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Abstract. This paper presents the main features of Theorema’s user
interface. We briefly describe how mathematical knowledge can be ex-
pressed in the Theorema Formal Text Language and how the knowledge
can be used for proving, solving, computing. We illustrate how the sys-
tem presents the proofs it generated and how the user can influence the
proof search process interactively.

1 Introduction

Mathematical Knowledge Management (MKM) is a new research area at the
intersection of mathematics and computer science. The “Call for Papers” of the
First International Workshop on Mathematical Knowledge Management (held
in September 2001 at Research Institute for Symbolic Computation, University
of Linz, Austria) recognized the need for efficient, new techniques – based on
sophisticated formal mathematics and software technology – for taking fruit
of the enormous knowledge available in current mathematical sources and for
organizing mathematical knowledge in a new way [11].

MKM aims both at the (partial or full) computer-support of all phases of the
mathematical theory exploration cycle and at the structured storage of concepts,
propositions, problems, and algorithms, such that they can be easily accessed,
used and applied at a later time. In this sense, MKM is a logical activity: All
formulae (axioms, definitions, etc.) must be available in the coherent frame of a
logical system, e.g. some version of predicate logic. The main operation of MKM
on these formulae is essentially formal reasoning (in particular formal proving),
i.e. reasoning guided by explicit algorithmic rules [24]. This logic aspect is, in
our opinion, fundamental to the future of MKM.

In [7] three main problems of the mathematical knowledge management area
are identified, namely: retrieving mathematical knowledge, building up mathe-
matical knowledge bases, and educating mathematicians to work efficiently with
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and improve the existing knowledge bases. The paper also describes how each of
these activities can be realized within Theorema.

Theorema is a software system that emphasizes on the logical aspect of MKM.
The system aims at providing, in the frame of one uniform logic, computer
support to all aspects of the mathematical exploration cycle: formalizing and
introducing new notions, conjecturing and proving facts about the introduced
notions, extracting algorithms from proved theorems, using these algorithms for
computing and solving, writing (interactive) lecture notes, publishing. Some of
the early papers on the design of the system are [2,3] and [4,5]. A progress report
on Theorema is given in [8]; more recent papers on the current status of the
system can be found on the web-site of the project (www.theorema.org). In the
following, we describe the various interface features of the Theorema system,
namely: proof presentation, formal language and syntax, interactive proving,
syntactical manipulation of large groups of formulae. The interface features are
the results of the common development efforts of the Theorema group members.
The work has been done under the leadership of Bruno Buchberger.

2 Formal Language

Theorema is implemented on top of the computer algebra system Mathematica
[27]. The document-centered front-end of Mathematica is suitable for writing
mathematical documents. In one document, called notebook, text can be mixed
with mathematical formulae and graphics. Additionally, the front-end of Math-
ematica can be configured through the Mathematica programming language.
Using this feature, the Theorema system implements a two-dimensional syntax
of mathematical formulae and a formal text language for defining new notions,
properties of the notions, algorithms, for building up mathematical theories and
using them for proving. The syntax of formulae is similar with the syntax used
by mathematicians. For example, below is a formula in Theorema syntax:

∀f,B (is-bounded[f, B] ⇐⇒ ∀x |f [x]| ≤ B).

In order to describe mathematical knowledge, besides than writing down formu-
lae in predicate logic, we need to be able to combine the formulae with auxil-
iary texts (labels, keywords – “Definition”, “Proposition”, etc.) and we need to
be able to compose them hierarchically. For this reason we have implemented
a “Theorema Formal Text Language” [8]. In this language, the formula given
above can be introduced as:

Definition[ “Is bounded”, any[ f, B],
is-bounded[ f, B] ⇐⇒ ∀x|f [x]| ≤ B “ ≤ bound”].

The Formal Text Language contains three categories of elements: Environments,
for organizing knowledge in propositions, definitions, etc.; Built-ins, for assigning



certain interpretations to certain symbols; and Properties, for asserting proper-
ties of operators. Built-ins and properties give us the possibility to fully control
the interpretation of symbols. For example, we could chose that ‘⊕’ is interpreted
to the Mathematica ‘+’ (i.e. ‘Plus’):

Built-in[ “My + ”,

⊕ −→ Plus].

Properties is used in a similar way.
In order to be able to process the knowledge expressed by the Theorema

Formal Text Language we provide a “Theorema Command Language”. Using
this language we can prove propositions, we can compute values (or simplify
formulae), or we can solve problems. For example, having the knowledge of the
‘gcd’ introduced as:

Definition[ “Greatest Common Divisor”, any[ m, n],
gcd[ m, n] = maxt[ t|m ∧ t|n]],

we may want to prove that gcd[m, n] = gcd[ m− n, n]:

Prove[ Proposition[“Euclid”, any[ m, n], gcd[ m, n] = gcd[ m− n, n]],
using −→ Definition[“Greatest Common Divisor”]],

or we may want to compute the gcd of 12 and 18:

Compute[ gcd[12, 18], using −→ Definition[“Greatest Common Divisor”],
built-in −→ Built-in[“Numbers”]].

For a more detailed description of the Theorema Formal Text Language and
Theorema Command Language see, for example, [8].

3 Label Management

In the Theorema system great emphasis is put on “systematic theory explo-
ration”, rather than “isolated theorem proving”. Systematic mathematical the-
ory exploration is explained by the concept of “exploration situations”, concept
introduced in [6]. The paper also introduces the parameters that characterize
an exploration situation, namely: “known notions”, “known facts about known
notions”, a “new notion”, “axioms that relate the new notion with the known
notions”, and finally, “a class of goal propositions that completely explore the
relation of the new notion with the known notions”. Various approaches to sys-
tematic, computer-supported mathematical theory exploration are presented in
[6].



Systematic theory exploration usually involves a large number of formulae
(see, for example, the algorithm synthesis [9]). Theorema provides tools for the
assignment of labels to formulae and collections of formulae so that blocks of
mathematical knowledge stored into notebooks can be identified and combined
in various ways without going into the “semantics” of the formulae. Concisely,
the tools allow to reference specific parts of mathematical formulae collections.
The referenced parts can be quickly composed into a new notebook or given as
input to the formal reasoners of Theorema [24].

Fig. 1. A Theorema notebook.

For example, Figure 1 shows a notebook that collects formulae expressing knowl-
edge about the length of tuples. The formulae in this notebook are part of the
systematic theory exploration about tuples. We call such notebooks Theorema
notebooks. Individual and groups of formulae have label attached: the groups of
formulae with the header “Propositions” have the label “LenTpl.3”, while the



individual formulae in the group have the labels “LenTpl.3.1”, “LenTpl.3.2”,
etc. The labels are automatically generated at user request. The notebook in
Figure 1 also uses (parts of) other Theorema notebooks, namely parts of the
Theorema notebook collecting formulae about natural numbers (“NN:Basic.1”,
“NN:Basic.2”, “NN:Basic.3”) and the notebook that contains basic notions about
tuples (“BN:Tuples”).

Knowledge stored in such Theorema notebooks can be used for reasoning. A
usage example is:

Prove[“LenTpl.3.1”, using −→ 〈“BN : Tuples”, “NN : Basic”〉,
by −→ TupleEqIndProver].

Users can also make temporary assignments of labels to specified collections of
formulae. For example:

Theory[“Tuples and Natural Numbers”, 〈“BN : Tuples”, “NN : Basic.1”〉]

and the above ‘Prove’ command can also be formulated as:

Prove[“LenTpl.3.1”, by −→ TupleEqIndProver,
using −→ “Tuples and Natural Numbers”].

4 Proof Presentation

The Theorema system contains various provers for general and specific domains:
a propositional and a predicate logic prover [8], the Prove–Solve–Compute (PCS)
prover for predicate logic with equality [25], induction provers over natural num-
bers and over lists [10], a set–theory prover [26], a Gröbner Bases based prover
for boolean combinations of polynomial equalities and inequalities, etc.

The provers operate on “proof-situations” consisting of a set of assumptions
and a goal (sequents with only one goal). Each prover is composed of a set of
inference rules, each rule is typically expressed as a rewrite rule which trans-
forms a proof-situation into one or more proof-situations. The proof-object is a
tree representation of the development of the proof: each node corresponds to a
proof-situation, while its successors in the tree correspond to the inferred proof-
situations. The root of the proof-object corresponds to the initial proof - situa-
tion, while the leaves correspond to “proved” (successfully solved), “disproved”,
“failed” or “pending” (not yet resolved) proof-situations.

The proof-object is used as an internal representation of the proof. The ex-
ternal representation of the proof is displayed to the user in a separate notebook
called “proof-notebook”. The proof-notebook is produced by a post-processing
of the proof-object, which generates a structured cell representation in a Math-



ematica notebook. On user request, the post-processing can invoke proof sim-
plification procedures which remove superfluous branches and steps from the
proof-object. The proof-notebook in the figure below presents part of the proof
of a conjecture about equivalence relations.

The nested structure of the proof object is reflected by nested Mathematica
cell brackets so that the user can open and close entire sub-trees of the proof ob-
ject depending on which parts and sub-parts of the proof she wants to inspect.
For example, in the figure above, the branch containing the proof of formula
(18.1) is collapsed. Each inference step is typically represented as a phrase in
natural language accompanied by some formulae and referring to some other
formulae by their labels. Various color codes distinguish the (temporary) proof
goals from formulae in the (temporary) knowledge base. Links to labelled for-
mulae are realized as hyperlinks that display the formula referenced in a small
auxiliary window. (See Figure 2.)

Fig. 2. A proof-notebook.



Using hyperlinks, a reader of Theorema proofs can avoid back and forth jumps
in the proof, in order to understand the validity of a specific step. A “magnify-
ing glass” tool also helps the user understand the validity of a certain step by
composing a special window (focus window) which presents the user the relevant
information for the proof step in question (formulae used, formulae generated,
substitutions used, etc., see Figure 3 below).

Fig. 3. A Focus Window.

5 Interactive Proving

Normally, a proof call will try to solve/prove the goal by applying the inferences
and the heuristics implemented in the prover (or the combination of provers)
which is used. One of the advantages of natural-style proving is that the user can
easily understand and follow both the inference rules which are available in the
prover, as well as the proof situation at any given moment. We capitalize on this
advantage and, in order to improve the effectiveness of the Theorema provers,
we implemented a general mechanism which allows a flexible interaction between
the user and the system during the development of the proof. Using this, one
can choose between fully automatic and interactive proof-development, one can
easily navigate through the proof-object, and one can provide various hints (e.g.
suitable instantiations) to the prover.

In the default proof-development style, the Theorema provers apply the in-
ference rules automatically and repeatedly, until either a proof is obtained or no



inferences can be applied anymore. The users only see the final output of this
process, presented to them in the proof-notebook. In contrast, when interactively
searching for proofs, the system is compelled to stop after each application of
an inference rule, to present the produced proof sofar, and to wait for a decision
from the side of user. While the system waits for a user decision to continue, in
the interactive mode, the user can perform one or more of the following actions:

– select a proof situation in the proof;
– inspect a selected proof situation;
– add or remove assumptions in a selected proof situation;
– suggest instances for universally or existentially bound variables;
– add or remove branches in the proof;
– choose one among different provers to continue the proof, eventually change

its options;
– make the system expand the proof by one inference rule application;
– ask the system to finish the proof without anymore user interventions;
– put an end to the proving session and exit the environment.

When proving interactively, the system displays the proof in a special proof-
notebook and shows, additionally, several Mathematica style menu-palettes. The
special proof-notebook displays the current (possibly unfinished) proof. The
notebook also gives users the possibility to navigate inside the proof-tree in or-
der to continue the proof on a certain branch, introduce new branches, select a
node in the proof-tree, etc., actions triggered with the help of the menu-palettes.
The menu-palettes contain various interactive commands and settings, each be-
ing represented by a button which triggers the respective action. Most of the
commands require arguments (e.g. ‘Start’ needs a ‘Prove’ command, ‘New Goal’
needs a formula). The arguments are extracted from previous selections (i.e.
clicks on cell brackets) in the notebooks used when proving interactively.

The interactive proving style is triggered by the evaluation of a
‘StartInteractive[ ]’ call. This command will open the “Theorema Interactive”
menu-palette from which all the other palettes can be invoked. The proving
process is started by a click on the ‘Start’ button of the “Theorema Interactive”
palette, after the user has selected a cell in a notebook that contains a ‘Prove’
call. As a small example, in Figure 4 we can see three notebook windows and
several menu-palettes. In the “InteractiveExample.nb” window we can see the
part of the notebook that contains the command starting the interactive proving
environment and a ‘Prove’ call. From the “Theorema Interactive” menu-palette
we have opened the “Proof Operations” palette and the “Debug” palette by clicks
on the ‘Advanced Op’ and ‘Debug’ buttons, respectively. The unfinished proof
shown in “The Proof Window” proof-notebook, is the result of executing the
‘Start’ command for the mentioned ‘Prove’ call, then several ‘Next’ commands,
and a ‘∀’ Inst’ command. The ‘∀ Inst’ command instantiated ε with ε0 in formula
‘(4)’ resulting in formula with the label ‘(Added 1)’. The instance ε0 is provided
by the user via a dialog window like the one presented in Figure 5.

The window in the lower left part of Figure 4, “Debug Messages”, is used for
displaying information about the content of proof-situations. The information



Fig. 4. A screen shot of the interactive environment.

Fig. 5. Variable instantiation.



can be displayed in both user-friendly manner (as in Figure 4) or in Theorema
internal form.

For a detailed description of interactive proving with Theorema see [23].

6 Final Words

We have briefly described the user interface features of the Theorema system.
The work presented is the outcome of the common efforts of the members of the
Theorema group over the last years under the leadership of Bruno Buchberger.
The authoress’ contribution is mainly in developing and improving the features
described in sections 3, 4 and 5. We have underlined the points the system puts
an emphasis on: a formal text language, “systematic theory exploration” over
“isolated theorem proving”, automated proof generation over proof checking,
human-readable proof presentation.

Presenting proofs in natural language is a subject of interest in other systems,
too. For example, in [12] the author describes a procedure that annotates CoQ
proofs and then generates an english text of the proof. A verbalization of Nuprl
proofs, described in [16], uses a language generator that has two components: a
content planner which selects the information that should be included in the text,
and a linguistic component that maps concepts to words and builds sentences. In
PROVERB [17], the proof is first transformed to an adequate level of abstraction
in which certain sequences of low-level proof steps are replaced by one higher
level proof step. The abstracted proof is, then, processed and a natural language
presentation is generated. PROVERB is embedded in the environment of the
interactive prover Omega [1].

It seems that label management in the sense specified in Section 2 is not an
explicit goal in the current (MKM) systems. Within most of the proving systems,
the users are typing their documents in an Emacs-based editor or something
similar (see for example, Mizar [22], HOL [15], CoQ [13]). Where translators are
provided, the files can be stored, later, in LATEX, MathML or OpenMath for-
mats. In this form, documents produced by proving assistants can be included
in libraries of digital mathematics like HELM [14] and MBase [20]. Systems that
concentrate on representing and publishing mathematics (on the web) make
use of document translators and formulae editing tools that translate formulae
and documents to different formats. For example, the JOME OpenMath Ed-
itor [19] creates and manipulates OpenMath objects, and within ActiveMath
[21], jEditOQMath is a package of tools for editing and managing documents in
OMDoc format [18].

Theorema is a system that integrates different general and special provers,
solvers and simplifiers into one coherent system. At the time being, the Theorema
system does not provide an interactive mode for computing and solving. Proving
interactively gives users means guide the proof generation, as described in Section
5, but does not allow them to chose among inference rules to be applied, as most
of the interactive systems do. This is a subject to further developments of the
system.



References

1. C. Benzmüller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber,
M. Kohlhase, K. Konrad, A. Meier, E. Melis, W. Schaarschmidt, J. Siekmann,
V. Sorge. OMEGA: Towards a Mathematical Assistant. In W. McCune, editor,
Automated Deduction - CADE 14, volume 1249 of Lecture Notes in Artificial In-
telligence, Springer-Verlag, July 1997. Townsville, North Queensland, Australia.

2. B. Buchberger. Proving, Solving, Computing. In T.Ida, Y,Guo, editors, Proceed-
ings of Multiparadigm Logic Programming Conference, Bonn, Germany, Springer
Vienna – New York. September, 6 1996. Invited talk.

3. B. Buchberger. Using Mathematica for Doing Simple Mathematical Proofs. In 4th
International Mathematica User’s Conference. Tokyo, Wolfram Media Publishing,
November 1996.

4. B. Buchberger. Mathematica: A System for Doing Mathematics by Computer?. In
A. Miola, M. Temperini, editors, Advances in the Design of Symbolic Computation
Systems, Springer Vienna – New York, 1997, pp. 2–20. Invited talk at the DISCO’93
Conference, Gmunden, Austria.

5. B. Buchberger. Theorema: Theorem Proving for the Masses Using Mathematica.
Invited talk at the Worldwide Mathematica Conference, Chicago, USA, June 1998.

6. B. Buchberger. Theory Exploration with Theorema. Analele Universitatii Din
Timisoara, Ser. Matematica-Informatica, Vol. XXXVIII, Fasc.2, 2000, (Proceed-
ings of SYNASC 2000, 2nd International Workshop on Symbolic and Numeric
Algorithms in Scientific Computing, Oct. 4–6, 2000, Timisoara, Romania, T. Je-
belean, V. Negru, A. Popovici eds.), pp. 9–32.

7. B. Buchberger. Mathematical Knowledge Management Using Theorema. In B.
Buchberger, O. Caprotti, editors, Proceedings of the First International Workshop
on Mathematical Knowledge Management: MKM’2001 RISC, A–4232 Schloss Ha-
genberg, September 24–26, 2001. ISBN 3–902276–01–0.
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