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Abstract. We describe practical experiments of program verification in
the frame of the Theorema system (www.theorema.org). This includes
both functional programs (using fixpoint theory), as well as imperative
programs (using Hoare logic). By comparing different approaches we are
trying to find general schemes which are useful for practical work. The
Theorema system offers facilities for working with higher-order predicate
logic formulae (including various general and domain-oriented provers)
and also for defining and testing algorithms both in functional and in
imperative styles. We generate verification conditions as natural-style
predicate logic formulae, which can be then proven by Theorema, by
issuing natural-style proofs which are human–readable.

Introduction

We describe the theoretical basis and practical experiments of program verifica-
tion in the frame of the Theorema system (www.theorema.org) [5]. This work
(in progress) is built on previous theoretical results and practical experiments
regarding verification of functional programs, as well as of imperative programs
[1, 19, 14]. We follow three main approaches:

– Hoare logic for imperative programs,
– fixpoint theory of functions for functional programs,
– forward verification for recursive programs.

The first approach (Section 1) consists in applying the model of Hoare logic
and the method of weakest precondition. This is relatively straightforward, but
we are able to show some interesting results concerning the automatic synthesis
of loop invariants and of termination terms.

The second approach (Section 2) is based on the extraction (for certain classes
of programs) of the purely logical conditions which are sufficient for the program
correctness. These are inferred using Scott induction or induction on natural
numbers in the fixpoint theory of functions and constitute a meta-theorem which
is proven once for the whole class. The concrete verification conditions for each
program are then provable without having to use the fixpoint theory.
1 The program verification project is supported by BMBWK (Austrian Ministry of
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The third approach (Section 3) consists in identifying some basic intuitive
principles for the generation of the verification conditions, which are then for-
malised in a precise method. We prove that the correctness of the program is a
logical consequence of these verification conditions, without using an additional
theory of computation.

Currently we are comparing the results of these three approaches, in order to
realize a practical verification engine in the frame of the Theorema system. The
Theorema system is a computer mathematical assistant which is implemented
on top of the computer algebra system Mathematica [30]. The systems allows
the definition and the organization of mathematical theories (including the de-
scription of algorithms) in the language of higher–order predicate logic, and also
offers the necessary environment for experimenting with algorithms (comput-
ing) and for investigating the properties of mathematical structures (proving,
solving). Currently the computing and solving capabilities are imported from
the underlying computer algebra system Mathematica, and are quite powerful,
thus the most significant and interesting part of the Theorema system is the one
providing proving capabilities. Proving is implemented in the system by way of
various domain–specific provers (propositional, first–order predicate logic, limit
domains, induction of natural numbers and over lists, proving over sets, proving
equalities by Knuth–Bendix completion, etc.). The general approach is to im-
plement inference rules, as well as strategies and techniques which are similar
to the human style of proving. The proofs which are produced are explained in
natural language and are quite human–readable, which means that even failed
proofs are useful because they may give hints for finding errors or omissions
in the respective theory. Although the main emphasis of Theorema is on fully
automatic proving, the system also has interactive facilities for allowing the user
to manually influence the behaviour of the provers.

The problem of producing the proofs of the verification conditions is not in
the scope of this paper. We note, however, that the concrete proof problems
issued from program verification examples are used as test cases for the provers
of Theorema and for experimenting with the organization and management of
the mathematical knowledge. Currently we are able to generate the verification
conditions and to prove them automatically (in matter of seconds) in the The-
orema system for many concrete programs. There are, however, more complex
examples which take a long time to prove or which cannot be proven fully auto-
matically, but only with user guidance, as there are problems which will require
the improvement of the current provers or the design of new provers.

1 Imperative Programs

Programs written in functional style can be expressed directly in the Theorema
language, thus the “compilation” step (and its possible errors) is avoided. How-
ever, for users which are more comfortable with the imperative style, Theorema
features a procedural language, as well as a verification condition generator [12]
based on Hoare–Logic and using the Weakest Precondition Strategy. This veri-



fication tool provides readable arguments for the correctness of programs, with
useful hints for debugging. The user interface has few simple and intuitive com-
mands (Program, Specification, V CG, Execute). The programs are considered
as procedures, without return values and with input, output and/or transient
parameters. The source code of a program contains a sequence of the following
statements:

– assignments (may contain also function calls);
– conditional statements:

IF [cond,THEN-branch,ELSE-branch]
– WHILE loops:

WHILE[cond, body, optional:Invariant, TerminationTerm]
– FOR loops:

FOR[counter, lowerBound, upperBound, step, body, optional:Invariant]
– procedure calls.

These optional arguments (of WHILE and FOR) are needed for the verifi-
cation of the program. The Verification Condition Generator (VCG) takes an
annotated program with pre– and postcondition (i.e. the program specification)
and produces as output a verification condition containing a collection of formu-
las. The verification condition generator is based on a list of inference rules. It
is recursive on the structure of the code and works back–to–front statement by
statement. Internally, it repeatedly modifies the postcondition using a predicate
transformer such that at the end the result is a list of verification conditions
in the Theorema syntax. This process is relatively straightforward, thus we will
concentrate in this paper on the relatively more interesting problem of finding
loop invariants and termination terms.

1.1 Generation of Loop Invariants

Verification of correctness of loops needs additional information, so-called anno-
tations (invariants and termination terms). In most verification systems, these
annotations are given by the user. It is generally agreed [6] that finding auto-
matically such annotations is in general very difficult. However, in most of the
practical situations finding the expression – or at least giving some useful hints
– is quite feasible. In this paper we present our work–in–progress technique for
automated invariant generation by combinatorial and algebraic methods, which
extends the work presented in [14]. We assume that the variables take values in
the fixed field of real numbers IR and that all the statements in the body of a
loop are either assignments of the form x := p (p is a polynomial), or WHILE
loops.

1.2 Solving First Order Recurrences

Analysing the code of a loop, we identify recurrence equations for those variables
which are modified during the execution of the loop (called critical variables).



Using these, an explicit expression is found for the value of each critical variable
as a function of the index of loop iteration. By eliminating the loop index from the
system of equations, one obtains invariant relations among the critical variables,
which have to be embedded in the invariant of the loop.

For illustration, consider the ”Division” program of two natural numbers:

Specification[”Division”, Div[↓ x, ↓ y, ↑ rem, ↑ quo],
P re → ((x ≥ 0) ∧ (y > 0)),
Post → ((quo ∗ y + rem = x) ∧ (0 ≤ rem < y))]

Program[”Division”, Div[↓ x, ↓ y, ↑ rem, ↑ quo],
quo := 0;
rem := x;
WHILE[y ≤ rem,

rem := rem− y;
quo := quo + 1]]

In the above program, input parameters are specified by ↓, and output pa-
rameters by ↑. The automated generation of the invariant proceeds as follows:
From the body of the loop, we obtain the following recursive equations:

quo0 = 0; quok+1 − quok = 1
rem0 = x; remk+1 − remk = −y.

where quo and rem are the critical variables and k is the index of the loop. For
each recursive equation we use the Gosper-Zeilberger algorithm (see e.g. [13],[7]).
Namely, we use the Paule-Schorn implementation in Mathematica [26] which is
already embedded in the Theorema system, in order to produce a closed–form
for the expressions of quok and remk.

quok = 0 + k

remk = x − k ∗ y

From these equations we eliminate k by calling the appropriate routine from
Mathematica, and we obtain the equation:

rem = x− quo ∗ y.

Some additional information which should be embedded in the loop invariant is
extracted based on the following principle: at the termination of the loop (i.e.
when the condition of the loop(Φ) is falsified), the so–far generated formulas
together with the negation of the loop–condition and the assertion that is still
needed to be generated have to imply the postcondition of the loop. Thus, by
some heuristics and logical manipulation of formulae, the additional assertion is
generated, and finally the complete invariant for this example will be:

Invariant ≡ (quo ∗ y + rem = x) ∧ 0 ≤ rem



In the case of the WHILE loop, one is also interested to be able to prove termi-
nation, i.e. to have an automatic generation of termination term. Knowing that
the termination term must be positive [8], we transform the given loop-condition
using specific heuristics (algebraic manipulations) until we obtain a term T such
that T ≥ 0 ⇔ Φ. In the example above, the termination term will be:

rem− y.

In the case of a FOR loop, the generation of the loop invariant is done in the
same manner, but we use additionally the explicit equation for the counter of
the FOR loop:

counterk := counter0 + k ∗ step.

In the above example, we worked with recursive equations whose behaviour
does not depend on other equations. For the case when a critical variable of a
recursive statement is influenced also by some other recursive statements, our
method is still applicable. In this situation, first we work with that equation
(critical variable) which does not depend on other equations, generate the closed–
form of it, and then substitute this expression in the other recursive equations.
Proceeding in a similar manner for the other recursive equations, we will solve
again first–order recursive equations by the Gosper–algorithm.

Also, when the obtained recurrence is not Gosper–summable, but it is of the
form:

xn = t ∗ xc
n−1,

where t is a term that does not depend on x, and c ∈ IN, the closed form of
the detected recurrence can be solved by our recurrence solving package. The
presented strategy works only if we do not have mutual recurrence(s) in the loop
body.



1.3 Mutual Recurrences

We use the technique of generating functions from combinatorics [29, 25], and
we demonstrate it here by an example.

Specification[”Fibonacci”, F ibonacciProcSpec[↓ n, ↑ F ],
P re → (n ≥ 0),
Post → (F = FibExp[n])]

Program[”Fibonacci”, F ibonacciProc[↓ n, ↑ F ],
Module[{H, i},

i := n;
F := 1;
H := 1;
WHILE[i > 1,

H := H + F ;
F := H − F ;
i := i − 1]]]

Note: FibExp[n] denotes the term: Fn = φn−φ̂n

√
5

, where φ = 1+
√

5
2 and φ̂ is its

conjugate.
From the loop–body, we can set up the recurrence:

Hn = Hn−1 + Fn−1 + [n = 1], (n ∈ Z), H0 = 0

Fn = Hn − Fn−1 (n ∈ Z), F0 = 0

where the value of [n = 1] is 1 (i.e. H1) when n = 1, and 0 when n > 1.
We seek a closed form for (Fn) and (Hn), using an extension of the Mallinger’s

Mathematica package GeneratingFunctions [16], which was developed in the Com-
binatoric Group of RISC. Then, by applying the generating functions technique,
we obtain the harmonic forms:

H(z) =
∑

n

Hnzn =
∑

n

Hn−1z
n +

∑
n

Fn−1z
n +

∑
n

[n = 1]zn (n ∈ Z)

= zH(z) + zF (z) + z

F (z) =
∑

n

Hnzn −
∑

n

Fn−1z
n (n ∈ Z)

= H(z) − zF (z)

Solving this system in the unknowns F and H, we obtain the generating func-
tions:

F (z) =
z

1− z − z2
, H(z) =

z(1 + z)
1− z − z2



and by combinatorial techniques their closed form:

Fk =
φk − φ̂k

√
5

Hk =
φk+1 − φ̂k+1

√
5

From the third recurrence equation of the loop, i.e. ik+1 = ik − 1, i0 = n, by the
Gosper algorithm, we obtain the closed form: ik = n− (k−1). Now we eliminate
k from the three equations, obtaining:(

F =
φn−i+1 − φ̂n−i+1

√
5

) ∧ (
H =

φn−i+2 − φ̂n−i+2

√
5

)

One notes that these are exactly the expressions of the Fibonacci numbers [20].

1.4 Further Work

We have been able to automatically generate verification conditions (including
invariants and termination terms) for several interesting programs, like: com-
putation of the integer square root, sum of integers, square calculation, binary
powering, etc. These experiments show the power and also the limitations of the
methods we have implemented.

One further development which we are now studying is the generation of in-
variants for nested WHILE loops. The main idea is to characterise the behaviour
of the WHILE loops using recurrence equations. Namely, we first generate the
closed form for the critical variables of the innermost loop. These can be used
in order to express the critical variables of the outer loop, and finally we try to
obtain the invariant relations by elimination of the loop index variables.

Furthermore we consider loops that contain also conditional statements (IF-
THEN-ELSE). In this case, we generate by combinatorial methods the closed
form of the recurrences for each branch. Then, the obtained expressions have to
be combined in such a way that they describe the invariance property of the loop.
An efficient method for solving this problem is the application of Gröbner Bases
[2, 3], namely to generate the Gröbner bases of the already obtained closed–forms
(this approach has been investigated in [11, 27, 17]).

2 Functional Programs

While proving [partial] correctness of non-recursive procedural programs is quite
well understood, for instance by using Hoare Logic [8, 15], there are relatively
few approaches to recursive procedures (see e.g. [21] Chap. 2).

We discuss here a practical approach, based on a certain theory and including
implementation, to automatic generation of verification conditions for functional
recursive programs. The implementation is part of the Theorema system, and



complements the research performed in the Theorema group on verification and
synthesis of functional algorithms based on logic principles [1, 4, 24].

We consider the correctness problem expressed as follows: given the program
(by its source text) which computes the function F and given its specification
by a precondition on the input IF [x] and a postcondition on the input and
the output OF [x, y], generate the verification conditions which are [minimally]
sufficient for the program to satisfy the specification.

For simplifying the presentation, we consider here the “homogeneous” case:
all functions and predicates are interpreted over the same domain. Proving the
verification conditions will require the specific theory relevant to this domain and
to the auxiliary functions and predicates which occur in the program.

The functional program of F can be interpreted as a set of predicate logic
formulae, and the correctness of the program can be expressed as:

(∀x : IF [x])OF [x, F [x]], (1)

which we will call the correctness formula of F . Under certain additional as-
sumptions, for program correctness it is sufficient that the correctness formula
is a logical consequence of the formulae corresponding to the definition of the
function (and the specific theory which describes the properties of the domain[s]
and the auxiliary functions involved). This approach was previously used by
other authors and is also experimented in the Theorema system [1]. However,
the proof of (1) may be difficult, because the prover has to find the appropriate
induction principle and has to find out how to use the properties of the auxiliary
functions present in the program.

The method presented in this section generates several verification conditions,
which are easier to prove. In particular, only the termination condition needs an
inductive proof, and this termination condition is “reusable”, because it basically
expresses an induction principle which may be useful for several programs. This is
important for automatic verification embedded in a practical verification system,
because it leads to early detection of bugs (when proofs of simpler verification
conditions fail).

Moreover, the verification conditions are provable in the frame of predicate
logic, without using any theoretical model for program semantics or program
execution, but only using the theories relevant to the predicates and functions
present in the program text. This is again important for the automatic veri-
fication, because any additional theory present in the system will significantly
increase the proving effort.

We start by developing a set of rules for generating verification conditions,
for programs having a particular structure. The rules for partial correctness are
developed using Scott induction and the fixpoint theory of programs, however the
verification conditions themselves do not refer to this theory, they only state facts
about the predicates and functions present in the program text. In particular,
the termination condition consists in a property of a certain simplified version
of the original program.

We approach the correctness problem by splitting it into two parts: partial
correctness (prove that the program satisfies the specification provided it ter-



minates), and termination (prove that the program always terminates). Proving
partial correctness may be achieved by Scott induction [9, 28, 18, 22] – a detailed
description of the method for a certain class of functional programs is presented
in [19].

2.1 Simple Recursive Programs.

Consider the definition (or program):

F [x] = If Q[x] then S[x] else C[x, F [R[x]]], (2)

where Q is a predicate2 and S, C, R are auxiliary functions (S is a “simple”
function, C is a “combinator” function, and R is a “reduction” function). We
assume that S, C, R are already given together with their input and output
conditions IS [x], OS [x, y], IC [x, y], OC [x, y, z], IR[x], OR[x, y] and assumed to
satisfy their correctness formulae (as in (1)). Type (or domain) information does
not appear explicitly in this formulation, however it may be included in the input
conditions.

We consider that the definition (2) is the abbreviation of the conjunction of
the logical formulae:

(∀x) (Q[x] ⇒ (F [x] = S[x])), (3)

(∀x) ((¬Q[x]) ⇒ (F [x] = C[x, F [R[x]]])). (4)

We are working in first–order predicate logic and in the context of a certain
local theory, that is a theory containing the definition of F (above) and all
the necessary properties of the predicates and functions which are used in the
program, as well as the correctness formulae for the subroutines S, C, R.

Using Scott induction in the fixpoint theory of functions, one obtains the
following verification conditions for the partial correctness of the program of F :

(∀x : IF [x]) (Q[x] =⇒ OF [x, S[x]])

(∀x, y : IF [x]) (¬Q[x] =⇒ IF [R[x]])

(∀x, y : IF [x]) ((¬Q[x] ∧OF [R[x], y]) =⇒ OF [x,C[x, y]])

(In fact, the conditions can be further decomposed using the preconditions and
the postconditions of the auxiliary functions, see [10].)

First, we need to ensure the termination of the calls to the auxiliary functions.
Let IS , IC and IR be the preconditions of S, C, R respectively. The verification
conditions are:

(∀x : IF [x]) (Q[x] =⇒ IS [x])
2 In practice Q is also implemented by a program, and it may also have an input

condition, but we do not want to complicate the present discussion by also including
this aspect, which has a special flavour.



(∀x : IF [x]) (¬Q[x] =⇒ IR[x])

(∀x, y : IF [x]) ((¬Q[x] ∧OF [R[x], y]) =⇒ OC [x, y]).

The condition for the termination of the program can be expressed using a
simplified version of the initial function:

F ′[x] = If Q[x] then 0 else F ′[R[x]]

which only depends on Q and R. Namely, the verification condition is

(∀x : IF [x]) F ′[x] = 0,

which must be proven based on the logical formulae corresponding to the defini-
tion of F ′ (and the local theory relevant to the program). The condition follows
from the equivalence of the termination properties of F and F ′, which can be
proven in the fixpoint theory of functions e. g. by using induction on the number
of recursion steps (see [23]).

This method can be easily extended to programs using Case (If–then–else
with several cases), as it is illustrated in the example below.

2.2 Example

For illustrating the method we give here an example of a binary powering pro-
gram annotated with its specification. Let be the program:

P [x, n] = If n = 0 then 1
elseif Even[n] then P [x ∗ x, n/2]
else x ∗ P [x ∗ x, (n− 1)/2].

The specification is:
(∀x, n : n ∈ N) P [x, n] = xn.

The (automatically generated) verification conditions are:

(∀x, n : n ∈ N) (n = 0 =⇒ 1 = xn) (5)

(∀x, n : n ∈ N) (n > 0 ∧ Even[n] =⇒ n/2 ∈ N) (6)

(∀x, n, m : n ∈ N) (n > 0 ∧ Even[n] ∧m = (x ∗ x)n/2 =⇒ m = xn) (7)

(∀x, n : n ∈ N) (n > 0 ∧ ¬Even[n] =⇒ (n− 1)/2 ∈ N) (8)

(∀x, n, m : n ∈ N) (n > 0∧¬Even[n]∧m = (x ∗ x)(n−1)/2 =⇒ x ∗m = xn) (9)

(∀x, n : n ∈ N) (n = 0 =⇒ T) (10)

(∀x, n : n ∈ N) (n > 0 ∧ Even[n] =⇒ Even[n]) (11)

(∀x, n : n ∈ N) (n > 0 ∧ ¬Even[n] =⇒ Odd[n]) (12)



(∀x, n, m : n ∈ N) (n > 0 ∧ Even[n] ∧m = (x ∗ x)n/2 =⇒ T) (13)

(∀x, n, m : n ∈ N) (n > 0 ∧ ¬Even[n] ∧m = (x ∗ x)(n−1)/2 =⇒ T) (14)

(∀x, n : n ∈ N) P ′[x, n] = 0, (15)

where

P ′[x, n] = If n = 0 then 0
elseif Even[n] then P ′[x ∗ x, n/2]
else P ′[x ∗ x, (n− 1)/2].

One sees that the formulae (6), (9) and (10) are trivial to prove. The formulae
(1) to (5), (7) and (8) are relatively easy to prove. The only formula which needs
an induction proof (on the second argument n) is (11).

Currently we are working on extending the method to more general pro-
gram schemes, such that they include multiple recursive calls, mutual recursive
functions, etc.

3 Forward Verification

Examining the verification conditions generated by the methods presented in the
previous sections, one may notice that they correspond to certain common–sense
assertions. (e. g. that the input of an auxiliary function should satisfy its input
conditions).

In this section we present an extension of the approach introduced in [10],
which consists in generating the verification conditions using such “intuitive”
principles, by following in a forward manner the steps of the (virtual) execution of
the program. We formalise these principles in a precise method and we then prove
that the correctness formula is a logical consequence of the generated verification
conditions. Remarkably, the proof of this fact does not need an additional model
for the notion of computation – it is sufficient to interpret the program text as
a set of logical formulae in the frame of predicate logic with equality.

We will explain the method by demonstrating it on a simple example. Con-
sider the definition (2), with the same assumptions about the auxiliary functions
as in the previous section.

3.1 Partial Correctness

The verification conditions are generated using the following principles:

– check the input conditions when calling subroutines;
– accumulate all reasonable assumptions (coming from the input condition of

the main function, from if–then–else conditions and from the correctness
formulae of the subroutines),

– try to finally obtain the correctness property for the output of F .



Since any input to F , in case it satisfies Q, is passed to S, the first verification
condition is:

(∀x : IF [x]) ((IF [x] ∧Q[x]) ⇒ IS [x]). (16)

That is, starting from assumptions IF [x] and Q[x], one has to prove IS [x]. Note
that OS [x, S[x]] is a logical consequence of IS [x] and the correctness formula of
S (which is assumed).

Finally on this program branch, one has to prove the “correctness” of the
result F [x]:

(∀x : IF [x]) ((Q[x] ∧ IS [x] ∧OS [x, S[x]]) ⇒ OF [x, S[x]]). (17)

Similarly, for the other case:

(∀x : IF [x]) (¬Q[x] ⇒ IR[x]), (18)

and then one also has OR[x,R[x]]. Next “execution” step would be to use R[x]
as input to F , thus one needs:

(∀x : IF [x]) ((¬Q[x] ∧ IR[x] ∧OR[x, R[x]]) ⇒ IF [R[x]]). (19)

Note that each verification condition accumulates (in the antecedents of the
implication) the postcedents proved in the previous conditions, as well as the
facts which can be obtained by using the correctness of the subroutines. Thus
we will not list from now on the full verification conditions, but only mention
the new antecedents and the next postcedent.

The next verification condition is created using the same principles on F
as for any other subroutine. That is, we add to the antecedents both IF [R[x]]
(postcedent of the previous verification condition), but also OF [R[x], F [R[x]]].
The new postcedent corresponds to the next “execution” step, i. e. states that
the input condition of C is satisfied:

(∀x : IF [x]) ((. . . ∧ IF [R[x]] ∧OF [R[x], F [R[x]]]) ⇒ IC [x, F [R[x]]]), (20)

and then we may assume OC [x, F [R[x]], C[x, F [R[x]]]], and finally we must prove
the “correctness” of the output:

(∀x : IF [x]) ((. . . ∧ IC [x, F [R[x]]] ∧OC [. . .]) ⇒ OF [x, C[x, F [R[x]]]]). (21)

We may say that these 6 verification conditions ensure partial correctness.
Namely, the following two formulae, which we will call partial correctness formu-
lae are logical consequences of the verification conditions and the local knowledge
(definition of F , properties of additional functions and predicates, including the
correctness formulae for S, C, and R):

(∀x : IF [x]) (Q[x] ⇒ OF [x, F [x]]), (22)

(∀x : IF [x]) (¬Q[x] ∧ (IF [R[x]] ⇒ OF [R[x], F [R[x]]]) ⇒ OF [x, F [x]]). (23)



3.2 Total Correctness

Termination. Intuitively, the program defined by (2) terminates if any element
x satisfying IF also has the following property: x satisfies Q, or, by repeated
applications of R, it is reduced to an element satisfying Q. We may formalise
this property as a predicate P which fulfils: (Q[x] ∨ P [R[x]]) ⇒ P [x]) for any
x. Let us choose as termination condition for the program of F the following
formula:

((∀x : IF [x]) ((Q[x] ∨ P [R[x]]) ⇒ P [x])) ⇒ (∀x : IF [x])P [x].

Here P is a new constant symbol, thus this formula holds for any P (in second
order logic). Hence, the termination condition is in fact an induction principle,
namely that induction principle which is appropriate for the particular program
which is verified. Typically, the proof of this formula will require an induction
over the domain of F (possibly specified in IF ).

Total Correctness. If we replace P [x] by IF [x] ⇒ O[x, F [x]] then we obtain
(after some simple equivalent transformations of some inner formulae) an im-
plication whose antecedents are the two partial correctness conditions (22) and
(23) and whose postcedent is the correctness formula (1). Thus, the correct-
ness formula is a logical consequence of the partial correctness conditions and
the termination condition, of course by using the local knowledge. This is quite
remarkable, because it shows that the verification conditions ensure the total
correctness of the program, and for proving this we do not need any additional
model for defining the notion of computation, termination, etc., but everything
is done in the frame of the local theory.

3.3 General Principle

A tuple with m − n + 1 elements 〈an, an+1, . . . , am−1, am〉 will be denoted by
〈ai〉mi=n (the empty tuple 〈〉 when n > m). We use a similar indexed notation for
denoting finite sets, finite conjunctions and finite disjunctions (empty conjunc-
tion is true, empty disjunction is false). We will also consider that the combinator
functions C are applied to an element and a tuple: C[x, 〈. . .〉].

We define cumulative conditions Q̂i[x] of {Qi[x]}i=1,... as

Qi[x] ∧
i−1∧
k=1

Qk[x],

the correctness predicate of a function G as KG[x] expressed by IG[x] ⇒ OG[x, G[x]],
and the cumulated correctness condition of a function G as HG[x] expressed by
IG[x] ∧OG[x, G[x]].

Let us consider programs which can be expressed as:

F [x] =
〈
Ci[x, 〈F [Rij [x]]〉mi

j=1] if Qi[x]
〉

i=1,n
.



We assume that the necessary properties (including correctness formulae) of the
auxiliary functions {Qi, Ci, {Rij}mi

j=1}n
i=1 are present in the local knowledge.

The logical formulae corresponding to the definition of F are (for i = 1, n):

Q̂i[x] ⇒ F [x] = Ci[x, 〈F [Rij [x]]〉mi
j=1]

We list now the general form of the verification conditions, which are all univer-
sally quantified by (∀x : IF [x]) (omitted for simplicity). The verification condi-
tions expressing that the inputs to Rij must be appropriate are (for i = 1, n and
j = 1,mi):

Q̂i[x] ⇒ IRij [x].

Then one may assume that the outputs of Rij are correct and one has to show
that the inputs to F are appropriate (for i = 1, n and j = 1,mi):

(Q̂i[x] ∧HRij
[x]) ⇒ IF [Rij [x]],

(where H is the cumulated correctness condition defined earlier). Next one as-
sumes that the outputs of F are correct and one has to show that the inputs to
Ci are appropriate (for i = 1, n):Q̂i[x] ∧

mi∧
j=1

(HRij [x] ∧HF [Rij [x]])

⇒ ICi [x, 〈F [Rij [x]]〉mi
j=1],

Finally, one assumes that the outputs of Ci are correct and one has to prove
that the outputs of F are correct (for i = 1, n):Q̂i[x] ∧

mi∧
j=1

(HRij
[x] ∧HF [Rij [x]]) ∧HCi

[x, 〈F [Rij [x]]〉mi
j=1]


⇒ OF [x,C[x, 〈F [Rij [x]]〉mi

j=1]].

The partial correctness formulae (i = 1, n) have the formQ̂i[x] ∧
mi∧
j=1

KF [Rij [x]]

 ⇒ OF [x,Ci[x, 〈F [Rij [x]]〉mi
j=1]]

and they are logical consequences of the local theory and of the verification
conditions for partial correctness.

The termination condition (with explicit quantifiers) is:(∀x : IF [x])

 n∨
i=1

Q̂i[x] ∧
mi∧
j=1

P [Rij [x]]

⇒ P [x]

 ⇒ ((∀x : IF [x])P [x])

It is relatively straightforward to prove that the correctness formula of F is
a logical consequence of the termination condition and the partial correctness
formulae, together with the local theory.



This general method is implemented as an automatic code analyser and ver-
ification condition generator for functional programs (and program schemata).
The verification conditions of the concrete example presented in this section have
been generated automatically using this implementation.

Similar principles can be applied to imperative programs, and this is work in
progress. Imperative programs contain loops, and they can be treated either as
recursive calls, either by adding special variables as loop counters.

Conclusions and Further Work

Using several complementary approaches to the generation of verification con-
ditions, we obtain more insight into the issue of practical algorithm verification
in the context of automatic reasoning. Moreover, we obtain interesting proof
problems for the [semi–]automatic provers of the Theorema system, which allow
us to detect the possible weaknesses of the current provers and to design and
implement new proving methods.

Further work includes the extension of these methods to more complex pro-
grams, as well as a more systematic comparison and cross–fertilisation of the
different approaches to the generation of verification conditions both for func-
tional and for imperative programs.

References

1. A. Craciun; B. Buchberger. Functional program verification with theorema. In
CAVIS-03 (Computer Aided Verification of Information Systems), Institute e-
Austria Timisoara, February 2003.

2. B. Buchberger. Ein algorithmisches Kriterium für die Lösbarkeit eines algebrais-
chen Gleichungssystems (An Algorithmical Criterion for the Solvability of Alge-
braic Systems of Equations). Aequationes mathematicae 4/3, pp. 374-383. (English
translation in: B. Buchberger, F. Winkler (eds.), Gröbner Bases and Applications,
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