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ABSTRACT

In this paper, we propose a numerical-symbolic approxima-
tion method for some parameter-dependent elliptic geomet-
ric equations. In order to perform a detailed analysis of
the discretization methods we investigate a model problem
related to meancurvature type equations.

The main idea of our approach is to construct suitable finite
element discretizations of the non-linear elliptic equations
leading to systems of algebraic equations, which are sub-
sequently solved using symbolic elimination methods. The
main advantage of this approach is the possibility of com-
puting numerical approximations in a symbolic way with
respect to some parameters, even if the discretization has
more than one solutions.

Due to the high computational effort inherent in symbolic
elimination method, the symbolic solutions can be computed
on a very coarse grid only. For this sake we propose to
use the symbolic elimination method as a coarse grid solver
within a multigrid framework, and discuss some its issues.
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1. INTRODUCTION

Many geometric optimization problems can be formulated
via a representation of the geometric unknown as a graph
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or implicitely in level set form. The corresponding optimal-
ity system then yields a system of nonlinear partial differ-
ential equations with boundary conditions, like the famous
Plateau problem (minimal surfaces) [8], other free bound-
ary problems in variational form (cf. e.g. [2]), problems
in mathematical imaging (cf. e.g. [1]) or, similarly, in level
set approaches to shape optimization and reconstruction (cf.
e.g [16, 4]).

Due to the strong nonlinearity of differential operators in-
volved in geometric and similar partial differential equation,
sometimes it is not easy to compute numerical solutions,
e.g. from a generated finite element discretization. For min-
imizing the nonlinear discrete variational form, the standard
Newton method applied to the parameter-free case will not
converge globally in general, if the discrete operator is non-
convex. For parameter-dependent systems (like viscous solu-
tions corresponding to first-order equations), finding a good
initial guess is not trivial and very difficult by purely numer-
ical methods. As we shall see in this paper, this problem
can be resolved by using finite element discretization com-
bined with a cascadic multigrid approach, where the coarse
grid solution is computed directly by symbolic methods (cf.
e.g. [18, 19]).

We shall investigate the numerical-symbolic approach for a
specific model problem of the form

Vv 1+|Vul|? div S P € inQ, (1)
V1+[Vul?

subject to Dirichlet boundary conditions v = f for a given
sufficiently smooth function f on 02, with €2 being a regular
bounded domain in R?. Problem (1) is a geometric partial
differential equation for the curve or surface determined by
the graph of u, whose mean curvature is determined as

He= div [ —Y% ).
V1+[Vul?

For a real parameter ¢, the partial differential equation (1)
is therefore related to the problem of determining curves of
prescribed curvature (cf. [7]) and to a forward Euler time-
discretization of the mean curvature flow of graphs (cf. [6])

. Vu
Vv1+ |VU|2 div (W) = E(U - UO):



where ¢ = (At)™" for the time step At and wuo is the (given)
initial value.

A major challenge in order to apply symbolic elimination
methods to finite element discretization of nonlinear par-
tial differential equations is to transfer the discrete nonlin-
ear system into a system of algebraic equations. The ob-
vious way of obtaining an algebraic system after discretiza-
tion consists of rewriting the geometric partial differential
equation as an equation with polynomial nonlinearity be-
fore discretization. This approach immediately yields alge-
braic equations after finite element discretization, but as we
shall see below it may destroy a divergence structure in the
equation so that the weak formulation involves also second
derivatives. As a consequence, one might have to use very
particular discrete subspaces and the convergence analysis
of the discretization may require rather strong conditions.
We shall detail these issues in spatial dimension two.

As an alternative to the finite element discretization based
on the algebraic form, one can also perform a discretization
using a weak form related to the divergence structure, i.e.,

Vu-Vv+e do =0
a /14 |Vul? ’

for all suitable test functions v (following the classical ap-
proach by Johnson and Thomeé [15] for the Plateau prob-
lem). Such a discretization does not yield an algebraic sys-
tem, but as we shall show below, the discrete system can be
approximated by an algebraic system after a simple pertur-
bation. The perturbation is of higher order in terms of the
discretization size and therefore will not destroy the conver-
gence properties of the finite element method.

(2)

The paper is organized as follows: In the Section 2 we inves-
tigate the numerical-symbolic solution of the model problem
for one dimension (d = 1), i.e., the graph of u representing a
curve, which serves to present the basic idea in a simple way.
Section 3 is devoted to a discussion of the two-dimensional
case, and the difficulties arising in the direct discretization
of the algebraic form, for which we provide a convergence
results. In Section 4 we present results of computational
experiments in the two-dimensional case and illustrate the
properties of the parameter-dependent discrete solution(s)
obtained by symbolic computation.

2. NUMERICAL-SYMBOLIC
COMPUTATION OF CURVES

In this section, we initiate the idea by investigating (1) in
the one-dimensional case 2 = [0, 1], where

. Vu d*u du y\ ~?
H=div [ ——e— ) =22 (14|
v (\/1+|Vu|2> dx? ( g )
represents the curvature of the curve I' = {(z,u(z)) | = €
Q}, and Q =

Using the relation for H, (1) can be rewritten as the elliptic
differential equation

1+ |Z_:|2 is the infinitesimal curve length.

d’u du
_e 1 av
+e(1+ (d:c

42 )2) =0 in £,

u(0) = u(l) = 0. (3)

For simplicity we restrict our attention to the case f = 0,
but analogous reasoning is possible for arbitrary boundary
values.

The solution of (3) only exists for —m < ¢ < m (for larger
values of |e| the curves with prescribed curvature are not
graphs of a function) and can be computed analytically in
dependence of ¢ as

u(z; ) = % [log (cos %) —log (cos(sm — %))] .

The graph of u as a function of # and ¢ is illustrated in
Figure 1.

Figure 1: u(z;e)

2.1 Discretization of the Algebraic Form
LetO:m0<m1<...<acN<a:N+1:1andleth:
sup; |zj+1 — x;|. We discretize the problem into piecewise
linear finite elements, i.e., we define the standard basis func-
tions ¢;, 7 =1,2,..., N, via

ToTj1 e )
Py —— if ;1 <z <y,

() = Tii1—x . ) )
vj(z) —“’—mHl_wj ifv; <o <wzjqa,

else,

and V" =span{yp;}. For ¢ > 0, we call us(.;e) € V" a
discrete solution of (3) if

o/ldﬂ(m;s)j—z(:v)dm+ 50/1(1 + (%(w;e))z)v(w)d;u =0,

Xz

for all v € V™.

For € = 0 the equation has contains a unique solution and
the finite element convergence theory is standard (also for
non-homogeneous boundary values, cf. [5]). In the case
of homogeneous boundary values, it is easy to see that the
unique discrete solution satisfies up(-;0) = 0. The variation



with respect to € at € = 0, i.e., wp := %“}(-; 0) satisfies,

Vvevh,

and again by standard theory for the finite element dis-
cretization of linear elliptic equations, we conclude that there
is a unique solution wy. Hence, by the implicit function
theorem we obtain the existence and local uniqueness of a
discretized solution up(x;€) for ¢ sufficiently small, and the
finite element convergence theory can be carried out in a
straight-forward way. For large ¢, there is no solution of (3)
and hence, a convergence theory is not of interest anyway.

If we use the unique representation in the form
N
un(z;6) = Y cile) @j(a),
j=1

with a vector e(g) = (¢;(£));Z, € RY, then the finite ele-
ment discretization yields a system of quadratic equations
for the vector c(e). The solution of this algebraic system
is then computed directly in dependence of & via symbolic
elimination approaches (cf. [18]).

For the numerical-symbolic solution we used a regular grid
T; = NJT In all computational experiments we observed
that indeed there exists no real solutions for € large, in par-
ticular |e| > 7, and that the finite element solution is unique
for ¢ = 0. For intermediate values of |¢| however, we found
two different real solutions of the discrete problem, with a
lower branch approximating the real solution and an upper
branch diverging as ¢ — 0. The behavior is illustrated in
Figures 2 and 3 for h = i and h = ﬁ, respectively, by plot-
ting u(z;) versus € at @ = 1, respectively. One observes
in particular that the second branch includes oscillations for
the larger value of ¢, which indicates its instability.

Figure 2: Finite element solution u,(3;¢) for h = 1.
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Figure 3: Finite element solution us(3;¢) for h = .

From our numerical results, it becomes clear that a Newton-
type method might converge to the wrong discrete solution.
Even if additional continuation is used, further problem
might appear for € being close to 7 since the convergence ra-
dius will go to zero. However, those problems can be avoided
if we can use the symbolic computation.

2.2 Discretization of the Divergence Form

As an alternative of a direct discretization of the algebraic
form, we consider an approach via the weak form (2). We
use the same finite element discretization and basis func-
tions as introduced in the previous section, for the sake of
simplicity with z; = ﬁ]ﬁ = jh (but analogous reasoning
is possible for arbitrary meshes). We consequently consider
the computation of a discrete solution (., ) satisfying

Vin(.,e) - Vo+e

—Z————dx =0, (4)
o V1 +|Vin(,e)?
where in this case V = %. Using again the representation

with respect to the basis functions in the form @p(z;e) =
> éj(e)pj(x), we obtain the discrete system (with & =
ény1=0)
& — & 1+ 5h° & — &1+ 5h°
VR 4G —¢-1)? VR4 (G = 6)?
j =1,...,N. We now multiply the equations by h_ZQ;Q-’
where

:0’

1, 1,
Q= \/h2 +5(& =&-1)? + 5(@E = &+1)?
to obtain the nonlinear system

(®Y 237 &i—&j—1+5h°
AJ(C) _h Qj(m
+ & —Cjy1+5h ) =0.

Vh2H(E—E541)?



In order to obtain an approximating algebraic system, we

use a Taylor expansion. More precisely, let ¢; := %(@ —
&j—1)” = 3(& — &j+1)*, then
R2Q3 h2Q3

h? +(¢j — ¢j-1)?

\QF +t;

1,
— Q- Lt o,
Q8 )
h? + (¢ — ¢j41)? V@2 —t;

1, _
= Q]2-+§h ’ti + O(t3).

Under sufficient smoothness assumptions we have at least
t; = O(h?), and hence the perturbation is of order h%. Ig-
noring higher-order terms with respect to ¢;, we obtain the
approximate equation operator

3

Bi(e) = (cj—ej-1+ h)(1+5h (e —cj)’

1,
+5h *(ej —¢j-1)”)
€. .9 3 —2 2
+eg —cipr + SR+ 7R (e —¢j-1)
1,_
+3h *(¢j —¢j+1)”)

1
= (QCJ' —Cj-1 —Cj+1) +5(h2 + E(cj - cj+1)2

1
+5(¢ —¢i-1)”)

1, _
+3h *(2¢j = ¢j1 — i)™
We subsequently compute the discrete solution as

un(zie) = Y cj(e)p;(x)
with ¢(g) solving

Bj(c(e)) =0,  j=1,...,N.

Note that the discrete operator B corresponding to the dis-
cretization of the algebraic form in the previous section is
given by

Bj(e(e)) = (2¢j — ¢j-1 = ¢j1) +&(h’

1 1
+5(e — cir1)’ + (e — ¢j-1)%)

so that the discrete equations only differ by the higher-order
term 1h~?(2c;—cj—1—c;j+1)%. Consequently, we may expect
similar behaviour of the discrete solutions, which is indeed
confirmed by the numerical experiments. In particular, we
obtain again two branches of solutions, as illustrated for
h =1 in Figure 4.

3. NUMERICAL-SYMBOLIC

COMPUTATION OF SURFACES
We now consider problem (1) for Q C R?. With the notation
9u =y, gim‘; = Ugy, we can rewrite (1) in algebraic form as
div (1 4+ u2)ug, (1 +u2)uy) — 6Uusyuqy
2 45 (5)
+e(l4+uz +uy)=0
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Figure 4: Finite element solution u(3;¢) of the di-
vergence form.

with the boundary value w = f on 9f2, where f is smooth
function and 2 is a given regular domain.

Multiplying with a smooth test function v and integrating
the divergence term by part, we obtain a weak formulation,
namely to find w with w = f on 02 such that

[(1 + uf ) uavs + (14 ul)uyvy + 6tiayuatiyv

o (6)
—e(1+ul +u)v] =0,

for all sufficiently smooth functions v vanishing on 0. Us-
ing a suitable finite element space S;(f2), the discretization
consists in finding up € Sp(2) with up|ag = fr satisfying

fg[(l + Ui,y)Uh,w’Um + (1 + ui,w)uh,yvy
+6UR, oy Uh,o Uk, v — (1 + u;zm + ui,y)v] (7)
=0, Vve Sg(Q)a

where S (Q) is the subspace of functions in S5 (Q) vanishing
on the boundary. The discretization then corresponds again
to an algebraic system for the coefficients with respect to a
suitable set of basis functions, and this algebraic system is
then solved by symbolic methods, which are introduced for
the case ¢ = 0in [11, 10].

A major difficulty in this approach is that the weak form
still includes a mixed second derivative, which cannot be
eliminated. In particular, in order to obtain a well-defined
discrete form, the finite element space Sp(£2) must admit
mixed second derivatives, i.e.,

Sh(Q) C {u e Wh(Q) | ugy € L*(Q)}.

This property is satisfied e.g. for Sp(€2) being a subspace
of piecewise bilinear functions on a rectangular mesh (for a
rectangular domain ), where the edges are parallel to the
coordinate axis, or for standard C? elements on arbitrary
meshes and domains. In particular the finite element con-
vergence analysis becomes rather complicated in such cases,



as we shall work out in detail in the case of bilinear elements
on a rectangular mesh.

The idea of using symbolic computation on a coarse grid
has been used for the Plateau problem without parameter-
dependence (cf. [9, 11]), and integrated into a two-grid algo-
rithms with purely numerical computations on the fine grid
(cf. [20, 21]). We shall discuss the solution by multigrid
methods

3.1 Convergence of the Discretization
To prove the convergence theory associated to the finite ele-
ment approximation (7), we first need the following lemma:

LEMMA 3.1. Let u € W2(Q) satisfy (5), and let for
v, w € Sp(N),

R(u, w,v) := A(w,v) — A(u,v) — A’ (u;w — u,v),
where
2 2
Al (u; w,v) = /Q( D aiwaug) + Y biwev)
ij=1 i=1

is the Jacobian of (5), with the coefficients aij,bi,c, 4,7 =
1,2 given by

a11(u) =1 +uy, asa(u) =1+ ul,
a12(u) = a21(u) = —UyUe,
b1(u) = 3uyUay — UyyUs — 26Uq,
and
b2(u) = 3UzUzy — SUgaly — 26Uy.
Then up € Sh(2) solves (5) if and only if

A'(u;un,v) = R(u, up, v), Vv € Sp().

Moreover, if
|02y unllo,co + l[unllic0 < K

and SpQ) = SiQ) is constructed by bilinear rectangular
mesh interpolation, then the remainder R satisfies

R(u, un,v) < C(K)|lu — un|l} collvll11
with C(K) independent of .

PROOF. Set G(t) = A(u + t(up — u),v). Then we have
identity

G(1) = G(0) + G+(0) + /tht(t)(l — t)dt.

By applying identity

/Q(wwy — Wh,zy ) Ua Uy V

= — [ (We — Wh,z )UzyUyV + (We — Wh,z ) Uz UyyV
Q
+ (We — Wh,z ) Uz Uy Uy
= _/ (Wy — Wh,y)Uaztyv + (Wy — Wh g ) Uz UayV
Q

+ (wy — Wh,y) Uz Uy Vs,

then
Gt(0) = O¢lt=0A(u + t(up — u),v)
= [ 1+ a3 e — Yoo + (14 )y — vy
+92uzuy (Un,e — Uz )Vy + 2Uzty (Up,y — Uy )Vs
+ 6Uy Uy (Un,o — Uz )V + OUzy Uz (Un,y — Uy)V

+ 6Uz Uy (Un 2y — Uye )V — 26Ug (Uh,o — Uz )V
— 2euy (un,y — uy)v]

= Al(u; W — W, U)a

where the coefficients of A’ satisfy the given conditions of
the lemma.

And, by taking

R(u, up,v) 1= /Otht(t)(l — t)dt,

a standard estimate using the Holder inequality yields
| R(u, un, v)| < max|Gi(t)]

< C(E)llu = unlli ollvlls.1-

Finally, if up solves (5), then G(1) = 0 and this completes
the proof. [

We mention that the above estimate can be derived in an
analogous way for any finite element discretizations Sy, (£2) if
[|ur||2,00 < K. The convergence theory can now be derived
using the fact that A’(u;-,-) is elliptic for € # 0.

THEOREM 3.1. Let Q = [0,1]>, u € W>*(Q) be a solu-
tion of (5) with uw = f on Q. Moreover, let Sp(2) be a
finite element subspace consisting of piecewise bilinear con-
tinuous functions on a rectangular grid. Moreover, let fn
be a linear interpolation f on the boundary segments of the
grid. Then there exists a constant ¢ > 0, such that for h
sufficiently small, there exists a solution up € Sp(Q2) of (7)
with up, = frn, satisfying

[lur — ull1,00 < ¢ h. (8)

PrOOF. For any solution u, we define a nonlinear opera-
tor @ : S () — Sp(Q) via

A'(u; (I)('U) — U ¢) = R(u,v, ¢)7 V¢ € Sh(Q) (9)

Using ellipticity of A’, it can be shown by standard argu-
ments that ® is well-defined and a continuous operator. Let
Py, be the standard Galerkin projection operator associated
to the bilinear form A’| i.e., Py(u) = fr on 8Q and

A'(u; Po(u) —u, ) =0, V¢ € Sp(Q).

For v € W** (), the assumptions of Theorem 8.1.11 and
Corollary 8.1.12 in [3] are satisfied, which implies the exis-
tence of a positive constant C' such that

llu = Pr(u)ll1,00 < C R lull2,c0-

associated



Define the set
B ={v € Sh() :|lv— Pa(u)|l1,c0 <Ch },

then by inverse estimates, there exist C'1,C> > 0 depending
on w only, such that

102y (v —w)llo,00 < |02y (v = Pa(w))ll0,00
+ 102y (Pn(u) — u)llo,00
< Cih™ v = Pa(u)|l1,00 + Co
<2C1C + (.

Hence, ||0zyv|o,00 is uniformly bounded with respect to h
for v in the subspace Si(2) of bilinear elements.

We now prove that ®(B) C B. In fact, when We substitute
¢ in (9) by using discrete Green functions ¢ = gj, , and
¢ = gy, Where

Al(u; v, gi,z) = Vg (z)a

AI(“; v, gi,y) = vy(z),

apply the definition of Galerkin projection operator P, the
last inequality of Lemma 3.1 and the properties of discrete
Green functions (cf. [17]), then we obtain for all v € B,

[2(v) = Pr(w)lleo < Colloghlllu — vllf,00

< 2Collogh] (|| Pr (u) — v]l3,0
+llu = Pr(w)llf )

< 200|logh|(C?h? + C%h?)
= 4CoC?|logh|h* (< Ch),

for h sufficiently small.

By Brouwer’s fixed point theorem, there exist a solution
up, € B, such that ®(up) = up. And according to Lemma
3.1, up, solves (7) and satisfies

llun = ullr,00 < Jlun = Pr(u)ll1,00 + [lu = Pr(u)ll1,00 < 2Ch.
O

3.2 Discretization of the Divergence Form

In the following we discuss a two-dimensional version of the
approximation of the divergence form (2), which can be per-
formed on arbitrary triangular grids. For this sake we choose
a standard finite element subspace V" consisting of continu-
ous piecewise linear functions on a triangular grid of size h.
A finite element discretization consists in finding 4, € Vj
satisfying.

Vi - Vo + ev
Q 1+ |Vig|?

With the standard set of nodal basis functions ¢; satisfy-
ing ;(z;) = &;; for all grid points z; we can represent the
discrete solution as

z =0, Vv €&V, (10)

Using the local support of the basis functions and the fact
that Vi, is constant on each triangle, the finite element
approximation (10) can equivalently be written as

1
Q3 — / (Vin - Vi +ep;) dz =0,
1, VT IVGIRT Jr

j = 1,...,N with an arbitrary positive factor Qf-‘, where
T (x;) is the set of triangles whose nodes include z;. Now let
Aj = ZTGT(M) |T'| be the area of the triangles surrounding

x;, then we define

T| -~
Q=1+ Y Hvape

TeT (x;) 7
Then we can derive a similar first-order Taylor expansion of
& __ 9
VIFIVGRP Q7 ;1)

with respect to

tJ(T) = |v’fbh|T|2 - ZT’ET(EJ') %|Vﬁh|w|2
T’ ~ -
=2 rreT(a;) % (IVan|r|* — |Van|r[?) -

By similar reasoning as in the one-dimensional case we can
derive an approximating weak form this way, which is poly-
nomial (of order three) in the coefficients ¢;. The arising
system of algebraic system for the coefficients can subse-
quently be solved by symbolic elimination techniques.

3.3 Multigrid Versions

At the current speed of symbolic elimination methods, the
symbolic solution of the discretized problem can be carried
out with reasonable efficiency on coarse grids only. There-
fore it seems natural to couple the symbolic solution tech-
nique with a multigrid approach (cf. [13] for an overview of
multigrid methods), where symbolic solutions are computed
on the coarse grid, and purely numerical techniques are used
on finer grids.

Since the step between finer grids with numerical techniques
is standard, we only discuss a two grid version, with a coarse
grid (of size H) and a fine grid (of size h). We assume
to know suitable prolongation and interpolation operators
P;{I : SH(Q) — Sh(Q) and IIh{ : Sh(Q) — SH(Q), re-
spectively. For given w, let A'(w;-,-) be the bilinear map
from Lemma 3.1. Then, we can immediately derive a cas-
cadic multigrid method (similar to [9] for the parameter-free
case) with exact symbolic solution on the coarse grid and a
Newton-type correction at the fine grid.

Cascadic Two-Grid Algorithm.

1. Compute ug € Sy () such that
A(um,v) =0, Yv € Su(Q).

2. Set u) = PHuy, and for k = 1,...,k. compute uf €
Sr(2) from the linear equation

Al — a7 v) = — A w), Vo€ Sh(Q),

3. Set up = uZ*.

We finally mention that in an analogous way, standard V-
cycle multigrid methods can be constructed, using the sym-
bolic solver as a coarse grid correction, taking advantage of
the fact that the exact coarse grid can also be computed



in dependence of multiple parameters. Hence, if these pa-
rameters represent the values of the restriction of the fine
grid solution, the symbolic coarse-grid solution can be com-
puted in a preprocessing step, and during the V-cycle one
only has to evaluate the coarse grid solution without extra
computational effort.

4. NUMERICAL EXPERIMENTS
RELATED TO SURFACES

In this section, we illustrate the solutions of (7) obtained by
the symbolic elimination. All results were computed using
the computer algebra package ” CASA” [14] based on Maple
software.

4.1 Discrete Solutions for Fixed Parameters
Set the boundary condition f = 0 and let the finite element
space consists of piecewise-bilinear functions on a regular
rectangular grid in the domain Q = [0, 1] x [0,1]. We start
with a grid consisting of 5 x 4 nodes, which produces (after
elimination of the boundary nodes) 6 unknowns.

Figure 5: Finite element solution us(;e =1) .

Figure 6: Finite element solution us(-;e =1/5) .

We start by computing discrete solutions for fixed param-
eter € on this mesh. The discrete solution turned out to
be unique in all numerical experiments, which is a signifi-
cant difference to the one-dimensional example, where the
discrete solution was not unique or non-existent for a large

range of the parameter values e.. We illustrate the results
for ¢ =1 and € = 1/5 in Figures 5 and 6.

If we change the average mesh to 5 x 5 nodes, we obtain
a discretization fineness h = 0.2 and, after elimination of
boundary nodes, 9 unknowns. The corresponding discrete
solution for ¢ = 1/5 is plotted in Figure 7.

epsilon=0.2

Figure 7: Finite element solution us(;¢ = 1/5), h =
0.2.

4.2 Parameter-Dependent Discrete Solutions
As mentioned above, the symbolic elimination methods di-
rectly compute the discrete solutions as a function of the
parameter £, and one may also consider up as a function
of the parameter ¢, a relation that can be illustrated by im-
plicit function graphs at any point (z,y) € . As an example
Figure 8 shows the function graph of parameter-dependent
solution up(xz = 0.5,y = 2/3;¢) computed at a rectangular
grid with 5 x 4 nodes on Q = [0, 1]°.

Figure 8: function curve of us(z = 0.5,y = 2/3;¢)

From a algebraic geometry point of view, the implicit func-
tion curve dependent on ¢ (represented by the z-axis) is iso-



morphic, and one observes that the elliptic problem in the
two-dimensional domain contains a unique solution which
does not depend on parameter ¢. In other cases (such as
in one dimension), where the existence or uniqueness of so-
lutions might be changed with respect to the value of ¢,
hysteresis would be clearly reflected by singular points in
those curves.

5. CONCLUSION

This paper discusses a combined way of solving parameter
dependent elliptic equations by finite element methods and
symbolic computation, highlighting difficulties that are ob-
tained when discretizing geometric partial differential equa-
tions into an algebraic form. A related method has also been
considered for the regularization of certain ill-posed prob-
lems in [12] (where the parameter is a regularization param-
eter), and can be generalized to various classes of problems,
whose nonlinearity can be rewritten into (or approximated
by) a polynomial form.

The size of the coarse grid problem is still strongly limited,
since the symbolic elimination methods due not take ad-
vantage of the sparsity structure in the discrete problem. It
might be a very important future task in symbolic computa-
tion to develop methods that can take sparsity into account.
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