)(-1+k—n), (1 —k)(2+k)(3+k)(-1+k — n)),
f=0bB+k)2+k+h2+3k+k)(k—n)1—k+n),
b(3+k)(2+k+h(2+3k+E%) (=1 —n)(1 —k+n),bB+k)(2+k+h(2+3k+ k) (=1 —n)(2+n))
by following (8), the task is to find a non-trivial solution of V(a, f,F[h]). By checking that
there is no g € F with 049 = 0 we can apply [Sch04a, Prop. 2] and obtain the degree bound

1 for V(a, f,F[h]); note that this check can be done again by our algorithms. Given this
information, we compute for V(a, f,F[h]1) the solution By = {(c1,¢2,c3,9)} where ¢; =

An2(1+n)%, c3 = 202(1 +n)(3+ 2n), ¢3 = n%(1 +n)(2 +n) and

_ b(1+k)(2k2(1+n)2(1+hn)+n(1+n)(2+3n(2+n))fk(2+n(8+n(13+6n)+h(1+n)(2+3n(2+n))))) .
- —1+k—n )

see Example 3.6. This gives the solution {(c1, ¢z, cs, m)} for V(e, ¢, F(h)).

The following lemma is immediate and is left to the reader.

Lemma 3.2. Let (F(t),0) be an unimonomial extension of (F, o) with K := const,F, 0 # a €
F[t]™, f € F[t]* and f’ :== M f € F[t]" for some M € K" *". If d € F[t]* is a denominator
bound of V(a, f,F(t)), d is a denominator bound of V(a, f',F(t)). If b is a degree bound of
V(a, f,F[t]), b is a degree bound of V(a, f’,F[t]).

By (9) it follows that f € F[t]jq)45- Hence we can proceed as follows by taking d := b.

3.3. Incremental reduction or polynomial degree reduction. We are interested in the
following problem. Given § € NoU {—1}, 0 # a € F[t|" with [ := |a| and f € F[t]} ,, find
a basis Bs of V(a, f,F[t]s). In order to accomplish this task, we shall develop a reduction
strategy that can be summarized as follows.

Theorem 3.2. Let (F(t),0) be an unimonomial extension of (F,o) with K := const,F, 0 #
a € F[t]™ with | := |a|, and f € F[t]},, for some 6 € NoU {—~1}. Then one can find a basis
of V(a, f,F[t]s) if one can solve problem NS and can solve problem PLDE in (F, o).

This reduction, a generalization of [Kar81, Thm. 12], can be considered as the inner core of
our method. Observe that together with the previous subsections this result will show our
main result stated in Theorem 3.1.

Subsequently, let a, fs := f, [ and ¢ as posed in Theorem 3.2. First we consider the base
case of our reduction and a shortcut.
Base case: § = —1. In this case we have V(a, f,{0}) = Nullspacex (f) x {0}, i.e., we have
to solve problem NS.
Shortcut: a € F™ and § = 0. Then F[t];4; = F and F[t]s = F, i.e., we can compute a basis
of V(a, f,F[t]s) under the assumption that one can solve problem PLDE in (F,o).

If § > 0 we can proceed as follows. First we find the candidates of the leading coefficients
gs € F for the solutions (ci,...,cn,9) € V(a, fs5,F[t]s) with g = Z?:o git', plugging back its
solution space and go on recursively to derive the candidates of the missing coefficients g; € F.

“In this example we cancelled also the units in the denominators.
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Example 3.4 (Cont. Exp. 2.1). By Example 3.1 we have to compute a basis of the solution
space V := V((1,—1), (h),Q(k)[h]2). Since (1,0) € V it remains to look for a g = goh®+g1h+
Jo € Q(k)[h}Q with U(g) —g= h‘7 i'e'u

[o(g2) (h + %Hf +0(g1h + 90)] — [g2h® + g1h + go] = h. (10)

By comparing the leading coefficients in (10) we obtain the constraint o(gs) — g2 = 0, i.e.,
g2 = ¢ € const,Q(k) = Q. Plugging this result back into (10) gives

275((/2111));r 1] (11)

where the highest degree has been reduced by one. Again, by comparing the leading coefficients
in (11) we get the condition o(g1) —g1 =1 — cki“. Solving this problem in (Q(k), o) gives
c¢=0and g1 = k+d with d € Q. Plugging back this solution into (11), we obtain o(go) —go =
-1- dk%kl' This can be solved in (Q(k), o) with g9 = —k and d = 0. Summarizing, g = kt — k
is a solution of o(g9) — g = h and {(0,1),(1,¢9)} is a basis of V((1,—1), (h), Q(k)(h)).

o(g1t +go) — (g1t +g0) =t —¢[

The reduction idea is graphically illustrated in Figure 1 which has to be read as follows.
The problem of finding a basis Bs of V(a, fs,F[t]s) is reduced to (i) searching for the possible
leading coefficients, i.e., to searching for a basis Bs of V(as, f5,F) with (12), and (ii) finding
the polynomials with the remaining coefficients, i.e., finding a basis Bs_1 of V(a, fs—1,F[t]s_1)
with (15). Then (iii), a basis Bs of V(a, fs,F[t]s) can be reconstructed by the two bases Bj;
and B;s_1 of the corresponding subproblems; see (17).

Subsequently, we explain our reduction; for a rigorous proof see [Sch02]. Define

as = (a,...,am) = (Of(sm—n [ai];, aa((so) lan];) and fé = ([f1]6+l 1o [fn]6+l) (12)

where 0 # as € F™ and f5 € F". Then there is the following crucial observation for a solution
ceK"and g = Z?:o git' € F[t]s of V(a, fs,F[t]s): Since t is transcendental over F, it follows
by leading coefficient comparison and Lemma 2.1 that

0495 = cfs,
ie., (c1,...,cn g5) € V(ag, f5,F); see [Sch02, Lemma 6.1]. Therefore, the right linear combi-
nations of a basis of V(as, fs,F) enable one to construct partially the solutions (¢1,...,¢n,9) €

V(a, fs5,F[t]s), namely (ci,...,c,) € K" with the 0-th coefficient gs in g € F[t]s. So, the basic
idea is to find first a basis By of V(as, fg, F).

e CASE I: B; = {}. Then there are no g € F[t]s and 0 # ¢ € K" with 049 = cf5, and thus
c = 0 and g € F[t]s_1 are the only candidates for 04,9 = cf. Hence, take a basis Bs_; of
V(a, fs—1,F[t]s—1) with fs_1 := (0) and extract a basis H C F[t]5_, for the vector space

{h € Flt]s_1 | oah = 0}. (13)

It H = {g1,...,9.} # {}, a basis of V(a, fs,F[t]s) is (0,...,0,9:)1<i<p € K" x F[t]s5_1.
Otherwise, V(a, fs,F[t]s) = {On+1}; for further details see the proof of [Sch02, Cor. 6.1].

e CASE II: B(g ?é {}, say B~5 = {(Cila v 7Cinawi)}1§i§)\- Then define
C = (¢j) € KM" and g:= (w1t5, . ,th‘;) (14)
with g € t°F* and consider
fs—1:=Cfs—0ag. (15)

By construction it follows that fs—1 € F[t]g +;_1- Now we proceed as follows. We try to
determine exactly those i € F[t]s_; and d € K* that fulfill

oa(h+dg)=dCfs & osh=dfs—1.
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For this task, we take a basis Bs_1 of V(a, fs—1,F[t]s_1)-
e CASE 11.i: Bs_1 = {}. Then V(a, f5,F[t]s) = {0 +1}

e CASE IL.ii: Bs_4 7é {}, say Bs_1 = {(dﬂ,..., iXs )}1<Z<M Then define D := (d”) S
K#X and h := (hy,...,h,) € Flt]f_,. It is important to observe that
oa(h + Dg) = DC fs. (16)

Now define x;; € K and p; € F[t.]§ with

K11 ... Kln
( : : )::DC and (p1,...,pu) ;== h+ Dg. (17)
Kul . Kpn
By (16), Bs := {(ki1, - - -, Kin, Pi) }1<i<u spans a subspace of V(a, fs,F[t]s). By linear algebra
arguments it follows that Bs is a basis of V(a, f5,F[t]s) over K; see [Sch02, Thm. 6.2].

Example 3.5 (Cont. Exp. 2.2). By Example 3.2 we have to find a basis B of V(a, f,F[h]2).
Following our incremental reduction strategy, we look for a basis By of V(a, f2, F) with
@ = a and fo = (0,0,0). We get By = {(1,0,0,0),(0,1,0,0), (0,0,1,0),(0,0,0,1)} which
defines Co = Id3 and g2 = (0,0,0,h%) This allows us to compute f; := Cof — o(g2) +

= (f1, f2, fo, %k;jk)) where f = (f1, f2, f3). Now we have to compute a basis B

of V(a, f1,F[t]1). We start again our incremental reduction and compute a basis By of
V(&l, fl,IF) with &,1 = a and
b(1 4+ n)%(3 — 6k +3n) b(1+n)*(2+n)>(6 — 6k + 3n) 7( 2+ 2k )
(1—k+n)? T Q—k+n)PQ2-k+n)? T CA+k)?

In order to accomplish this task, we apply the same reduction technique for the extension b;
see also Theorem 4.3. As result we obtain

_ _ 36k (3—k+2n) (k2 —2(14+n) (2+n)— k2 (5+3n) +k(9+n(11+3n)))

= {{-1, 0, 1, 0, T ) b

3bk3(2—k+2n)
{1, 0 0, =55

{0, 0, 0,0, 1}}

This defines C; by taking the first four columns and defines g1 by taking the last column
multiplied with h. Next we compute fo := C1f1 — 0(g1) + g1 and get

f1 = (b(—6k + 3n),

fo=(—b4k" +6(1 +n)*(2+n)® — 2k°(19 + 15n) + 6k° (1 4+ n)(25 + 16n) + 3k(1 +n)?(2 + n)*(—3+
n(7 +6n)) — 3k*(1 4 n)(2 + n)(31 + n(109 + n(103 + 29n))) — k*(315 4 n(807 + n(651 + 167n)))+
k*(363 + n(1302 + n(1638 + n(868 + 165n))))) /(1 + k)(1 — k +n)*(2 — k +n)®),
_ b(4k* 4+ 6k7(1+n)(345n) + (L+n)*(1+6n) — 2k°(7+9n) — k(1 +n)*(11+23n)) 1

(1+E)(1—k+n)® ' 1+k)‘
Afterwards we have to look for a basis By of V(a, fo,F[h]o). Following our reduction technique
we look for a basis By of V(ao,fo, F) where ap := a and fo := fo. We compute By =

{(n+2,2n+3,0,w),(0,0,0,1)} with

(bk2(1+n)(2k4 —6k3(34+2n)+6(14n)(24+n)? (3+2n)+3k2(21+n(28+9n)) 2k(2+n)(26+n(39+14n))))
(1—k+n)®(2—k+n)>

With Cp = ("2 2730 ) and go = (w, 1) we get® f_1 := Cofo—c(go) +go = (0,0); a basis

of V(a, f—1,{0}) is B_1 = {(1,0,0),(0,1,0)}. This defines D_; = Idy and h_; = (0,0). To

this end, we construct the basis B; for i = 0,1,2 by using (17). Namely, by D_1Cy = Cj

and hg := h_1 + D_199 = go we obtain By = BO. Similarly, by DoC7 = ("3‘1 2”3'3 ”‘52 8)

and hy := hgo + Dog1 = (g,0) with (4) we get By = {(n+ 1,2n+ 3,7+ 2,0,¢),(0,0,0,0,1)}.

w = —

SHere we could apply the shortcut in Subsec. 3.3. In general, if a ¢ F™, we have to proceed as follows.
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Finally, with D1Cqy = ("JOrl 2”0+3 ”32) and hy = hy + D1g2 = (g9,1) we arrive at By =
{(n+1,2n+3,n+2,9),(0,0,0,1)}.

Example 3.6 (Cont. Exp. 2.3). By Example 3.3 we are interested in a non-trivial solution
of V(a, f,F[t]1). First we look for a basis of V(a1, f1,F) with a1 := a and

Fi= (A +E)2+E)B+k)(k—n)1—k+n),
— A+ R)2+E)B+E)(L+n)(1—k+n)), -1 +E)2+k)B+E)(1+n)(2+n))).

We get the linearly independent solutions B; = {(0,2,1, —(%Eﬁ?)), (2n,n,0,b(—k — k2))};
see Example 5.1. This gives
fo = (b(1+k)(3 + k)(2k* + 3n(1 + n) — k(5 + 6n)),
— (b(1+k)B+E)(~1+k—n)(k+ 2k* — 6kn + 3(=1 +n)n))).

Next, we look for a basis of V(ay, fO,F) where a@g := a and fy := fo. We get the solution
Bo = {(n2(1 +n)(2+n),2n(1 +n)? w)} with

b1+ R)K2(1 4 1) + (1 +n)(2+3n(2+n) — k(2 +n(8+n(13+6n))))

B 1—k+n ’
see Example 5.1. This defines® f_; = (0). Next we take B_; = {(1,0)} as basis of

V(a, f_1,{0}). Finally, we get the linearly independent solutions By = By of V(a, fo,F[h]o)
and B; of V(a, f1,F[h]1) as given in Example 3.3.

Definition 3.1. Let (F(¢),0) be an unimonomial extension of (F,o), 0 # a € F[t]™, | := |a|,
and f = fs € F[t]§,, for some 6 € No U {—1}. If we apply the reduction from above step
by step, one obtains an incremental reduction of (a, f,F[t]s) given in Figure 1. We call
(fs,-.., f—1) the incremental problems and ((as, fg), ..., (ao, fo)) the coefficient problems.

In order to prove Theorem 5.2 we need the following results.

Lemma 3.3. Consider (F,o) with K := const,F, 0 # a € F™, f € F" and f' := Mf €
F™ with M € K" *". Let {(ci,...,Cin, i) h<i<a and {(c}y,... ¢, 0) h<i<n be bases of
V(a, f,F) and V(a, f',F), respectively, with \,\' > 0, and define C = (c¢;;) € K", g =
(91,---,9x), C' = (cgj) e KN*"' and ¢’ = (91,---,9%\). Then there is an M’ KN *A with
C'M=M'C and g’ = M'g.

Proof: Suppose that M = (m”) e K" f = (fi,... fn) f" = (fl,---,f,). Then

oag; = Zj Gl = Z? 1 Cij D e Mk Sl = Zk 1szj 1 ¢ijmjk. Hence we can take
A A .
M' = (mj;) € e KN A st g = > j—1m;;9; and Z] 1 Mk = 25—y mi;cjk for all 4, 5. O

Proposition 3.1. Let (F(t),0) be an unimonomial extension of (F,o0), 0 # a € F[t|™, | :=
lal, f,€ F[t]y,, for some d € NgU{—1} and f’ := M f for some M & K™ ", Let (f;)_1<i<s
(resp. (f!)—1<i<s) be the incremental problems and {(&i,fi)}ogig(s (resp. {(a;, ;’)}ogigé) be
the coefficient problems of an incremental reduction of (a, f,F[tls) (resp. of (a, f',F|t]s)).
Then for 0 < 1¢ < & we have a; = a and there are M; € KANi*X such that fi = Mifi’ and
fi = M; f’ Moreover, f—_1 = M_lf’ for some M_y € KN-1%A1,

Proof: By fs = f and f5 = f’ we have f§ = M fs. If 6 = —1, we are done. Otherwise,
suppose 0 > 0 and assume that we have proven the statement for all ¢ with 0 < k < i <
5. Hence ff = Myfy for some My = (m;;) € KN*M. Write fx = (h1,...,hy,) and
fl = (h’l,...,h’%). By (12) it follows @i = aj. Moreover, by fi = (halgrs - T )
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Fo =0 i=n Via, fo,Fltls) F\@) V(as, f5,F)
7 as, Js,
EL& (S Fm: ~5 € IF)‘J

Fo—1 €FIT.1,V(a, f5-1, Flt]s—1) (i)

fo € Ft]}° V(“’f‘f’(%o) F‘\@) V(@o, fo,F)

.~ o€ F™, fo € F*°
fo1 €F[) ) Via, fo1,F[t]-1) (i)

FIGURE 1. Incremental reduction

and (B, = [Z?L ml-jhj]kﬂ = S myj [hyly,, for 1< i < Ny if follows that ff =

My fi.. Note that if V(@x, fx,F) = {Ox,41} then V(a@j, f{,F) = {Ox 11} Hence, if we
enter in CASE I for the incremental reduction of (a, fi,F[t]r) then fr—1 = f,_; = (0), and
therefore f] | = Myg_1f],_; with Mp_; = (1) € K1 Otherwise, we consider CASE II
in the incremental reduction of (a, fi, F[t];) where {(ci1,. .., cir,, wi) }i<i<n,_, With Ag_; >0
and {(cy,.... ¢\, wi) hi<icy, , With Aj_; > 0 are bases of V(ag, fr, F) and V(ag, fi,F),
respectively. If A\;_; = 0, we have f],_; = (0), and we can choose My_1 = (0,...,0) €
KIXAk-1 g ¢, fl_1 = My_1fr—1. Otherwise, suppose A\;_1 > 0. Define C = (¢;5) € KAR—1X Ak

C' = (q;) € KN-1M g = (witk, ..., wy,_,t*) and g’ = (w’ltk,...,w;\/ t¥). Then by
k—1

Lemma 3.3 there is an My_; € KM-1"%-1 with C' M}, = My_1C and g’ = My_1g. Hence
fo1=C'fl.—0ag’ = C'Myfr, — 0ag’ = Mi_1C fr. — 0a(Mi—19) = Mi_1(C fr. — 0a9)

and therefore f,,_; = Mjg_1 fr—1. This finishes the induction step. d
Proposition 3.1 implies that there are invertible M; if M is invertible. In particular, by
choosing M = 1d,, if follows that the incremental and coefficients problems of a reduction of
(a, f,F[t]s) are uniquely determined up to the multiplication with invertible matrices Mj.

3.4. Some remarks. The following approaches can be related to our reduction technique.

e In Karr’s approach [Kar81| reduction techniques have been developed that solve prob-
lem PLDE with 0 # a € F(t)2. More precisely, the solutions g = p + ¢ € F[t] @ F(t)V/™®
in (¢1,...,¢n,9) € V(a, f,F(t)) are computed by deriving first the polynomial part p and
afterwards finding the fractional part ¢q. We have simplified this approach by first looking
for a common denominator of all the possible solutions in F(¢) and afterwards computing the
“numerator” of the solutions over this common denominator. Moreover, we have generalized
Karr’s reduction techniques for the general case 0 # a € F(¢)™.

o As a side remark note that similar reduction techniques have been used in [Sin91, Lemma 3.2|
in order to solve linear differential equations with Liouvillian coefficients.

e In [Bro00, Thm. 1] reduction techniques have been developed for problem PLDE in monomial
extensions. Monomial extensions cover besides unimonomial difference and differential field
extensions for instance difference algebras of the type (F(t), o) where F(t) is a rational function

field and o : F — FF is an epimorphism with o(t) € F[t]*. But there is one restriction in this

approach: one needs a polynomial p € F[t] \ F with % € F[t] in which the solutions are

expanded. By [Kar81, Thm. 4] such an element p exists if ¢ is a II-extension, but does not exit
if ¢ is a X-extension. Hence our approach, which can handle also ¥-extensions (Theorem 3.2),

is an important contribution in the context of multi-summation.
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Restricting to II-extensions, the reduction strategy in [Bro00, Thm. 1] can be simplified to
our strategy, besides the fact that in our approach we compute the leading coefficient first
and then the coefficients of lower degree, and in the approach [Bro00| one starts looking for
the constant coeflicient and then derives the remaining coefficients of higher degree; note that
one could even compute the coefficients simultaneously without imposing any order.

4. A RECURSIVE ALGORITHM FOR UNIMONOMIAL AND II¥-EXTENSIONS

Applying Theorem 3.1 recursively we arrive at Theorem 4.1 for the following type of uni-
monomial extensions.

Definition 4.1. An unimonomial extension (G(¢1) ... (¢.),0) of (G, o) with K := const,G is
called r-solvable (r > 0) if one can solve problem PLDE in (G, o) and for all ¢ and m with
1<i<eand2<m<r+1 the following holds. One can solve problems DenB and DegB in
the unimonomial extension ¢;, and one can solve problem NS in G(t1)... (¢;).

Theorem 4.1. Let (F(t1) ... (te),0) be an unimonomial extension of (F, o) which is r-solvable.
Then there is an algorithm that solves parameterized linear difference equations of order r, i.e.,
solves problem PLDE with m =1+ 1.

More precisely, the resulting algorithm can be stated as follows.

Algorithm 4.1. SolveSolutionSpace(a, f, (G(t1) ... (te),0))

Input: An (m — 1)-solvable unimonomial extension (G(t1)...(t.),0) of (G,o) with K := const,G;

0#a= (a1,...,am) €EG(t1)...(te)™ and f € G(t1) ... (te)™.

Output: A basis of V(a, f,G(t1) ... (t.)).

(1) IF e = 0, compute a basis B of V(a, f,G); RETURN B. FI
Let F:=G(t1) ... (te—1), i-e., (F(t.), o) is an unimonomial extension of (F,o).

(*A Simplification and shortcut: Subsection 3.1%)

(2) Define [, k as in Simplification I. Transform a, f by (7) to a’ = (a},...,d.,) € F(t,)™, f’ € F(t.)"
with aja , # 0, m’ < m; clear denominators and common factors s.t. a’ € F[t.|™, f’ € F[t.|”. FI

(3)IF a’ € Flt]', set (g1,....9,) = £ and RETURN {(0...,1,...,0,6™ ¥(g;))}1<i<n where
(0,...,1,...,0) is the ith unit vector. Pl‘I

(*Bounds for the solution space: Subsection 3.2%)

(4) Compute a denominator bound d € F[t.]* of V(a’, f/,F(t.)).

(5) Set a” = ( dm,“:ll(d) ,,,,, “w’ ) e F(t,)™, f" := f’, and clear denominators and common factors s.t.
a’” € Ft.]™ and f” € Ft.]".

(6) Compute a degree bound b of V(a”, f”,F[t.]).

(*Incremental reduction: Subsection 3.3*)

(7)

(

7) Compute B := IncrementalReduction(a’, f’, (F(t.),0),b), say B = {(Ki1, ..., Kin,Di) Fi<i<pu-
8) IF B = {} THEN RETURN {} ELSE RETURN {(k1, ..., Kin, 0™ *(&))}1<i<u- FI

Algorithm 4.2. IncrementalReduction((a, f,G(t1)... (t:)(t),0),9)

Input: An (m — 1)-solvable unimonomial extension (F(¢),o0) of (G,o) with K := const,G and F :=
G(t1)...(te); 0 € NgU{—1}; 0 # a € F[t]™ with [ := |a|, and f € F[t]}" ;.

Output: A basis of V(a, f,F[t]s) over K.

(1) IF § = —1, RETURN a basis of Nullspaceg (f) x {0} over K. FI

(2) Define 0 # a5 € F™ and fs € F" as in (12).

(3) Compute B := SolveSolutionSpace(ds, fs, (F,0)).

(4) IF B = {} THEN

(5)  Compute B := IncrementalReduction(a, (0), (F(¢),0),d — 1).
Extract a basis, say H = {g1,...,9u}, for (13) from B.
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FI
7) Given B = {(Cih vo oy Cin, ’wi)}lgig)\, take C = (Cij) S K/\X”, g c t(st, f5_1 c F[t]g‘_l by (14), (15)
8) Compute B := IncrementalReduction(a, fs—1, (F(t),0),0 — 1).
9) IF B = {} THEN RETURN {} FI
10) Given B = {(dila .. -adi/\;hi)}lgigua take D := (dlj) S K“X/\,h = (hl, .. .,hu) S F[t]g . Take

-1

~ o~~~

kij € Kfor 1 <i<pand1l<j<n,and p; € F[t]; for 1 <i < p asin (17).
RETURN {(Iiil, ey "iin;pi)}lgigu

By Lemma 3.1 and Theorem 4.1 we get the following result.

Corollary 4.1. Let (K(t1)...(te),0) be an unimonomial field over a o-computable K, and
let ¥ > 0. If for all m,i with 2 < m <r+4+1and 1 < i < e one can solve problem DegB
and DenB in the unimonomial extension t; then (K(t1)...(te), o) is r-solvable, i.e., one can
solve parameterized linear difference equations of order r.

In [Abr89b, Abr89a, Pet92, Abr95, ABP95, PWZ96, Hoe98| various algorithms are developed
that solve problems DegB and DenB for the rational case and its g—analog version. All these
results immediately lead to the following

Theorem 4.2. Let K and K(q) (q transcendental) be o-computable fields. Then the I1X-field
(K(k),o) with o(k) =k + 1 and the II1X-field (K(q)(z), o) with o(z) = qx are r-solvable.

Suppose that (F(¢),0) is a IIX-field over a o-computable K. Then by [Kar81, Bro00] one can
solve problem DenB if ¢ is a Y-extension, and by [Kar81] one can solve problem DegB with
m = 2 if ¢ is a [IX-extension; for proofs and algorithms see [Sch04a, Sch04b|. This shows

Theorem 4.3. Any I1X-field (F, o) over a o-computable constant field K is 1-solvable, i.e.,
one can solve first order parameterized linear difference equations.

Remark 4.1. The following remarks are in place.

e The resulting algorithm from Theorem 4.3 is a simplified version of [Kar81]. These simplifica-
tions were the starting point to derive refined and extended summation algorithms in [Sch04{]
and [KS04]. All these algorithms are implemented in our package Sigma.

e Various special cases of DenB and DegB have been solved in [Sch04a, Sch04b]. Furthermore,
methods have been developed in [Sch01] that find degree bounds for X*-extensions. Hence
only Il-extensions and Y-extensions that are not X*-extensions remain as problematic cases.
e A challenging task is to solve problem DenB and DegB in full generality. This would turn
Algorithm 4.1 to a complete algorithm for I3 -fields. Subsequently, we propose methods that
can search for all solutions of problem PLDEFE by approximating the missing bounds.

5. FINDING ALL SOLUTIONS OF PROBLEM PLDE IN IIX-FIELDS

In this section we modify our algorithms from the previous section such that all solutions
of problem PLDE can be searched in a II¥-field over a o-computable constant field.

We adapt Algorithms 4.1 and 4.2 as follows. Suppose that we are given a IIX-extension
(G(t1)...(te),0) of (G,o) where problem WDenB is solvable for each extension ¢;.

! WDenB: Weak Denominator Bounding. !
e Given a [I¥-extension (F(t),0) of (F, o) with K := const,F; 0 # a € F[t]"™ and f € F[t]".

e Find a weak denominator bound of V(a, f,F(t)), i.e., a polynomial d € F[t]* with the following
properties. If ¢ is a Y-extension, d is a denominator bound of V(a, f,F(t)). Otherwise there is an
x € Ny such that t*d is a denominator bound of V(a, f,F(¢)).

Remark. This is possible if (G, o) itself is a [IX-field over a o-computable K; see Theorem 5.1.
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Then one only needs an z € Ny to complete the denominator bound and an y € Ny to
approximate the degree bound, in order to simulate Algorithm 4.1.

Namely, let (F(t), o) be a IIX-extension of (F,o) with 0 # a’ € F[t]™ and f’ € F[t]".
Approximation of a denominator. Suppose that we have computed a weak denominator
bound d' € F[t]* of V(a’, f/,F(t)). Then we try to take an x € Ny, as in line (4) of Algo-
rithm 5.1, such that d := d't* is a denominator bound of V(a/, f’,F(t)).

Approximation of a degree bound. After computing a” and f” as in line (5), one is
faced with the problem to choose a b that approximates a degree bound of V(a”, f” F[t]).
More precisely, we are interested in the polynomial part of F(¢) = F[t] @ F(¢)™ that has
degree y, i.e., the solution should be in F[t], & F(t)Vree).

Remark. Suppose that we obtained a denominator bound d of V(a, f,F(t)) as described above.
Then {(ci1, ..., Cin, i) }1<i<r is a basis of V(a”, f”,F[t]y) if and only if {(ci1, ..., cin, &) }1<i<r
is a basis of V(a', f', F[t]p—deg(a) © F(t)799)); see [Sch02, Thm. 7.6].

This result motivates us to choose the degree bound b := y + |d| of V(a”, f”,F[t]), i.e., we
try to look for a basis of the solution space V(a’, £/, F[t], ® F(t)/%)).

Another strategy is to look at the number y of the highest possible coefficients that cancel
in ogng =: f € F[t], ie., |a”| + |g| = |f] + y. Following this idea, we should take b :=
y + max(| f”] — Ja”|,0). Combining both aspects gives the approximated degree bound

b=y +max(|f"| — [a”], |d]); (18)
see line (6) of Algorithm 5.1.

In order to apply our approximated reduction recursively, the definition of weak r-solvable
II¥-extensions is introduced in which one can solve problem WDenB for each extension t;.
Moreover we define a bounding matrix that specifies these tuples (z,y) for each extension ¢;.

Definition 5.1. Let (F(¢1)... (t.),0) be a [I¥-extension of (IF, o) with K := const,F.

This extension is called weak r-solvable (r > 0) if one can solve problem PLDE in (F,o) and
for all 4 and m with 1 < i < e and 2 < m < r+ 1 the following holds. One can solve problems
WDenB in the ITX-extension ¢;, and one can solve problem NS in F(t1)... (¢;).

We call (3! %) € N2%¢ a bounding matriz of length e for F(ty)...(t.), if forall 1 <i<e
we have z; = 0 when ¢; is a Y-extension. (If e = 0, the bounding matrix is defined as ().)

Let (F(t),0) be IIX-field over a o-computable K. Then by [Sch04a, Theorem 6.4], see
also [Bro00], there is an algorithm that solves problem WDenB. With Lemma 3.1 we get

Theorem 5.1. A IIX-field over a o-computable constant field is weak r-solvable.

Summarizing, we obtain the following algorithms that can be applied in IIX-fields.

Algorithm 5.1. SolveSolutionSpaceH(a, f, (G(t1) ... (t.),0), B)
Input: A weak (m—1)-solvable ITX-extension (G(t1) ... (t.), o) of (G, o) with K := const,G; a bounding
matrix B of length e for G(¢1) ... (te), 0 # a = (a1,...,am) € G(t1)...(te)™ and f € G(t1)... ()"
Output: A basis of a subspace of V(a, f,G(t1) ... (t.)) over K.
Exactly the same lines as in Algorithm 4.1 but replacing lines (4), (6) and (7) with:
(4) Let B = (41 = 4ot y) and set B := (1 o yo=1); if e = 1, Bg is the empty list ().
Compute a weak denominator bound d’ € F[t.]* of V(a’, f/,F(t)) and approximate a denominator
bound by setting d := d't*.
(6) Approximate a degree bound by setting b := y + max(|f"’| — |a”|, |d|)-
(7) Compute B := IncrementalReductionH(a’, f’, (F(t.),0),b, Bo); say B = {(Ki1,- .., Kin, Di) hi<i<p-

Algorithm 5.2. IncrementalReductionH(a, f, (F(t),0),, B)
Input: A weak (m—1)-solvable IIZ-ext. (F(t), o) of (G, o) with K := const,G and F := G(t1) ... (t.); a
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bounding matrix B of length e+ 1 for I, 6 € NoU{—1}; 0 # a € F[t]™ with [ := |a|, and f € F[t]}" ;.
Output: A basis of a subspace of V(a, f,F[t];) over K.
Exactly the same lines as in Algorithm 4.2 but replacing lines (3), (5) and (8) with:
(3) Compute B := SolveSolutionSpaceH(as, fs, (F,0), B).
(5) Compute B := IncrementalReductionH(a, (0), (F(t),0),0 — 1, B).
Extract a basis, say H = {g1,...,9,}, for {g|(c,g) € V} where V is generated by B.
(8) Compute B := IncrementalReductionH(a, fs5—1, (F(¢),0),d — 1, B).

Following the explanations in Subsection 3.3 it is easy to see that the above algorithms compute
a set B which spans a subspace V of V(a, f,G(¢1)... (t.)). Together with [Sch02, Thm. 6.2]
it follows even that the generators of B are linearly independent, i.e., B is a basis of V.

Example 5.1 (Cont. Exp. 3.6). By choosing the bounding matrix B = (J§9) we com-
pute with SolveSolutionSpaceH(a, f,(Q(n)(k)(b)(h),0),B) a basis B; of a subspace of
V(a, 9, Q(n)(k)(b)(h)). This can be seen as follows.

e Since h is a Y-extension, we apply [Sch04a, Alg. 2] and compute the denominator bound
given in Example 3.3; this gives @ and f. The last column in B defines the approximated
the degree bound 0 + max(|f| — |a|,1) = 1. Hence we arrive at the coefficient problem
V(ay, f1,Q(n)(k)(b)) as given in Example 3.6 which we try to solve as follows.

e We compute the weak denominator bound d’ = 1 for V(aq, f1,Q(n)(k)(b)) by using [Sch04a,
Alg. 2]. The second column in B gives the approximated denominator bound 16° and the ap-
proximated the degree bound 0-+max(| fil— |a1],0) = 1. Afterwards we apply the incremental
reduction for V(a17.f17@( )( )(b)) (a’17.f17@( )( )[ ] )

e This time we have algorithms in hand that solve the corresponding coefficient problems in
(Q(n)(k),0); see Theorem 4.2; therefore the first column in B is not considered.

To this end, we arrive at the linearly independent solutions B; given in Example 3.6. Given
B, we obtain the coefficient problem V(@o, fo, Q(n)(k)(b)) whose solutions By are obtained
as outlined for B;. Finally, we arrive at B; as explained in Example 3.6.

Remark 5.1. Concerning our approximation technique the following remarks are adequate.
e For various applications it suffices to find only one non-trivial solution of problem PLDE.
Hence one can stop looking for an appropriate bounding matrix when such a solution is found.
Typical examples are to compute all sum solutions, see [AP94, HS99, Sch01, Sch04e], or to
apply (creative) telescoping for O-finite summand terms; see Example 2.3.

e As mentioned in Remark 4.1 denominator and degree bound algorithms have been developed
and implemented in Sigma for various special cases; in particular for >*-extensions. If one runs
into these cases, the given algorithms are used instead of the bounding matrix mechanism.

e In our Sigma implementation we provide for simplicity the bounding matrix (%! = %) € Ngxe
where x; = c if ¢; is a Il-extension, and x; = 0 otherwise. It turned out that with the choice
¢ = 1 one computes already a basis of V(a, f,E) in most situations. Otherwise, a small
variation of ¢ gave us immediately the whole solution space; in Example 5.1 we chose ¢ = 0.

To this end, we show that there exists a bounding matrix B such that our algorithms
compute all solutions of problem PLDE.

Theorem 5.2. Let (E,0) with E := G(t1) ... (te) be a weak (m — 1)-solvable 11X -extension of
(G,0). Let 0 # a € E™ and f € E". Then there exists a bounding matriz B of length e for
E such that SolveSolutionSpaceH(a, f, (E, o), B) computes a basis of V(a, f,E).

Proof: The theorem follows by proving the following stronger result. Let

S:={(a1, f1),...,(ak, frx)}
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with 0 # a; € E"™ and f; € E™ for some m;,n; > 1. Then there is a bounding matrix
B of length e for E = G(t1)...(t.) with the following property. For any 1 < ¢ < k and any
matrix M € K> one can compute a basis of V(a;, M f;,F(t.)) by executing the algorithm
SolveSolutionSpaceH(a;, M f;, (F(t.),0), B). Then the theorem follows by considering the
special case M = Id,,, and k = 1.

If e = 0, take () as bounding matrix, and the theorem holds. Otherwise, assume e > 1,
set F:= G(t1)...(te—1) and assume that for the II¥-extension (IF,o) of (G, o) the the more
general statement has been proven. Let S be as above, i.e., 0 # a; € F(t.)" and f; € F(t.)™
We proceed as in Algorithm 5.1. Namely, we adapt (a;, f;), as it is performed in line (2) to
(al, f}). For any 1 < i < k with a/, € F(t.)! we obtain a basis of V(a/, f/,F(t)) in line (3).
Therefore we can restrict S to those af with a/ ¢ F(t.)! and write

S:={(a, f]),...,(ak, f1)}

for some k' < k. If ¥ = 0 we are done. Otherwise suppose k¥’ > 0. Let d, € F[t.]* for
1 <i < k' be the computed weak denominator bound of V(a}, f/,F(t.)). Then take z; € Ny
such that d/tZ¢ is a denominator bound of V(a, f/,F(t.)). Now we set = := max(x1,...,Ty).
Note that if ¢. is a X-extension then x; = 0 for all 1 < 4 < k' and hence 2 = 0. Furthermore
d; := d}t? is a denominator bound of V(a;, f{, F(t.)) for all 1 <1 < k’. Next adapt (a;, f;) for
the denominator bound d; to (ay, fI) as it is performed in line (5). Then take a y such that
bi := y+max(|f!’| —|a], |di|]) is a degree bound of V(a, f!’,F[t.]) for all i with 1 <14 <k’
With those degree bounds b; we consider the incremental reductions of (af’, f/’, F[t.]s,) for all
1 < i < k' with its coefficients problems, say

Si = {(ag, fip), - (ag, i)}

Then by our induction assumption there is a bounding matrix By € N(Z)X(E_l) of length e—1 for
F such that for all 1 <4 </, all M € K"*" and all (o, ¢) € S; one can compute a basis of
V(a, M ¢,F) by executing the algorithm SolveSolutionSpaceH(a, M ¢, (F,0), By). Hence
by Proposition 3.1 one can compute a basis of the vector space V(ay, M f!',F|t.];) for all
1 <i <k and all M € K™*™ by calling IncrementalReductionH(a, M f! (F,0),b;, Bo).
Moreover, by Lemma 3.2 b; is a degree bound of V(a, M f!’,F[t.]) and d; is a denominator
bound of V(a}, M f! F[t.]) for any M € K™*™ . Summarizing, by using the bounding matrix
B := Bg(3) of length e for F(t.) we compute for any 1 < i < k and any matrix M € K"*™
a basis of V(a;, M; f;,F(t.)) as claimed above. This concludes the induction step. O

Note that the proof works for any other choice of (18) as long as b is increased when y is
increased. Moreover we point out that our proof does not provide an algorithm to compute
such a bounding matrix. Hence we have to loop over the possible values of the bounding
matrix. Then after finitely many steps the set of the already derived solutions will stabilize.
Summarizing, we obtain the following result.

Theorem 5.3. Let (F,0) be a weak (m — 1)-solvable 1Y -extension of (G, o). Then there is
a method that allows one to search for all solutions of problem PLDE in a systematic fashion.
In particular, this holds if (F, o) is a IIX-field over a o-computable constant field.
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