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Abstract

Algebraic surfaces – which are frequently used in geometric modeling – are repre-
sented either in implicit or parametric form. Several techniques for parameterizing a
rational algebraic surface as a whole exist. However, in many applications, it suffices
to parameterize a small portion of the surface. This motivates the analysis of local
parametrizations, i.e., parametrizations of a small neighborhood of a given point
P of the surface S. In this paper we introduce several techniques for generating
such parameterizations for nonsingular cubic surfaces. For this class of surfaces, it
is shown that the local parametrization problem can be solved for all points, and
any such surface can be covered completely.
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1 Introduction

Many techniques from geometric modeling and Computer Aided Design are
based on algebraic surfaces. Typically, these surfaces are described as the
zero set of an algebraic equation (implicit representation), or as the image
of map given by rational functions (parametric representation). Since both
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representations are appropriate for solving different types of problems, the
automatic transition between these two representations is very important.

For instance, surface/surface–intersections can be traced efficiently if one of
the surfaces is given in implicit form, and the other in parametric form. An-
other example is the detection of self–intersections of a surface, which becomes
much simpler if both representations (implicit and parametric) are available.
Algebraic methods for enhancing the performance of intersection algorithms
in Computer–Aided Design are currently under investigation in a European
project (Dokken et al., 2001).

Various techniques for generating a rational parametric representation of ra-
tional algebraic surfaces (called parametrization for short) are available, see
Bajaj et al. (1998), Schicho (1998b) and Sederberg and Snively (1987). The
reverse process is called implicitization. The implicitization problem is always
solvable, and there are several different approaches to deal with this problem,
as described by Busé (2001), Buchberger (1988), Corless et al. (2001), Dokken
(2001) and Zheng et al. (2003).

This paper is devoted to general cubic surfaces, which have both an implicit
and a rational parametric representation, except for the cone over an elliptic
planar cubic curve. This property may make them particularly useful in a
number of geometric modeling operations. On the other hand, these surfaces
are sufficiently general, since any real–valued function on R

3 can efficiently
be approximated by a piecewise cubic function which is continuously differ-
entiable, using three–dimensional Clough–Tocher elements, see Hoschek and
Lasser (1993).

In most cases, the existing parametrization methods produce a birational map.
Many methods use the 27 lines on a nonsingular cubic surface for parameter-
izing it (Berry and Patterson, 2001; Sederberg and Snively, 1987). It should
be noted, however, that the computation of the lines is not a simple problem
(Bajaj et al., 1998; Sederberg, 1990).

Several parametrization methods cannot be applied to surfaces with two real
components. In such situations, one either uses two disjoint parametrizations
or a two-to-one parametrization (Sederberg and Snively, 1987). Since the men-
tioned parametrization methods can be used only for certain classes of cubics,
a thorough case analysis is needed.

Algebraic techniques often parameterize the algebraic surface as a whole. In
many applications (such as geometric modeling and related areas), however, it
suffices to have a parametrization defined in some open subset in the param-
eter space that covers the intersection of the surface with a certain region of
interest. In contrast to the classical problem, we will refer to this as the prob-
lem of local parametrization: find a parametrization of a small neighborhood
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of a given point of the surface.

In this paper, we give a method for computing local parameterizations of non–
singular cubic surfaces. The method works without analyzing the system of
lines on the cubic surface. It produces rational maps defined in some neigh-
borhood of the origin in the plane with the property that the image is an open
subset of a given nonsingular cubic surface containing a given point P .

Our method is symbolic-numeric. We are manipulating symbolic objects such
as polynomials, points, lines etc. On the other hand we assume that the co-
efficients of the polynomials and the coordinates of the point P are floating
point numbers, and we compute the final result (parametrization) with float-
ing point coefficients.

Clearly, we have to deal with various complications caused by the fact that
small numerical errors are unavoidable, e.g., when we substitute the point P
into the given equation then we do not get exactly zero. The reason for the
decision to work with floating point numbers comes from the applications:
they usually require a result in floating points, even if the result is not exact.
See section 4.6 for more comments on this issue.

We use three local parametrization techniques for cubic surfaces, which are
called the 2–curve technique, the repeater technique, and the reflection tech-
nique. The first two techniques can be traced back to Manin (1986) and Ab-
hyanker and Bajaj (1987). They are based on the classical theory of rational
curves on cubic surfaces. Such curves may be generated as the intersection of
the surface with the tangent plane at a generic surface point.

We give a complete geometrical analysis of the introduced techniques for non-
singular cubic surfaces, and we show that each of the three algorithms com-
putes a local parametrization for a given cubic surface S is a nonsingular cubic
surface, and P is a surface point. The computed parametrization is improper.
Clearly, properness cannot be expected, since the so–called F5 surface has no
proper parametrization (Schicho, 1998a). No computation of the lines on the
surface is needed.

The remainder of the paper is organized as follows. Section 2 recalls some basic
facts about cubic surfaces and introduces the local parametrization problem.
Section 3 is devoted to a certain property of surface points, which we call the
“t–property”. The three algorithms for local parametrization are described in
Section 4. We analyze each technique and we show that they provide a local
parametrization around a given surface point. Finally, Section 5 concludes the
paper.
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2 Preliminaries

After recalling some properties of cubic surfaces, we introduce the notion of
local parametrizations.

2.1 Cubic surfaces

Throughout this paper we work in the real projective space. We will consider
a nonsingular cubic surface S. It is given by its implicit form F with floating
point coefficients (see also the remarks in Section 4.6). A point of the surface
will be called generic, if it does not belong to one of the lines lying completely
on the surface.

Cubic surfaces are the zero set of a polynomial of degree 3. It is known since
1849, when Cayley and Salmon published their famous theorem, that there are
27 lines lying completely on a nonsingular cubic surface. One may conclude
this theorem from the fact, that the number of lines on a nonsingular cubic
surface is equal to the number of double tangent planes of an arbitrary tangent
cone to the surface (Henderson, 1960).

Schläfli classified the cubic surfaces with respect to the number of real lines on
them. The nonsingular cubic surfaces can be divided into 5 types F1, F2, . . . ,
F5 with respect to the number of real lines (27, 15, 7, 3 and 3, respectively)
and real components (1, 1, 1, 1 and 2, respectively).

Later, Schläfli classified the cubic surfaces (singular and non–singular ones)
into 23 species with respect to the nature of the singularities on the surfaces.
A complete classification with 21 classes over C has been given by Bruce and
Wall (1979).

For future reference we recall that each non–singular cubic surface has at
least one real line, and that surfaces consist of one (F1, . . . , F4) or two (F5)
real components. One of the two components of the F5 surface is convex in
the following sense:

Definition 1 A connected component of a surface is said to be convex, if there
exists an auxiliary plane, such that for any tangent plane of the component,
the component is fully contained in one of the two cells defined by the planes.

The auxiliary plane acts as the plane at infinity.

Figure 1 shows a surface with one real component and all the real lines on
it, and Figure 2 shows a cubic surface of type F5 with two components (both
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Figure 1. F1 surface Figure 2. F5 surface

pictures courtesy of O. Labs).

2.2 Local parametrization

Given the surface S and a point P on it, we are interested in finding a rational
map defined in a certain neighborhood of the origin, which is ’well–behaved’
at P , and covers a certain neighborhood of the given point.

Definition 2 A quadruple of polynomials (π1(u, v), . . . , π4(u, v)) is called a
local parametrization of the surface S at the point P , if the image of the origin
is P ,

(π1(0, 0) : π2(0, 0) : π3(0, 0) : π4(0, 0)) = (P1 : P2 : P3 : P4), (1)

and the image of the rational map defined by the four polynomials is fully
contained the surface. The local parametrization is said to be regular, if the
Jacobian matrix of the mapping

(u, v, ρ) 7→ (ρ π1(u, v), . . . , ρ π4(u, v)) (2)

has full rank (i.e., 3) at (0 : 0 : 1).

The following result is an immediate consequence of the implicit mapping
theorem, see e.g. Kendig (1977).

Proposition 3 For any given regular local parametrization G there exists a
neighborhood of the origin in the parameter space, such that the restriction of
G to this neighborhood is faithful.
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3 Analyzing the system of all tangent planes

We analyze the location of points with respect to the system of all tangent
planes of the given cubic surface.

3.1 The t-property

We introduce the following auxiliary notion.

Definition 4 Let S be a cubic surface and P ∈ S a generic point on the
surface. P is said to have the t–property if P is contained in the tangent plane
at another surface point.

Clearly, this second tangent plane is different from the tangent plane at P .

We recall the definition of contour generator and apparent contour following
Cipolla and Giblin (2000).

Using a perspective projection, we project a given surface S̄ from a given point
P into a plane Π, P 6∈ Π. The point P is called the center of the projection,
while Π acts as the image plane.

We consider the cone of lines through P which are tangent to the surface S̄.
This cone is called the tangent cone to S̄ with apex P . The curve on S̄ where
this cone is tangent to S̄ is called the contour generator, and the curve where
the cone intersects the image plane is the apparent contour.

In the case of a cubic surface S, the contour generator is a space curve of
degree 6, and the apparent contour is a planar quartic curve. In fact, if we
move the point P (i.e., the center of the projection) to the origin (0 : 0 : 0 : 1),
the equation of the surface takes the form

x2
4L(x1, x2, x3) + x4Q(x1, x2, x3) + K(x1, x2, x3) = 0, (3)

where L,Q and K are linear, quadratic and cubic homogeneous polynomials,
respectively. After a short computation one arrives at the the equation

[Q(x1, x2, x3)]
2 − 4L(x1, x2, x3) K(x1, x2, x3) = 0 (4)

of the apparent contour.

First we analyze the singularities which may be present in the apparent con-
tour.

6



Lemma 5 The apparent contour associated with a point P on a non–singular
cubic surface has a singular point if and only if the point P lies on one of the
lines on the surface.

Proof. Let P = (0 : 0 : 0 : 1), and assume that equation of the surface has
the form (3). We may assume that L = x3, i.e., that the tangent plane at P
is x3 = 0.

First case: The apparent contour has a singular point in the tangent plane
at P . Without loss of generality we assume that it is located at (1 : 0 : 0). A
short computation reveals that this implies q2,0,0 = k3,0,0 = 0, where qijk and
kijk are the coefficients of xi

1x
j
2x

k
3 in Q and K, respectively. Consequently, the

line (0 : 0 : s : t) (s, t ∈ R) is fully contained in the surface.

Second case: The apparent contour has a singular point which is not in the
tangent plane at P . Without loss of generality we assume that it is located at
(0 : 0 : 1). A short computation reveals that this implies k0,1,2 = 1

2
q0,0,2q0,1,1,

k1,0,2 = 1
2
q0,0,2q1,0,1 and k0,0,3 = 1

4
q2
0,0,2. The surface is singular, since it has the

singular point (0 : 0 : −2 : q0,0,2).

Finally, it can be shown that any line through P generates a singular point of
the apparent contour. 2

The t–property can now be characterized by using the apparent contour.

Proposition 6 A generic point P of the cubic surface S has the t–property if
and only if the apparent contour of the surface with center P has real points.

Proof: The point P has the t–property, if and only if there exists a point
R ∈ S, R 6= P , such that P ∈ TRS, where TRS is the tangent plane to the
surface S at R. This is equivalent to the fact that the line connecting P and
R is a real line of the tangent cone with apex P . This line corresponds to a
regular point of the apparent contour. Note that the apparent contour cannot
have singularities, since P is assumed to be a generic point (cf. Lemma 5). 2

The following algorithm, which is based on Proposition 6, is needed for com-
puting the local parametrizations, as described in the next sections.

Algorithm 1 (point on contour)

Given: An implicit equation F of a cubic surface S and a point P ∈ S.
Synopsis: Decide t–property for P . If P has t–property find R ∈ S, such that
P ∈ TRS.

(1) We move P to the origin by an orthogonal transformation of the homoge-
neous coordinates, and compute the equation of the apparent contour (4).

(2) Check whether the apparent contour has non–singular real points using
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methods similar to Gonzalez-Vega and Necula (2002).
(a) If the apparent contour does not have non–singular real points, then

the algorithm stops. The point P does not have the t–property.
(b) If the apparent contour has non–singular real points, then P has

t–property. Go to the next step.
(3) Find a nonsingular real point (x̄1 : x̄2 : x̄3) on the apparent contour (cf.

Gonzalez-Vega and Necula, 2002).
(4) Compute the corresponding point R on the contour curve. If P is at

(0 : 0 : 0 : 1), then

R̄ = (x̄1 : x̄2 : x̄3 :
−Q(x̄1, x̄2, x̄3)

2L(x̄1, x̄2, x̄3)
). (5)

(5) Using the inverse of the orthogonal transformation in (1), we transform
R̄ to get R ∈ S.

(step 1) Here we use an orthogonal transformation in order to keep numerical
errors small. The cubic term x3

4 appearing in the transformed equation of
the surface is due to numerical errors and it is set to zero.

(step 4) The point R̄ is both on the line connecting P and (x̄1 : x̄2 : x̄3 : 0)
and on the surface.

3.2 Locating the points with t–property

Given a non–singular cubic surface, we identify the regions of points with and
without t–property on a nonsingular cubic surface.

Lemma 7 The regions on a cubic surface S containing points with and with-
out t–property are bounded by the real lines of S.

Proof: Consider the system apparent contours associated with all points on
the surface. Clearly, the coefficients of these planar curves depend continuously
on the location of the points.

If one moves along a curve from a point P with t-property to a point Q
without it, the apparent contour, which has at least one real component at
P , has first to degenerate to a singular point, before disappearing eventually.
Due to Lemma 5, this takes place exactly when one crosses one of the lines
lying on the surface. 2

Depending on the local behavior of a surface with respect to its tangent plane
at a point, one arrives at different types of surface points. We assume that
we have a non–flat surface point, i.e., Q 6≡ 0 in (3). A point is called elliptic
if the tangent plane at the point intersects the surface in an isolated point,
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hyperbolic if the tangent plane intersects the surface (locally) in a pair of
intersecting curves with two different tangents, and parabolic otherwise.

One may distinguish the three types of points by the Gaussian curvature K. A
point of a surface is called elliptic if K > 0, parabolic if K = 0 and hyperbolic
if K < 0.

The non–convex component of a cubic surface may consist of hyperbolic, el-
liptic, and parabolic points, while the convex component of the F5 surface has
elliptic points only.

Lemma 8 Generic hyperbolic points of a cubic surface have the t–property.

Proof: A short computation reveals that the two asymptotic directions at
generic hyperbolic point (i.e., the tangent directions of the two branches of
the intersection curve with the tangent plane at the point) correspond to real
points of the apparent contour. 2

Theorem 9 A point of a nonsingular cubic surface S has the t–property if
and only if it lies on the non-convex component of the surface.

Proof: Any non-singular cubic surface contains at least 3 real lines. Lines are
always on the non-convex component of S, as the convex component does not
contain any line. These lines define a partition of the component into several
cells.

Any line of a nonsingular cubic surface contains only hyperbolic points, with
the exception of the two parabolic points (Segre (1942)). Consequently, the
neighborhood of any line contains hyperbolic points which have t–property
(Lemma 8). According to Lemma 7, if a point has t–property, then this prop-
erty is shared by all points in the cell.

It remains to be shown that the convex component of the F5 surface does
not contain points with t–property. Consider any point R ∈ S on the convex
component. Assume, that there is a point Q ∈ S such that R ∈ TQS. As
the tangent plane cannot intersect the convex component in a different point
than Q, the point Q cannot lie on the convex component. The line in TQS
connecting Q and R has four intersections with the surface S, since Q has to
be counted twice. This is a contradiction, since any line has at most three real
intersections with a cubic surface. 2
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4 Three techniques for generating local parametrization

We describe three approaches to the solution of the local parametrization
problem. The three techniques are based on the theory of rational curves on
cubic surfaces. For the convenience of the reader, we summarize it in the next
section.

4.1 Rational cubics on cubic surfaces

The intersection of a cubic surface with the tangent plane at a generic surface
point P always gives a rational planar cubic, where the point will be the
singular point of the curve. A rational cubic can be parameterized by a pencil
of lines through the singularity of the curve, which intersect the cubic at
exactly one other point. The coordinates of the latter point give parametric
functions for the cubic curve.

More precisely, if we assume that P = (0 : 0 : 0 : 1) and that the tangent
plane at the origin equals x1 = 0, the equation of the surface takes the form

x2
4x1 + x4Q(x1, x2, x3) + K(x1, x2, x3).

The cubic curve CP cut by the tangent plane at the origin is

Q(0, x2, x3)x4 + K(0, x2, x3).

It has the rational parametrization (0 : t : 1 : −K(0, t, 1)/Q(0, t, 1)). See
Abhyankar and Bajaj (1988) for further details.

4.2 The 2–curve technique

This technique has been described by Manin (1986). Let Q1 and Q2 be two
real points on the cubic surface S as in Figure 3. We denote by CQi

the curves
cut by the tangent plane TQi

S, i = 1, 2, from the surface S. The cubic curves
CQi

have a double point at Qi, therefore they can be parameterized by rational
functions.

Let πi : R → CQi
be the parametrization of the i–th curve. Then π : R

2 → S,
(s, t) 7→ R gives a parametrization of a neighborhood of R, where R is the
third point of the surface obtained by intersecting with the line π1(s), π2(t).

This idea is formalized in the following algorithm.
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Figure 3. The 2–curve technique

Algorithm 2 (2-curve technique)

Given: An implicit equation F of a cubic surface S and a point P ∈ S.
Synopsis: Find 4 polynomials depending on 2 parameters, which define a
local parametrization of S around P .

(1) Check t–property for P
(a) If P has no t–property the algorithm stops.
(b) If P has t–property go to the next step.

(2) Choose random lines through P until one of the lines generates 2 further
intersection points P1, P2 with t-property.

(3) (a) Choose randomly a point Q1 on the contour of P1. (see Algorithm 1)
(b) Choose randomly a point Q2 on the contour of P2 such that the

tangents at P1 and P2 to the curves CQ1
and CQ2

are not coplanar.
(4) Parameterize the cubics CQi

= S ∩ TQi
S, such that the parameter 0

corresponds to Pi, i = 1, 2.
(5) Let the parametrization of CQi

be (xi(ti) : yi(ti) : zi(ti) : wi(ti)). In-
tersect the line (x1(t1) + λx2(t2) : y1(t1) + λy2(t2) : z1(t1) + λz2(t2) :
w1(t1)+λw2(t2)) with S; this leads to a quadratic equation with one root
at 0. Compute the remaining root λ(t1, t2) and substitute it back into
the equation of the line. This gives the parametrization of the surface S
around the point P .

We give a more detailed description for some steps of Algorithm 2.

(step 2) Let denote by (p1 : · · · : p4) the coordinates of P , and let S given
by F . Then a random line lPr through P is given by (p1 + µ · r1 : · · · : p4 +
µ · r4), where r1, . . . , r4 are randomly generated real numbers. To compute
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the intersection of S and lPr we substitute the equation of the line into the
equation of the surface F (lPr ), and compute the solutions for µ.

Since one of the solutions is equal to zero, we divide by µ and obtain a
quadratic equation. Solving it numerically we get the further intersection
points of S and lPr .

(step 5) As the last step of the algorithm, we have to intersect the line C1,xi
+

λC2,xi
with S, and compute the values of λ. After substituting the equation

of the line into F and eliminating the cubic and constant terms with respect
to λ, which are caused by numerical errors, we get B1(t1, t2)λ+B2(t1, t2)λ

2.
Hence, λ = −B1/B2.

We apply the algorithm to an example.

Example 1 Consider the surface S defined by

F = 3x4x
2
1 + 3x4x

2
2 + 3x4x

2
3 − 10x1x2x3 − 3x3

4,

and a point P = (1 : 3 : 27 : 27) on S. Using Algorithm 1 we check that the
point P has t–property. We take a random line through P and intersect it
with the surface S, giving 2 additional points on S:

P1(−5.98687 : −3.36937 : −1.87809 : −5.09084),

P2(−1.07744 : −0.44309 : 1.44983 : 0.83569)

We want to compute two points Q1, Q2, such that Pi is on the tangent plane
TQi

S. For this we have to compute a point on the contour curve of S with
respect to the projection from Pi.

The apparent contour of S with respect to the projection from P1 is:

K1 = (−15.27251x2
1 − 15.27251x2

2 − 15.27251x2
3 + 18.78088x1x2 + 33.69367x1x3

+ 59.86867x2x3)
2 + 40(119.58934x1 − 9.52124x2 − 144.35332x3)x1x2x3.

Qp
1(6.53995 : 5.94157 : −2.97076 : 1) is a point on K1, which corresponds to

the point

Q1(0.55308 : 2.57216 : −4.84885 : −5.09084)

on S. The intersection of S with the tangent plane at Q1 gives a curve C1.
The parametrization of C1 is:





















2.15038t31 − 44.54884t21 + 216.56989t1 − 263.60396

4.48066t31 − 74.41867t21 + 205.08880t1 − 148.34822

−18.79020t21 + 75.48726t1 − 82.69451

−24.43222t21 + 160.93907t1 − 224.14926




















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The apparent contour of S with respect to the projection from P2 is:

K2 = (1.25354x2
1 + 1.25354x2

2 + 1.25354x2
3 − 7.24916x1x2 + 2.21548x1x3

+ 5.38720x2x3)
2 + 40(0.25543x1 + 3.34983x2 + 0.62389x3)x1x2x3.

Similarly, Qp
2(0.77339 : 0.19981 : −0.39962 : 1) is a point on K2, which corre-

sponds to the point

Q2(0.23467 : −0.021736 : 0.32529 : 0.41785)

on S. The parametrization of C2 is





















−1.05829t32 + 3.27466t22 + 0.80973t2 − 5.21309

−0.85279t32 − 0.88123t22 + 4.94149t2 − 2.14387

3.18407t22 − 9.35177t2 + 7.01474

5.18538t22 − 10.67940t2 + 4.04335





















Let the coordinates of the curve C1 be (C1,x1
, C1,x2

, C1,x3
, C1,x4

) and the co-
ordinates of C2 be (C2,x1

, C2,x2
, C2,x3

, C2,x4
). Let the equation of the line con-

necting C1(t1) and C2(t2) be C1,xi
+ λC2,xi

. Substituting this equation into F
we get B1(t1, t2)λ + B2(t1, t2)λ

2. Thus λ = −B1/B2. Substituting it back into
C1,xi

(t1) + λ(t1, t2)C2,xi
(t2) gives a parametrization of a neighborhood of the

point P .

Figure 4 shows several parameterized patches on a given cubic surface.

Now we prove the correctness of Algorithm 2.

Theorem 10 For a nonsingular cubic surface S and generic point P ∈ S,
Algorithm 2 produces a regular local parametrization if and only if P is a
point with t–property.

Proof: If P has t–property, then the whole component containing P has only
points with this property. Thus we can always find lines through P which
intersect the surface S in 2 additional real intersections with the non-convex
component of the surface, i.e., in points with t–property.

Due to the construction of the algorithm, the image of the origin is P and the
image of the map is contained in the surface.

It remains to be shown that – in step 3 – it is always possible to choose a
point Q2 on the contour curve such that the tangent lines to the curves CQ1

and CQ2
are not coplanar.

Let lP1
denote the tangent line at P1 to the curve CQ1

. (lP1
is the intersection

of the tangent planes TQ1
S and TP1

S.) Furthermore denote by ljP2
the tangent
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Figure 4. Implicit surface with parameterized patches

line at P2 to the curve C
Q

j

2

. (It is the intersection of the tangent planes T
Q

j

2

S

and TP2
S.) The line connecting P2 with the intersection of lP1

and TP2
S gives

the tangent direction at P2 which is forbidden. We have to show, that it is
always possible to choose a point Qj

2 on the contour with respect to P2 such
that ljP2

is not the forbidden direction.

We show that it is not possible to have the same tangent direction for all
points on the apparent contour with respect to P2. For each point on the
apparent contour we get a corresponding point on the contour generator Qj

2

and a tangent direction ljP2
. If all points gave the same tangent direction lP2

,
then all tangent planes T

Q
j

2

S would go through this line, i.e. we would get

a pencil of planes. Thus the envelope surface of these tangent planes would
degenerate into a line, which is not possible.

As one can verify by direct computation, if the tangents to the curves CQ1

and CQ2
are not coplanar, then the Jacobian of the parametrization has full

rank at P .

On the other hand, if P does not have the t–property, then Algorithm 2 stops
in step 1. In this situation it is clear, then any line through P would intersect
S in another point which does not have t–property. 2

Remark 1 It can be shown that the parametrization computed by Algo-
rithm 2 has bidegree (6, 6) and total degree 12.

We call a number k ∈ N the index of the parametrization if all points outside

14
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a Zariski closed subset are generated by k complex parameter pairs (Sendra
and Winkler (2001)). A proper parametrization has index 1.

Proposition 11 The index of the parametrization obtained by the 2-curve
technique equals 6.

Idea of the proof: If P is a point on S that can be parameterized using the
points Q1, Q2, we have to compute how many lines through P exist, which
intersects both curves CQ1

, CQ2
. As the planes of the two curves CQ1

, CQ2

intersect in a line, the curves have three intersections on a line. If we project
the two curves CQ1

, CQ2
from P on an arbitrary plane we get nine intersection

points from which three are on a line (Bezout’s theorem). Hence we can reach P
six times using this parametrization method. See Manin (1986) for a complete
proof. 2

Remark 2 Methods for reducing the index of the parametrization of curves
exist Sederberg (1984, 1986). Unfortunately, currently no methods for reducing
the index in the surface case are available.

4.3 The repeater technique

Let Q0 be a real point on S as in Figure 5. The rational cubic CQ0
= TQ0

S∩S
has a rational parameterization πQ0

: R → CQ0
. Let CQ(t) be a curve cut by

the tangent plane at the point Q(t) := πQ0
(t). Then, the parametrization of

the curve CQ(t), πQ(t) : R → CQ(t), s 7→ πQ(t)(s) gives a parametrization of a
neighborhood of the point R := πQ(t)(s).

15



The above technique leads to the following algorithm.

Algorithm 3 (repeater technique)

Given: An implicit equation F of a cubic surface S and a point P ∈ S.
Synopsis: Find 4 polynomials depending on 2 parameters, which give a local
parametrization of S around P .

(1) Check t–property for P
(a) If P has no t–property the algorithm stops.
(b) If P has t–property go to the next step.

(2) Compute the contour generator K with respect to P and choose a point
Q on it with t–property. (see Algorithm 1)
(a) If there is no such point the algorithm stops.
(b) If there is such a point go to the next step.

(3) Compute the contour generator with respect to Q and choose a point Q0

on it such that TQ0
S does not contain the tangent at Q to K.

(4) Compute the intersection of S with tangent plane TQ0
S: CQ0

.
(5) Parameterize CQ0

, such that Q = πQ0
(0).

(6) Parameterize the curve CQ(t), which is the intersection of S with the
tangent plane at the point Q(t) := πQ0

(t), such that P = πQ(0)(0).

Remark 3 It may happen that the contour generator with respect to the
point P is lies on a convex component of S. In this case the algorithm stops
at step 2. In other words the t–property for P is not sufficient for Algorithm 3
to produce a result.

Remark 4 For parameterizing the curve CQ(t) in step 6, we do not use an
orthogonal transformation as in step 5. The reason is that equation of the
tangent plane TQ(t)S depends on the parameter t, and an orthogonal transfor-
mation moving it to the plane x1 = 0 requires square roots. It is possible to
compute a non–orthogonal transformation.

Remark 5 It is not difficult to prove that Algorithm 3 produces always a
local parametrization, if the contour generator with respect to P has points
with t–property. In order to obtain a regular local parametrization we need
an additional condition analogous to the condition in Algorithm 2 that the
tangents at P1, P2 to CQ1

and CQ2
are not coplanar. More precisely, the tangent

plane at TQ0
S must not contain the tangent at Q to the contour generator

with respect to P . We do not give a detailed proof, as the repeater technique
is less useful than the 2–curve technique for our purposes.

Remark 6 The total degree of the parametrization using Algorithm 3 is 12.
The index of the parametrization obtained by the repeater technique is 6, see
Manin (1986).
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4.4 The reflection technique

Algorithm 2 and Algorithm 3 fail if the surface has two components, and the
parameterizable point is on the convex piece. We can detect this case simply
by checking if the point has t–property or not. If it does not have this property,
then it is located on the convex component. In such situations, we can use the
following technique.

Let P be the point on the surface S; see Figure 6. Using Algorithm 2 we
can parameterize some region of S. Connect the point P with any point
from the parameterized region and denote by C the further intersection point
with S. From C reflect the points of the parameterized region. This gives a
parametrization of the neighborhood of the point P .

We summarize this idea in

Algorithm 4 (reflection technique)

Given: An implicit equation F of a cubic surface S and a point P ∈ S.
Synopsis: Find 4 polynomials depending on 2 parameters, which define a
parametrization of a neighborhood of P .

(1) Using Algorithm 2 compute a local parametrization for a point R ∈ S
with t–property, where R 6∈ TP S. Let the parametrization be Pt1,t2 :=
(X(t1, t2) : Y (t1, t2) : Z(t1, t2) : W (t1, t2))

17



(2) Connect P with the point R, and intersect this line with S. Let C(c1 :
c2 : c3 : c4) be the further intersection point.

(3) Intersect the line CPt1,t2 with S. Compute the third point of intersection
in terms of t1, t2.

Remark 7 In step 3 in Algorithm 4 we need to compute the third point of
intersection of S with a line through two points of S. This can be done in the
same way as in step 5 of Algorithm 2.

Example 2 We use the same surface as in Example 1. We want to construct
a local parametrization around P = (1.53295 : 53.20912 : 10.85109 : 1) Using
Algorithm 2 we compute a local parametrization around the point R = (1 :
3 : 27 : 27) as in Example 1. Let denote the computed parametrization by
(X(t1, t2) : Y (t1, t2) : Z(t1, t2) : W (t1, t2)).
The parametric equation of the line connecting P and R is

(u + 1.53295 : 3u + 53.20912 : 27u + 10.85109 : 27u + 1).

Substituting it into the equation of S, and solving the resulting equation for
u we get the further intersection of the line with S:

C(−2.46836 : 41.20518 : −97.18435 : −107.03544).

The line CPt1,t2 connecting C with the points of the parameterized region has
the form

(λX − 2.46836 :, λY + 41.20518 : λZ − 97.18435 : λW − 107.03544).

Substituting it into F we get an equation of the form B1(t1, t2)λ+B2(t1, t2)λ
2.

Computing λ and substituting it back into the equation of CPt1,t2 , we get a
local parametrization around P .

Theorem 12 For a nonsingular cubic surface S and point P ∈ S, Algo-
rithm 4 always gives a regular local parametrization.

Proof: We have to show that it is always possible to find R ∈ S with t–
property, where R 6∈ TP S. The intersection of S and TP S is a degree 3 curve.
The non-convex component of S contains other points, and these points have
the t–property. Let R be one of these points. As it was shown before, Algo-
rithm 2 produces a regular local parametrization around the point R.

As R 6∈ TP S, the line connecting P and R is not tangent at P . Let C be the
third point of intersection of S with the line PR. Then the line PR intersects
the two tangent planes at P and R transversally. This implies that the reflec-
tion of the cubic surface S at C restricts to a local isomorphism of sufficiently
small regions of S around P and R. Therefore the composition of this map
with the regular local parametrization around R is regular. 2
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The reflection technique works for any type of cubic surfaces. It can be applied
arbitrarily, but it is particularly interesting in the situation, when the given
surface has two components, and the parameterizable point lies on the convex
part.

Remark 8 As one may verify by a straightforward computation, the paramet-
rization computed by Algorithm 4 has bidegree (12, 12) and total degree 24.

Proposition 13 The index of the parametrization obtained by the reflection
technique is 6.

Proof: Reflection at a point is birational and does not change the index. As
the index of the 2–curve technique is 6, the index of the reflection technique
is also 6. 2

4.5 Covering a surface by local parameterizations

Theorem 14 Given a nonsingular cubic surface. It can be covered by finite
number of local parameterizations.

Proof: For each point P on the surface we can compute a local parametriza-
tion PP , which covers some open neighborhood UP of P . Obviously S =
∪P∈SUP . Since S is compact there exist a finite subcover. 2

4.6 Exact computation

Can we extend the algorithms in the previous sections to the exact case? This
means we assume that we have given the coefficients of the equation of S and
the coordinates of the point P as exact rational numbers, and we want to
compute a local parametrization which has exact coefficients.

In principle this is possible, but there are several obstructions. In Algorithm 1
we need to construct a point of a plane curve of degree 4. It can not be expected
that there exist a rational solution, even if there exist it might be very hard to
find it. However we can always construct an exact solution in a field extension
of degree 4.

In step 2 of Algorithm 2 we need to solve a univariate equation of degree 2.
This also introduces in general a field extension of degree 2.

In the algorithms we assume that we have a point P ∈ S given. Numerically
it is not a problem to compute such a point. However in the exact situation
it is not trivial, see Manin (1986)
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On the other hand if we compute with floating point numbers errors are un-
avoidable and should be considered, e.g. using tools as interval arithmetic
(Moore, 1966), exact real arithmetic in the sense of (Gianantonio, 1993), or
probabilistic arithmetic. A detailed error analysis is beyond of the scope of
the present paper.

5 Conclusion

Using the techniques described in this paper, the vicinity of a generic point
on a given surface can be covered by a regular rational parametrization. As a
potential advantage, this parametrization is found without analyzing the type
of the cubic surface, i.e., without discussing the system of the 27 lines.

It can be expected that the results extend non–generic regular points and
to singular surfaces. However, the complete analysis of the singular cases is
beyond the scope of this paper, since it requires the study of each surface class
separately (20 cases over C, and many more cases over R). Further results will
be presented in Szilágyi (2005)

As a matter of future research, the numerical stability of the method should be
further explored. As observed in our experiments, the quality of the resulting
parametrization can greatly be enhanced by using some heuristic ideas for op-
timizing the position of the randomly chosen lines, etc. In addition, whenever
a special coordinate system has to be chosen, we use an orthogonal trans-
formation of the homogeneous coordinates, in order to minimize the effect of
rounding errors.

Another challenging problem is the use of exact symbolic computation through-
out the algorithm. While the current implementation had to resort to floating
point numbers, the underlying concepts are purely symbolic and would there-
fore benefit from a symbolic–computation–based implementation.

Finally, since the method produces improper parametrizations of a relatively
high index, systematic techniques for reducing the index of a parametrization
could be of some interest and should be explored.
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