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Abstract. We report work in progress concerning the theoretical basis and the implementation in the
Theorema system of a methodology for the generation of verification conditions for recursive procedures,
with the aim of practical verification of recursive programs. Proving total correctness is achieved by proving
separately partial correctness and then termination. In contrast to other approaches, which use a special
theory describing the behavior of programs, we use such a theory only “in the background”, for developing
a general rule for generating verification conditions, while the conditions themselves are presented (and
provable) using the theories relevant to the program text only. This is very important for automatic proving,
since it reduces significantly the effort of the provers. We performed practical experiments in which various
programs are completely verified using the verification condition generator and the provers of the Theorema
system.

Introduction. While proving [partial] correctness of non-recursive procedural programs
is quite well understood, for instance by using Hoare Logic [3], [6], there are relatively few
approaches to recursive procedures (see e.g. [8] Chap. 2).

We discuss here a practical approach to automatic generation of verification conditions
for functional recursive programs, partially based on Scott induction in the fixpoint theory
of programs [13,11,7,9] and the implementation of this approach. The implementation is
part of the Theorema system, and complements the research performed in the Theorema
group on verification and synthesis of functional algorithms based on logic principles [1,2,4].

The Theorema system (www.theorema.org, [12]) aims at realization of a computer aided
assistant for the working mathematicians and engineers, which integrates automatic reason-
ing, algebraic computing, and equational solving. The system provides an uniform environ-
ment in natural logico-mathematical language for defining, testing, and proving properties
of algorithms, and in general for creating and investigating mathematical models.

We consider the correctness problem expressed as follows: given the program (by its
source text) which computes the function F and given its specification by a precondition
on the input IF [x] and a postcondition on the input and the output OF [x, y], generate
the verification conditions which are [minimally] sufficient for the program to satisfy the
specification.

For simplifying the presentation, we consider here the “homogeneous” case: all functions
and predicates are interpreted over the same domain. Proving the verification conditions
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will require the specific theory relevant to this domain and to the auxiliary functions and
predicates which occur in the program.

The functional program of F can be interpreted as a set of predicate logic formulae, and
the correctness of the program can be expressed as:

∀x IF [x] : OF [x, F [x]], (1)

which we will call the correctness formula of F . In order for the program to be correct, the
correctness formula (1) must be a logical consequence the formulae corresponding to the
definition of the function (and the specific theory). This approach was previously used by
other authors and is also experimented in the Theorema system [1]. However, the proof of
such one-single theorem may be difficult, because the prover has to find the appropriate
induction principle and has to find out how to use the properties of the auxiliary functions
present in the program.

The method presented in this paper generates several verification conditions, which are
easier to prove. In particular, only the termination condition needs an inductive proof, and
this termination condition is “reusable”, because it basically expresses an induction principle
which may be useful for several programs. This is important for automatic verification
embedded in a practical verification system, because it leads to early detection of bugs
(when proofs of simpler verification conditions fail).

Moreover, the verification conditions are provable in the frame of predicate logic, without
using any theoretical model for program semantics or program execution, but only using
the theories relevant to the predicates and functions present in the program text. This is
again important for the automatic verification, because any additional theory present in
the system will significantly increase the proving effort.

We start by developing a set of rules for generating verification conditions, for programs
having a particular structure. The rules for partial correctness are developed using Scott in-
duction and the fixpoint theory of programs, however the verification conditions themselves
do not refer to this theory, they only state facts about the predicates and functions present
in the program text. In particular, the termination condition consists in a property of a
certain simplified version of the original program. By inspecting the shape of these rules for
several program structures, it is possible to derive a more general rule for the derivation of
verification conditions, such that the correctness formula (see above) is a logical conse-
quence of these verification conditions in the frame of predicate logic, without using
any model of computation.

We approach the correctness problem by splitting it into two parts: partial correctness
(prove that the program satisfies the specification provided it terminates), and termination
(prove that the program always terminates). Proving partial correctness may be achieved
by Scott’s induction [13,11,7,9] – a detailed description of the method for a certain class of
functional programs is presented in [10].

Example: Simple Recursive Programs. Let be the program:

F [x] = If Q[x] then S[x] else C[x, F [R[x]]],
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where Q is a predicate and S,C, and R are auxiliary functions whose total correctness is
assumed (S is a “simple” function, C is a “combinator” function, and R is a “reduction”
function). Note that the program above can be seen as an abbreviated notation for the
logical formulae:

∀x (Q[x] =⇒ F [x] = S[x])

∀x (¬Q[x] =⇒ F [x] = C[x, F [R[x]]]).

Using Scott induction in the fixpoint theory of functions, one obtains the following
verification conditions for the partial correctness of the program of F :

∀x IF [x] : (Q[x] =⇒ OF [x, S[x]])

∀x, y IF [x] : ((¬Q[x] ∧OF [R[x], y]) =⇒ OF [x,C[x, y]])

(In fact, the conditions can be further decomposed using the preconditions and the post-
conditions of the auxiliary functions, see [5].)

The condition for the termination of the program can be expressed using a simplified
version of the initial function:

F ′[x] = If Q[x] then 0 else F ′[R[x]],

which only depends on Q and R. Namely, the verification condition is

∀x IF [x] : F ′[x] = 0, (2)

which must be proven based on the logical formulae corresponding to the definition of F ′

(and the local theory relevant to the program). The condition follows from the equivalence
of the termination properties of F and F ′, which can be proven in the fixpoint theory of
functions e. g. by using induction on the number of recursion steps (see [14]).

The termination condition can be further refined to:

∀x IF [x] : ((Q[x] =⇒ P [x]) ∧ (¬Q[x] =⇒ (P [R[x]] =⇒ P [x])) =⇒ ∀xP [x]),

where P is a new predicate symbol, which is a proof in second order logic of the formula
above for any P . This condition defines in fact an induction principle. By taking P [x]⇐⇒
(F ′[x] = 0), one can obtain a proof of (2). By taking P [x]⇐⇒ OF [x, F [x]], one can obtain
a proof of the correctness formula (1).

Note that both conditions only depend on Q and R, thus they abstract some part of
the function definition. In practical programming, these Q and R correspond to typical
algorithm schemes (take e. g. Q[x] ⇐⇒ (x = 0) and R[x] = (x− 1)), thus the termination
condition (whose proof usually involves induction) is usable for several programs.

Generalization. By applying the same method to other recursion schemes, one notes
that the verification conditions for the partial correctness can be generated directly (without
using an additional theory) by applying few basic principles:
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• check the input conditions when calling subroutines;
• accumulate all reasonable assumptions (coming from the input condition of the main

function, from if–then–else statements and from the correctness formulae of the sub-
routines),

• try to finally obtain the correctness property for the output of F .

Furthermore, the termination condition can be generated either:

• as the “identical zero” property of the simplified function, or
• as the appropriate induction principle which makes the correctness formula a logical

consequence the partial correctness conditions.

Implementation and experiments. The methods described above are implemented
in the Theorema system and we are studying various recursive schemes and several test
cases in order to improve the power of the verification condition generator. Furthermore,
the concrete proof problems are used as test cases for the provers of Theorema and for exper-
imenting with the organization and management of the mathematical knowledge. Currently
we are able to generate the verification conditions and to prove them automatically in the
Theorema system for many concrete programs.
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