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Abstract

We consider the nonlinear inverse problem of identifying a parameter from know-

ledge of the physical state in an elliptic partial differential equation. For a derivative

free Landweber method, convergence rates are proven under a weak source condi-

tion not involving the standard Fréchet derivative of the nonlinear parameter-to-

output map. This source condition is discussed both for the estimation of state-

and space-dependent parameters in higher dimensions. Finally, numerical results

are presented.

1 Introduction

The problem of identifying a parameter q ∈ Q ⊂ X from knowledge of the physical state
z ∈ Y in an elliptic partial differential equation can be formulated as an operator equation

F (q) = z. (1.1)

Here, the nonlinear parameter-to-output map F maps the parameter q ∈ Q ⊂ X onto the
(unique) solution uq ∈ Y of a possibly nonlinear elliptic state equation. Examples are the
estimation of q in

−∇ · (q(x)∇z) + b(z) = f in Ω ⊂ R
d,

(d = 1, 2 or 3 throughout this paper), or

−∇(q(z)∇z) = f in Ω ⊂ R
d (1.2)

(both with appropriate boundary conditions on z) for given z ∈ Y , i.e., the goal is to find
a parameter q∗ such that uq∗ = z holds. Considering the direct problem, i.e., the partial
differential equation, in its variational formulation, allows to define F as an operator act-
ing between two appropriately chosen Hilbert spaces X and Y .

The inverse problem (1.1) is typically ill-posed, i.e., its solution q∗ (assumed to exist,
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but not necessarily unique) does not depend continuously on the data z. This is espe-
cially crucial if the data z are not known exactly and only a rough approximation zδ

with
‖z − zδ‖ ≤ δ (1.3)

is given, where δ denotes the noise level. Then, a numerically stable and reliable approx-
imation of q∗ can merely be obtained by the use of regularization techniques, see [4], [18],
[2] for a general overview. They can be roughly divided into methods related to Tikhonov
regularization, where the approximate solution is sought as the minimizer of

‖zδ − F (q)‖2 + β‖q − q0‖2, (1.4)

with β > 0, see [5], and iterative methods based on solving the normal equation

F ′(q)∗(zδ − F (q)) = 0

via successive iteration starting from an initial guess q0, see [7], such as the Landweber
method

qδk+1 = qδk + λF ′(qδk)
∗(zδ − F (qδk)) − βk(q

δ
k − q0), (1.5)

see [10], [21]. Here, F ′(·)∗ denotes the Hilbert space adjoint operator to the Fréchet deriva-
tive F ′(·), βk is a given sequence of non-negative parameters and λ is scaling parameter.
The stabilizing effect in (1.4) is due to the penalty term multiplied by a positive regular-
ization parameter β, in iterative methods stability is obtained by stopping the iteration
“at the right time”. According to the popular discrepancy principle the stopping index
k∗(δ) is determined by

‖zδ − F (qδk∗)‖ ≤ τδ < ‖zδ − F (qδk)‖, 0 ≤ k < k∗, (1.6)

for some sufficiently large τ > 0. In any case, regularization always means to balance
between stability and accuracy, for further rules for the choice of the regularization pa-
rameter or the stopping index we refer to [18], [7].

The label regularization method is only awarded to a solution technique for an ill-posed
problem if besides of stability also convergence of the approximations towards q∗ can be
guaranteed as the noise level δ and the regularization parameter, i.e., 1/k∗(δ) in case of an
iterative method, tend to zero. Since the convergence can in general be arbitrarily slow,
see [24], rate estimates are of special interest in the analysis of a regularization method.
Such estimates could so far only be obtained under source-conditions of the form

∃w ∈ Y, q∗ − q0 = λF ′(q∗)
∗w, (1.7)

see [4], [2], [7], i.e., with the Fréchet derivative of the nonlinear operator F playing a
central role. In the context of parameter identification, the meaning of source conditions
has - if at all - only been discussed for one-dimensional linear direct problems (see [4],
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[12], [21]), then usually requiring some additional smoothness and prescribed boundary
behaviour for q∗ − q0.

However, in order to obtain convergence rates, these source conditions are not sufficient.
Beneath smallness assumptions on the source function w, the theories require either range
conditions on the Fréchet derivative of the parameter-to-output map F that are hard to
verify, as in [10], [3], or even the Lipschitz continuity of F ′ with a sufficiently small Lip-
schitz constant, as in [21], [5].

In [13], we introduced a derivative free Landweber method

qδk+1 = qδk + λL(qδk)
∗(zδ − F (qδk)) (1.8)

for solving the parameter identification problem (1.1), where the iteration operator L(·)
is directly coupled to the operator describing the underlying PDE, see Section 3. The
regularizing properties of (1.8) could simply be derived from assumptions already needed
for the unique solvability of the underlying partial differential equation. That way, the
Fréchet differentiability of the parameter-to-output map as well as conditions restricting
its nonlinearity were no longer required. Using an additionally stabilizing term in (1.8),
we continue the convergence analysis in this paper and provide rate estimates under the
weak source condition

∃w ∈ Y, q∗ − q0 = λL(q∗)
∗w, (1.9)

motivated by the work presented in [8] and [16]. Neither for (1.9) nor at any other part of
our theory the Fréchet derivative of F is needed, especially, standard Lipschitz and range
invariance conditions on F ′ become redundant.

The paper is organized as follows. Section 2 contains the abstract formulation of the
underlying partial differential equation based on which the derivative free Landweber
method is defined in Section 3. The convergence rates results are given in Section 4 fol-
lowed by a discussion of the weak source condition in Section 5. Finally, Section 6 contains
numerical results obtained by application of our method for identifying a nonlinearity of
the type q = q(|∇z|).

2 The Direct Problem

Let Y0 be a closed (not necessarily strict) subspace of Y . Both for the Hilbert spaces X
and Y , the inner products and norms are denoted by (·, ·) and ‖ · ‖, their meaning can
always be identified from the context in which they appear. Furthermore, let Y ∗

0 be the
dual space to Y0, equipped with the duality product 〈·, ·〉 and the duality map J : Y ∗

0 → Y0.

Given a parameter q out of an admissible set Q ⊂ X, the direct problem consists in
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solving the abstract elliptic state equation

C(q)u = f in Y ∗
0 , (2.1)

for which we shall assume

Assumption 1. Let Q ⊂ X be a set of admissible parameters. For q ∈ Q the operator

C(q) maps from Y0 into the dual space Y ∗
0 , i.e.

C(q) : Y0 → Y ∗
0 .

Furthermore, there exist positive constants α1 and α2 such that

α1‖v − w‖2 ≤ 〈C(q)v − C(q)w, v − w〉 v, w ∈ Y0 (2.2)

and

〈C(q)v − C(q)w, y〉 ≤ α2‖v − w‖‖y‖ v, w, y ∈ Y (2.3)

hold for all q ∈ Q.

Under Assumption 1, which states the strict monotonicity and the Lipschitz continuity of
C(q), the direct problem (2.1) is uniquely solvable for f ∈ Y ∗

0 and any q ∈ Q, see, e.g., [25].
In order to emphasis the dependence on the parameter, the solution is denoted by uq ∈ Y0.

Already with respect to the parameter identification problem, we also assume

Assumption 2. For all p ∈ X and u ∈ Y0 the operator C(p) satisfies

C(p) = B + A(p) (2.4)

with

A(·)u ∈ L(X, Y ∗
0 ) (2.5)

and a parameter independent, possibly nonlinear operator B acting from Y0 to Y ∗
0 .

Hence, on the one hand the parameter q shall appear linearly in the direct problem (2.1).
On the other hand, we also require A(p)u ∈ Y ∗

0 not only for p ∈ Q - which would already
be given by Assumption 1 - but also for p ∈ X. Note that C(p) : Y0 → Y ∗

0 still only has to
be invertible if p ∈ Q. Furthermore, we emphasize that despite of (2.5), the nonlinearity
of (2.1) may be due to the unknown parameter q itself.

Simple examples of partial differential equations that can be treated in this abstract
framework with Y = H1(Ω) and Y0 = H1

0 (Ω) are (see [13] for the verification of Assump-
tions 1 and 2)
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Example 1.

−∆u+ q(u) = f in Ω,

u = 0 on ∂Ω,

with

〈A(q)u, v〉 =

∫

Ω

q(u)v dx, (2.6)

〈Bu, v〉 =

∫

Ω

∇u∇v dx,

X = H1(I) for an appropriate real interval I, and

Q =
{

q ∈ X | γ ≤ q′ ≤ γ̄
}

,

or

Example 2.

−∇(q(x)∇u) + b(u) = f in Ω,

u = 0 on ∂Ω,

with

〈A(q)u, v〉 =

∫

Ω

q(x)∇u∇v dx,

〈Bu, v〉 =

∫

Ω

b(u)v dx,

X ⊂ L∞(Ω) and

Q =
{

q ∈ X | γ ≤ q ≤ γ̄
}

.

A priori, there are no restrictions on the type of nonlinearity, i.e., functions in (2.1) may
depend on x, and u, ∇u, |∇u|, ... Furthermore, our assumptions are not limited to sec-
ond order pdes, see [15], and the unknown parameter may also appear in higher order
terms of the pde-operator. Besides, neither the Dirichlet-type nor the homogeneity of the
boundary condition are essential for our theory.

In case that Assumption 1 cannot be verified we may replace it by

Assumption 3. Let C(q) be defined as in Assumption 1 and let Ỹ be a Hilbert space with

Y ⊆ Ỹ . There exist positive constants α1, α2 and a linear operator S : Ỹ → Y0 such that

α1‖v − w‖2
Ỹ
≤ 〈C(q)v − C(q)w, S(v − w)〉 v, w ∈ Y0,

and

〈C(q)v − C(q)w, Sy〉 ≤ α2‖v − w‖Ỹ ‖y‖Ỹ v, w, y ∈ Y

for all q ∈ Q.
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instead. Assumption 3 is satisfied by Example (1.2), u|∂Ω = 0, with

〈A(q)u, v〉 =

∫

Ω

q(u)∇u∇v dx,

B = 0, S = −∆−1, Ỹ = L2(Ω), Y = H1(Ω), Y0 = H1
0 (Ω) and

Q =
{

q ∈ H1(I) | γ ≤ q ≤ γ̄
}

,

see [13].

3 The Derivative Free Landweber Method

Assumption 2 allows to construct the linear operator L(q) : X → Y0 for q ∈ Q ⊂ X by

L(q)p = −JA(p)uq (3.1)

and to introduce the derivative free Landweber method

qδk+1 = qδk + λL(qδk)
∗(zδ − F (qδk)) − βk(q

δ
k − q0). (3.2)

The iteration operator (3.1) is in fact motivated by ideas presented in [8] and [16], where
convergence rates for Tikhonov regularization have been proven under a derivative free
source condition by means of certain parameter identification problems. A generaliza-
tion of these results led to the abstract formulation (1.9), finally suggesting the iteration
operator (3.1) used in (1.8). In this paper, the latter is enhanced by the additionally
stabilizing term involving βk for mainly proof techniqual reasons, also used in [21], [1],
[3].

For Example 1, (3.2) translates into

(qδk+1, p) = (qδk, p) − λ

∫

Ω

p(uqδ
k
) · (zδ − uqδ

k
) dx− βk(q

δ
k − q0, p),

for Example 2, one obtains

(qδk+1, p) = (qδk, p) − λ

∫

Ω

p(x)∇uqδ
k
· ∇(zδ − uqδ

k
) dx− βk(q

δ
k − q0, p),

where p ∈ X is a test function. In general, derivatives of the parameter or of known
functions in B with respect to the solution u are no longer required by our method since
F (·)′ is not involved. With numerical differentiation being an ill-posed problem, see [4],
this positively affects the stabilizing properties of (3.2).

As in the case of the classical Landweber iteration (and all the variants discussed in
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the literature), the method (3.2) can only converge if the iteration operator L(·)∗ is (lo-
cally) uniformly bounded and the scaling parameter λ is properly chosen. Hence, we
assume for our analysis (see [13] for a verification for our examples) that

‖L(q)‖ ≤ L̂, q ∈ Bρ(q0) (3.3)

for a ball Bρ(q0) of radius ρ around q0 satisfying

Bρ(q0) ⊂ D(F ).

Assumptions 1 and 2 yield that

α1‖uq − uq̃‖2 ≤ 〈C(q̃)uq − C(q̃)uq̃, uq − uq̃〉
= 〈A(q̃)uq − A(q)uq, uq − uq̃〉
= (L(q)(q − q̃), uq − uq̃)

for q, q̃ in Bρ(q0). Hence, (3.3) can be understood as sufficient condition for the Lipschitz

continuity of the parameter-to-output map F with Lipschitz constant L̂/α1. However,
condition (3.3) does not imply the Fréchet differentiability of F since the operator B is
not involved.

Under Assumption 3 instead of Assumption 1, the linear operator S has to be incor-
porated into (3.2) leading to

qδk+1 = qδk + λL(qδk)
∗S(zδ − F (qδk)) − βk(q

δ
k − q0). (3.4)

For Example (1.2), the iteration (3.4) reads as

(qδk+1, p) = (qδk, p) +

∫

Ω

p(uqδ
k
)∇uqδ

k
∇[∆−1(zδ − uqδ

k
)] dx− βk(q

δ
k − q0, p).

Then, assumption (3.3) turns into

‖S∗L(q)‖ ≤ L̂, q ∈ Bρ(q0).

The convergence properties of the derivative free Landweber method have been analyzed
in [13], [14]. Since convergence of any iterative regularization method for inverse and
ill-posed problems, i.e., qk → q∗ for k → ∞ (in case of exact data) or qδk∗ → q∗ for
δ → 0 may be arbitrarily slow, see [24], convergence rates can only be obtained under
additional assumptions. In all the related theories, the Fréchet differentiability of the
parameter-to-output map F has so far been indispensable.
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4 Convergence Rates Result

In [21], convergence rates for (1.5) were proven based on the classical source condition
(1.7) as well as on the Lipschitz continuity of the Fréchet derivative with a small Lipschitz
constant ĉ. For a certain decay behaviour of the strictly positive regularization parameters
βk, the rate

‖qδk∗(δ) − q∗‖ = O(
√

βk∗) (4.1)

was obtained when stopping the iteration according to the discrepancy principle (1.6). In
addition, the rate

‖qδN0(δ)+1 − q∗‖ = O(
√
δ) (4.2)

could be guaranteed if (1.5) is stopped when

δ

βk
≤ C̃

for a positive constant C̃ is violated for the first time.

In this section, we prove the convergence rates (4.1) and (4.2) for the derivative free
Landweber method (3.2) only using the weak source condition (1.9) and Assumptions
1 and 2 on the direct problem, i.e., F ′(·) is not involved at all. Though we adopt the
approach of [21], all estimates concerning the iteration operator now have to be done
differently.

Theorem 4.1 (Convergence Rates). Let q∗ be a solution of (1.1) in Bρ/2(q0) and

suppose that Assumptions 1, 2 and (3.3) are satisfied. Choose a sequence of decaying

regularization parameters βk such that

β0 ≤ 1/8 (4.3)

and

ak := 2 − βk −
1

βk
+
βk+1

β2
k

≥ η (4.4)

holds for all k ∈ N0, where η is a fixed positive constant.

• A posteriori stopping criterion: Choose the parameters λ and τ such that

(α1 + 2λL̂2 − 7

4
(α1 −

α2

τ
) +

α1

τ 2
) ≤ E < 0 (4.5)

holds for a fixed negative constant E, and let the source condition (1.9) be fulfilled.

If (3.2) is stopped according to (1.6) with τ satisfying (4.5), and if

2‖q∗ − q0‖2 + 2λ
α2

2

α1
‖w‖2 ≤ η

ρ2

4β0
(4.6)

holds, then

‖qδk∗ − q∗‖ = O(
√

βk∗). (4.7)
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• In the case of exact data, i.e., δ = 0, we set τ = ∞ in (4.5) and replace (4.6) by

2‖q∗ − q0‖2 + λ
α2

2

α1
‖w‖2 ≤ η

ρ2

4β0
. (4.8)

Then, we obtain

‖qk − q∗‖ = O(
√

βk)

for all k ∈ N0.

• A priori stopping criterion: Choose λ such that

2λL̂2 − 11

16
α1 ≤ 0 (4.9)

is satisfied and let the source condition (1.9) be fulfilled. If (3.2) is stopped according

to
δ

βk
≤ C̃, 0 ≤ k ≤ N0,

δ

βN0+1
> C̃ (4.10)

for some positive constant C̃, and if

2‖q∗ − q0‖2 +
λ

α1
α2

2(16C̃2 + ‖w‖2) + 2λC̃α2‖w‖ ≤ η
ρ2

4β0
(4.11)

holds, then

‖qδN0+1 − q∗‖ = O(
√
δ). (4.12)

Proof. We first consider the a posteriori strategy. Because of q∗ ∈ Bρ/2(q0) we have

‖q∗ − q0‖2

β0

≤ ρ2

4β0

Arguing by induction based on an idea from [1] also used in [21], we assume that

‖qδk − q∗‖2

βk
≤ ρ2

4β0

holds for an index k < k∗(δ), where k∗(δ) denotes the stopping index according to (1.6).
Then, the iteration step (3.2) is well-defined, yielding

‖qδk+1 − q∗‖2 = (1 − βk)
2‖qδk − q∗‖2 + β2

k‖q∗ − q0‖2 + λ2‖L(qδk)
∗(zδ − uk)‖2

−2βk(1 − βk)(q
δ
k − q∗, q∗ − q0)

−2(1 − βk)λ(zδ − uk, L(qδk)(q∗ − qδk))

+2βkλ(q0 − q∗, L(qδk)
∗(zδ − uk))
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With (1.9) it follows that

‖qδk+1 − q∗‖2 ≤ (1 − βk)
2‖qδk − q∗‖2 + 2β2

k‖q∗ − q0‖2 + 2λ2‖L(qδk)
∗(zδ − uk)‖2

−2βk(1 − βk)λ(L(q∗)(q
δ
k − q∗), w)

−2(1 − βk)λ(zδ − uk, L(qδk)(q∗ − qδk)). (4.13)

The following lines contain the major difference to [21] and are only possible for the special
iteration operator (3.1). Because of (2.5) and

A(q∗)z +Bz = A(qδk)uk + Buk in Y ∗
0 ,

one gets

−(zδ − uk, L(qδk)(q∗ − qδk))

= 〈zδ − uk, A(q∗ − qδk)uk〉
= 〈zδ − uk, A(q∗)uk − A(q∗)z〉 + 〈zδ − uk, Buk − Bz〉
= 〈zδ − uk, C(q∗)uk − C(q∗)z〉
= −〈zδ − uk, C(q∗)z

δ − C(q∗)uk〉 + 〈zδ − uk, C(q∗)z
δ − C(q∗)z〉

≤ −α1‖zδ − uk‖2 + α2‖zδ − uk‖‖zδ − z‖,

where the inequality holds because of (2.2) and (2.3). Furthermore, (2.3) yields

|(L(q∗)(q
δ
k − q∗), w)| = |〈A(qδk − q∗)z, w〉|

= |〈C(qδk)z − C(qδk)uk, w〉|
≤ α2‖z − uk‖‖w‖
≤ α2(‖zδ − uk‖ + δ)‖w‖. (4.14)

As a consequence, (4.13) yields

‖qδk+1 − q∗‖2 ≤ (1 − βk)
2‖qδk − q∗‖2 + 2β2

k‖q∗ − q0‖2 + 2λ2‖L(qδk)
∗(zδ − uk)‖2

+2βk(1 − βk)α2λ‖zδ − uk‖‖w‖ − 2α1(1 − βk)λ‖zδ − uk‖2

+2(1 − βk)α2δλ
(

‖zδ − uk‖ + βk‖w‖
)

. (4.15)

From (1.6) it now follows that

2(1 − βk)α2δ‖zδ − uk‖ ≤ 2α2

τ
(1 − βk)‖zδ − uk‖2,

2(1 − βk)α2δβk‖w‖ ≤ α1

τ 2
‖zδ − uk‖2 + (1 − βk)

2β2
k

α2
2

α1
‖w‖2.

Using these estimates and

2βk(1 − βk)α2‖zδ − uk‖‖w‖ ≤ α1‖zδ − uk‖2 + β2
k(1 − βk)

2α
2
2

α1

‖w‖2
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in (4.15) yields

‖qδk+1 − q∗‖2 ≤ (1 − βk)
2‖qδk − q∗‖2 + 2β2

k‖q∗ − q0‖2

+λ(α1 + 2λL̂2 − 2(α1 −
α2

τ
)(1 − βk) +

α1

τ 2
)‖(zδ − uk)‖2

+2β2
k(1 − βk)

2α
2
2

α1
λ‖w‖2. (4.16)

From (4.5) we obtain

λ(α1 + 2λL̂2 − 2(α1 −
α2

τ
)(1 − βk) +

α1

τ 2
) ≤ λE < 0.

Hence, using the abbreviations

γk :=
‖qδk − q∗‖2

βk
and A := 2‖q∗ − q0‖2 + 2λ

α2
2

α1
‖w‖2,

we obtain from (4.16)

γk+1 ≤ (1 − βk)
2 βk
βk+1

γk +
β2
k

βk+1

A := I(γk). (4.17)

Since (4.6) and (4.4) yield

A ≤ η
ρ2

4β0
≤ ak

ρ2

4β0
,

we obtain

I(
ρ2

4β0

) ≤ ρ2

4β0

(

(1 − βk)
2 βk
βk+1

+
β2
k

βk+1

ak

)

.

Because I(γk) is monotonically increasing as a function of γk and because of the definition
of ak in (4.4), we finally have

γk+1 ≤ I(γk) ≤ I(
ρ2

4β0
) ≤ ρ2

4β0
.

Hence, the induction is complete, which especially shows that qδk+1 ∈ Bρ(q0) and

‖qδk+1 − q∗‖ ≤
√

ρ2

4β0
βk+1

hold for 0 ≤ k < k∗.

In the case of exact data, i.e. δ = 0, it follows from (4.15) that

‖qk+1 − q∗‖2 ≤ (1 − βk)
2‖qk − q∗‖2 + 2β2

k‖q∗ − q0‖2 + 2λ2‖L(qk)
∗(z − uk)‖2

+2βk(1 − βk)α2λ‖z − uk‖‖w‖ − 2(1 − βk)α1λ‖z − uk‖2

≤ (1 − βk)
2‖qk − q∗‖2 + β2

k((2‖q∗ − q0‖2 + (1 − βk)
2λ
α2

2

α1
‖w‖2)

+‖z − uk‖2λ(α1 + 2λL̂2 − 2α1(1 − βk)).
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Using (4.8), the further proof is analogous to that for noisy data.

Next, we turn to the a priori strategy. Starting from (4.15), we again argue by induction.

Let k ≤ N0 and assume that ‖qδk − q∗‖2/βk ≤ ρ2

4β0

. From (4.10) it follows that

2(1 − βk)α2δ‖zδ − uk‖ ≤ 2C̃α2βk(1 − βk)‖zδ − uk‖

≤ 16C̃2α
2
2

α1
β2
k(1 − βk)

2 + α1
‖zδ − uk‖2

16
,

2(1 − βk)α2δβk‖w‖ ≤ 2C̃(1 − βk)β
2
kα2‖w‖.

Using these estimates and

2βk(1 − βk)α2‖zδ − uk‖‖w‖ ≤ α1‖zδ − uk‖2 + β2
k(1 − βk)

2α
2
2

α1
‖w‖2

in (4.15) yields

‖qδk+1 − q∗‖2 ≤ (1 − βk)
2‖qδk − q∗‖2 + 2λC̃(1 − βk)β

2
kα2‖w‖

+β2
k

(

2‖q∗ − q0‖2 + (1 − βk)
2λ
α2

2

α1
(16C̃2 + ‖w‖2)

)

+λ(α1 + 2λL̂2 − 2α1(1 − βk) +
α1

16
)‖zδ − uk‖2.

From (4.9) and (4.3) it follows that

(α1 + 2λL̂2 − 2α1(1 − βk) +
α1

16
) ≤ 0.

Hence, using the abbreviations

γk :=
‖qδk − q∗‖2

βk
and A := 2‖q∗ − q0‖2 + λ

α2
2

α1
(16C̃2 + ‖w‖2) + 2λC̃α2‖w‖,

we can continue as in the proof for the a-posteriori strategy.

Under Assumption 3 instead of Assumption 1, convergence rates for (3.4) corresponding
to Theorem 4.1 can be obtained using the weak source condition

∃w ∈ Ỹ q∗ − q0 = λL(q∗)
∗Sw. (4.18)

This follows easily from

|(L(q∗)(q
δ
k − q∗), Sw)| = |〈A(qδk − q∗)z, Sw〉|

= |〈C(qδk)z − C(qδk)uk, Sw〉|
≤ α2‖z − uk‖Ỹ ‖w‖Ỹ
≤ α2(‖zδ − uk‖Ỹ + δ)‖w‖Ỹ ,
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compare to (4.14).

Though the assumptions of Theorem 4.1, which do not explicitly involve the abstract
parameter-to-output map F or its derivative, may act as a deterrent at the first sight,
they are readable and satisfiable. The proof shows that the rate estimates are mainly de-
termined by the decay of the regularization parameters βk, a technique originating from
[1]. In [21], the choice

βk = (k + l0)
−ψ (4.19)

is suggested with 0 < ψ < 1 and l0 ∈ N taken large enough. This sequence is also suited
for our theory since we can show that (4.4) is satisfied by (4.19) with η = a0. The two
lines at the top in Figure 1 serve as an illustration of the fact that ak based on (4.19) is
monotonically increasing with k and bounded by 2. If η in (4.4) is bounded - it certainly

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1

−0.5

0

0.5

1

1.5

2

2.5

ψ = 0.5

ψ = 0.9 

ψ = 1.05

ψ = 1.1

Figure 1: ak for several choices of ψ in (4.19)

is bounded by a0 < 2 for the choice (4.19) with 0 < ψ < 1 -, the conditions (4.6), (4.8)
or (4.11) represent smallness assumptions on the source function w. Since - for fixed λ -
‖q∗ − q0‖ is bounded by ‖w‖ via (1.9) and (3.3), these conditions are satisfied if ‖w‖ is
sufficiently small. That kind of assumption is inevitable for all available iterative meth-
ods, then often only formulated as “let ‖w‖ be sufficiently small”.

The conditions (4.5) and (4.9) can always be satisfied by choosing λ sufficiently small
and τ sufficiently large. Note that the use of a ”large” τ in the discrepancy principle (1.6)
might cause a too early termination of the iteration. However, this problem is not specific
to our iteration (3.2) but also appears in all the classical iteration methods [10], [21], [22].
Furthermore, our stopping rule no longer requires constants related to F ′(·) but mainly
depends on quantities associated to the direct problem.

In the next section we focus on the remaining assumption in Theorem 4.1, namely the
weak source condition (1.9).
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5 On the Weak Source Condition

As already mentioned, the concept of a weak source condition - the adjective weak relates
to the fact that as opposed to classical source conditions the derivative of F (q∗) is ne-
glected - has been started in [8] and [16]. In [14], those ideas for Tikhonov regularization
have been extended to a convergence rate theorem for (1.4) uniformly applicable to the
class of inverse problems described by (1.1) and (2.1). While - in the context of parameter
identification - the classical source conditions has only been discussed for some linear and
one-dimensional direct problems, see [4], [12], [23], their weak counterparts have also been
studied for higher dimensional and nonlinear direct problems, see [16], [14], [6], [15]. In
the following we give a short summary.

Though Theorem 4.1 holds for both linear and nonlinear direct problems, a uniform
interpretation of the source condition on an abstract level seems to be unrealistic such
that (1.9) has to be investigated as the case arises. Nevertheless the course of action one
should follow for the identification of space dependent parameters is distinguishable from
that for state dependent parameters.

In the first case, (1.9) can be related to the so-called direct approach for solving (1.1):
Given the solution z of the state equation (2.1), one might consider the latter in its classi-
cal formulation as an equation for the unknown parameter q. For instance, the hyperbolic
PDE

−∇q(x) · ∇z − q(x)∆z + b(z) = f in Ω, (5.1)

is obtained that way for Example 2. It has been shown in [14] that the weak source condi-
tion (1.9) for space dependent parameters can be understood as a solvability requirement
on a PDE for the source function w whose principal part is exactly of the same type as
that obtained by the direct approach. In case of Example 2, a sufficient condition for
(1.9) to be satisfied - in addition to smoothness of q∗ - is

∃w ∈ Y −∇w · ∇uq∗ =
1

λ
(I − ∆)(q∗ − q0) in Ω

with the same principal part as in (5.1) (z = uq∗). Hence, for space dependent parameters
the interpretation of the source condition can be linked to the analysis of a pde for the
source funtion w. A full determination of w is not required since (1.9) only requires its
existence.

We emphasize that even in case of exact data the direct approach is not necessarily
applicable for solving the inverse problem. In [15], a parameter identification problem is
studied that leads to a second order PDE for q changing its type between elliptic and
hyperbolic in dependence on z. Due to the lack of a direct numerical routine, the appli-
cation of a regularization technique is the only option. Another example for the failure of
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the direct approach is (1.2) containing a state dependent parameter. There, one obtains

−q(z)∆z − q′(z)|∇z|2 = f in Ω ⊂ R
d,

where it is for higher dimensions not clear how to proceed.

Regarding the identification of a state dependent parameter, an apparent link to the
direct approach is no longer given since the parameter is sought as a function of a one-
dimensional variable while the source function w still depends on the space variable.
Hence, in analyzing the source condition one has to proceed differently. It turned out in
[16], [14] that the the co-area formula, an integral transfomation rule, see [9], is a practical
tool for that purpose. Base of operations is the variational formulation of (1.9), i.e.,

∃w ∈ Y ∀p ∈ X (q∗ − q0, p) = −λ〈A(p)uq∗, w〉, (5.2)

compare to (3.1). Using the co-area formula, the goal is to transform the expression on
the right-hand side in (5.2), which is an integral over the domain Ω ⊂ R

d, see for instance
(2.6), into an integral over the interval I on which the parameter q is defined. Then,
the source condition (1.9) is satisfied if a function w can be found such that this integral
transformation yields equality in (5.2). For Example 1, it is shown in [14] that

w =
1

λ
(q′′∗(uq∗) − q′′0(uq∗) − q∗(uq∗) + q0(uq∗)) ·

1

m(uq∗)
·Duq∗

is an appropriate candidate, where m is the (d− 1)-dimensional Hausdorff-measure of the
level sets of uq∗, i.e.,

m(τ) =

∫

u−1
q∗ {τ}

dHd−1 for τ ∈ I,

and Duq∗ denotes the Jacobian. Thinking of uq∗ as a temperature distribution, whose
level sets then are isotherms in Ω, the essential conditions for (5.2) to eventually hold are
sufficient smoothness of q∗−q0, sufficient knowledge about q∗ on the boundary of the tem-
perature interval given by the data and sufficiently regular dependency of the isotherms
of uq∗ on the temperature level, see [14] for details. Similar results have been obtained in
[16] for Example 1.2 and (4.18).

Our discussion hints that even for the derivative free Landweber method rate estimates
require smoothness assumptions on the unknown parameter in any case. However, we
emphasize that this does not automatically yield the properties on F ′(·) required by the
classical theories for obtaining rates since the operator B from (2.4) is not involved in
(1.9). For instance, if the nonlinear source term b in Example 2 only belongs to H s(I)
with s < 5/2, then the corresponding Nemyckii operator - and hence the full parameter-
to-output map F - is not Lipschitz continuously differentiable, see, e.g., [17].
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Recalling that the Fréchet differentiability of the parameter-to-output map F plays a
central role in the convergence analysis of the classical iteration methods, the advantage
of the approach presented in this paper is that convergence rates can be obtained without
this regularity assumption on F . Theorem 4.1 applies to a wide class of underlying elliptic
direct problems, also allowing nonlinearities that are due to the unknown parameter and /
or other parts of the pde-operator. For a special choice of the parameters βk, convergence
rates for (3.2) can be proven under the weak source condition (1.9).

6 Numerical Results

For our numerical tests we consider the equation

−∇ · (q∗(|∇u|)∇u) = 0 in Ω =
{

(x, y) | x2 + y2 ≤ 1
}

(6.1)

u = x2 on ∂Ω (6.2)

with

q∗(τ) =
1√

1 + τ 2
. (6.3)

It is well known that the solution uq∗ to this nonlinear PDE is the function of minimal
surface among those defined on the unit circle and required to satisfy (6.2). As inverse
minimal surface problem we study the identification of the true parameter (6.3) from
knowledge of uq∗ or its noisy versions assumed to be obtained by measurements. The
exact data z = uq∗ and |∇z|, the argument of (6.3), are shown in Figures 2 and 3.

Figure 2: the exact data z Figure 3: |∇z|, argument of q∗

Choosing the interval I = [0, 1.5], which covers the range of |∇z| and also gives some
scope with respect to perturbed data, we set X = H1(I) as parameter Hilbert space.
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As subset Q of admissible parameters, q∗ among them, we consider those functions that
satisfy

α1(s− t)2 ≤ (q(s)s− q(t)t)(s− t), s, t ≥ 0,

and
|q(s)s− q(t)t| ≤ α2|s− t|, s, t ≥ 0

with common constants α1 and α2. Then, with Y = H1(Ω), Y0 = {u ∈ Y | u|∂Ω = x2},
B = 0 and

〈A(q)u, v〉 =

∫

Ω

q(|∇u|)∇u∇v dx ∀u, v ∈ Y0,

Assumptions 1 and 2 are satisfied, see [20], such that the iteration operator for the deriva-
tive free Landweber method (3.2) is well-defined. The sequence of stabilization parameters
is chosen as

βk =
1

(k + 100)0.99
,

compare to (4.19), the scaling parameter is set as λ = 5.

The identification of nonlinearities that do not depend on the physical state in a straight-
forward way, i.e., q∗ = q∗(u), but are of more complicated types, e.g., q∗ = q∗(|∇u|), is
so far hardly discussed in the literature. In [11], the magnetic reluctivity appearing in
nonlinear Maxwell’s equations is estimated by means of an inexact Newton type method
based on the Fréchet derivative of the associated forward operator F . However, with
non standard terms in the linearized direct problem due to the | · |-expression and the
∇-operator “inside of” q∗, the classical source condition (1.7) has neither theoretically nor
numerically been approached in [11]. Even though such non standard terms do not appear
in the derivative free source condition (1.9) for our inverse minimal surface problem, its
theoretical interpretation is an open challenge. In order to still accompany Theorem 4.1
with numerical tests, we simply choose an element w ∈ Y and numerically construct an
initial guess q0 such that (1.9) is satisfied. The result is displayed in Figure 4.

For performing the derivative free Landweber method (3.2) the FEM-representation

q(τ) =
m

∑

i=1

ciϕi(τ), τ ∈ I

of the iterates qk is based on cubic splines with m = 30. The corresponding solutions
uk of the direct problem are represented via Lagrange-quadratic elements over a regular
mesh of 1289 nodes, all computations were done in MATLAB / FEMLAB.

The first two columns in Table 1 provide absolute and relative information about the
quality of the sequence of data zδ obtained by perturbation of the exact data z. The
latter was generated on a different mesh than used in (3.2) in order to avoid inverse
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Figure 4: initial guess q0 and so-
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Figure 5: ‖qδk − q∗‖ vs. k

δ = ‖zδ − z‖ ‖zδ−z‖
‖z‖

N0 ‖zδ − F (qδN0
)‖ ‖qδN0

− q∗‖
0.0876 0.0555 2 0.0891 0.08379
0.0435 0.0276 107 0.0435 0.06768
0.0347 0.0220 159 0.0347 0.03666
0.0246 0.0156 267 0.0246 0.03283
0.0172 0.0109 426 0.0172 0.03939
0.0144 0.0091 532 0.0144 0.02350

Table 1: results

crimes. Note that the data error is measured with respect to Y = H1(Ω). For instance,
5.55% error in H1(Ω) correspond to only 0.052% error in L2(Ω), in other words the per-
turbed data zδ can optically hardly be distinguished from the exact data shown Figure
2. Nevertheless, the data pertubation must not be neglected. Figure 5 shows the typical
course of the iteration by means of three examples. Initially, the error in the parameter
decreases but then starts to increase due to the amplification of the data error. Only
if the iteration is stopped in dependence on the noise level, a reliable approximation of
q∗ can be expected. Table 1 contains the stopping index N0 obtained by application of
the a-priori stopping rule (4.10) with C̃ = 6.5 as well as the corresponding errors in the
output and the parameter. The latter numerically indicates the convergence rate O(

√
δ)

given in Theorem 4.1, see also Figure 6. Finally, Figure 7 shows the regularized solutions
qδN0(δ) according to the stopping marks given in Figure 5. We recall that as opposed to

classical regluarization methods, (3.2) does not require derivatives of the parameter qk
with respect to its argument, also contributing to a reduction of numerical costs.

A goal for future research is to extend the derivative free iteration technique to param-
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Figure 7: q∗ and qδN0(δ)

eter identification problems, where only partial information about the physical state is
available, e.g., observations in subdomains of Ω or boundary measurements. We do not
know a single example where the standard assumptions of the classical theory based on
F ′ could be verified for such problems. Another idea is to embed (3.2) into a Hilbert scale
setting in order to accelerate the method, see [19] for such an approach again based on
F ′.
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