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Abstract

In this paper, we investigate the convergence behaviour of a class of regularized
Newton methods for the solution of nonlinear inverse problems.

In order to keep the overall numerical effort as small as possible, we propose
to solve the linearized equations by certain semiiterative regularization methods, in
particular, iterations with optimal speed of convergence.

Our convergence rate analysis of this class of accelerated Newton-Landweber
methods contributes to the analysis of Newton-type regularization methods in two
ways: first, we show that under standard assumptions, accelerated Newton-Landweber
iterations yield optimal convergence rates under appropriate a priori stopping crite-
ria. Secondly, we prove inproved convergence rates for µ > 1/2 under an adequate
a posteriori stopping rule, thus extending existing results. Our theory naturally
applies to a wider class of Newton-type regularization methods.

We conclude with several examples and numerical tests confirming the theoret-
ical results, including a comparison to the Gauß-Newton method and the Newton-
Landweber iteration.

1 Introduction

Many mathematically and physically relevant problems are concerned with deter-
mining causes for a desired or an observed effect. As a general model for such inverse
problems, we consider the abstract operator equation

F (x) = y, (1)

where F : D(F ) ⊂ X → Y is a (nonlinear) operator between Hilbert spaces X and
Y. We are especially interested in the case, when a solution of (1) is ill-posed in the
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sense of Hadamard, in particular if a solution does not depend continuously on the
right hand side. If only perturbed data yδ with a bound on the noise level

‖y − yδ‖ ≤ δ (2)

are available, the solution of (1) has to be regularized in order to get reasonable
(stable) approximations.

Tikhonov regularization (cf., e.g., [3, 4]) is probably the most well known regu-
larization method for linear as well as nonlinear inverse problems. However, when
it comes to an implementation of Tikhonov regularization for nonlinear or even
large scale linear problems, iterative methods are often or even have to be used for
finding a minimizer of the Tikhonov functional. A more direct approach is offered
by iterative methods, which have been investigated in the framework of regulariza-
tion of nonlinear problems more recently (see, e.g., [1, 6, 8, 9, 12]). Beside simple
gradient-type iterations, like Landweber iteration (cf. [14]), Newton-type methods
seem to be especially attractive, due to their well known, fast convergence proper-
ties for well-posed problems. In order to take into account the ill-posed nature of
the problem (1), several variants of Newton’s method have been proposed for the
stable, iterative solution of inverse problems, e.g., the iteratively regularized Gauß-
Newton method [1, 10, 11, 12], the Levenberg-Marquardt method [6], a Newton-CG
algorithm [7] or a Newton-Landweber method (cf. [9, 10]).

For the analysis of regularization methods for nonlinear problems certain restric-
tions on the nonlinearity of F are needed. Similar to [8, 9], we require the following
nonlinearity conditions on F , which we assume to be Fréchet differentiable in a
neighbourhood Bρ(x

†) := {x ∈ X : ‖x − x†‖ < ρ} of a solution x† to (1):

F ′(x) = R(x̄, x)F ′(x̄) + Q(x̄, x), (3)

with
‖I − R(x̄, x)‖ ≤ CR < 1 (4)

and
‖Q(x̄, x)‖ ≤ CQ‖F ′(x̄)(x̄ − x)‖ (5)

for all x, x̄ ∈ Bρ(x
†). Additionally, we assume,

‖F ′(x)‖ ≤ 1, x ∈ Bρ(x
†), (6)

which can always be achieved by a proper scaling.
It is well known (cf. [17]), that a rate of convergence can only be expected under

an additional source condition on the difference of the a priori guess x0 and the true
solution x†, i.e., if there exist a µ > 0 and w ∈ N (F ′(x†)⊥) such that

x† − x0 = (F ′(x†)∗F ′(x†))µw. (7)

In case this difference is sufficiently smooth, i.e., (7) holds for some µ ≥ 1/2, only
Lipschitz continuity of the Fréchet-derivative of F , i.e.,

‖F ′(x̄) − F ′(x)‖ ≤ L‖x̄ − x‖ , (8)

for some L > 0 and all x, x̄ ∈ Bρ(x
†), is required instead of (3)-(5) for some of

our results. For linear problems, the source condition (7) can even be shown to be
necessary for a convergence rate of Hölder type (cf., e.g., [3]).
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Iterative methods are turned into regularizing algorithms by stopping the iter-
ation after an adequate number of steps. In contrast to a priori stopping criteria,
which explicitly use information like (7) for determinig the stopping index, a poste-
riori stopping rules, e.g., the discrepancy principle (cf. [3, 15])

‖yδ − F (xδ
k∗

)‖ < τδ ≤ ‖yδ − F (xδ
k)‖ , 0 ≤ k < k∗, (9)

for some τ > 1, allow to obtain optimal convergence rates without such information.

In this paper, we investigate a class of regularized Newton methods, i.e., itera-
tions of the form

xn+1 = x0 + gkn(A∗
nAn)A∗

n(y − F (xn) + An(xn − x0)), An := F ′(xn). (10)

where gkn is an appropriate regularization method used for the stable solution of
the linearized equations

F ′(xn)(xn+1 − xn) = y − F (xn) (11)

in each Newton step. We state and prove our results only for a class of accelerated
Newton-Landweber methods, i.e., iterations (10), where gkn repectively rk(λ) =
1 − λgk(λ) belongs to a class of semiiterative regularization methods,

rk(λ) = rk−1(λ) + mk(rk−1(λ) − rk−2(λ)) + wkλrk−1(λ), k ≥ 2 (12)

with optimal speed of convergence, i.e.,

ωµ(k) := ‖λµrk(λ)‖C[0,1] ≤ cµk−2µ, for 0 ≤ µ ≤ µ0. (13)

Nevertheless, the results extend natuarally to more general Newton-type methods,
i.e., if gkn in (10) is replaced by an appropriate regularization method gαn , which
will be pointed out at the end of Section 3.

The first result is concerned with convergence rates of accelerated Newton-
Landweber iterations under a priori stopping, extending the results of [9] to the
class of accelerated Newton-Landweber methods:

Theorem 1.1 Let x† denote a solution of (3), x0 such that

x0 − x† = (A∗A)µw, for some µ > 0, A := F ′(x†), (14)

and ‖w‖ ≤ ω with ω sufficiently small, in particular, x0 ∈ Bρ(x
†) for some suffi-

ciently small ρ > 0. Additionally, let yδ be such that (2) holds with δ sufficiently
small, and xn denote the iterates defined by (10) for a semiiterative method {rk}k∈N

with (13) for some µ0 ≥ 1, and let kn satisfy

1 ≤
kn

kn−1
≤ β for n ∈ N , and lim

n→∞
kn = ∞. (15)

for n ∈ N. If

(a) µ ≤ 1/2 and (3)-(5) holds, with Q = 0 for µ < 1/2, and 4β2µ+1CR ≤ 1,

or
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(b) µ > 1/2 and (8) holds,

and if

c
(ω

δ

)
1

2µ+1

≤ kN(δ) ≤ c
(ω

δ

)
1

2µ+1

,

for some 0 < c ≤ c ≤ c
1

2µ+1

µ , then

‖xn − x†‖ = O(δ
− 2µ

2µ+1 ω
1

2µ+1 ).

The assertion of this Theorem follow immediately from Proposition 3.3.

The second main result of this paper is concerned with convergence rates under
a posteriori stopping. In [10], optimal convergence rates

‖xδ
k − x†‖ = O(δ

2µ
2µ+1 ),

for Newton-type iterations have been shown for the range 0 < µ ≤ 1/2, yielding a
best possible rate of O(δ1/2). Including an additional lower bound on the number of
iterations in a discrepancy like stopping rule, we are able to show that better rates
than O(δ1/2) can be obtained for µ > 1/2. Consider the following

Stopping Rule 1 For given τ > 1, µmin > 1/2 and σ > 0, let n∗ = N(δ, yδ) be
the smallest integer, such that

k−(2µmin+1)
n∗

≤ σδ (16)

and
max{‖yδ − F (xn∗

)‖ , ‖yδ − F (xn∗−1)‖} ≤ τδ. (17)

Thus, the (outer) Newton iteration is stopped, when the first time two consecu-
tive residuals are less than τδ and a minimal number of inner iterations has been
performed. A similar criterion, but without (16) has been used in [10], to prove
convergence rates for µ ≤ 1/2. For accelerated Newton-Landweber iterations (10),
this stopping rule yields the following

Theorem 1.2 Let the assumptions of Theorem 1.1 be satisfied, and the iteration
(10) be stopped after n∗ = N(δ, yδ) steps according to the Stopping Rule 1 with
some τ > 1 sufficiently large, σ > 0 sufficiently small, and some µmin ≥ 1/2.
Additionally, let F satisfy (3)-(5) with Q = 0 for 0 < µ < 1/2. Then

kn∗
= O(δ−

1

2µ̄+1 ) (18)

with µ̄ = min(µ, µmin) and

‖xN(δ)δ − x†‖ = O(δf(µ)), (19)

where f(µ) is defined by

f(µ) =











2µ
2µ+1 , 0 < µ ≤ 1/2,

2µ
2µmin+1 , 1/2 < µ < 1,

min( 2µ̄
2µmin+1 , 2µ0−1

2µ0
), µ ≥ 1.

(20)
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In the range 0 < µ ≤ 1/2, these rates are optimal. The proof of this result and
some remarks are given in Section 3. The effect of improved convergence rates for
µ > 1/2 is illustrated in numerical tests in Section 4.

The outline of the paper is as follows: In Section 2, we formulate in more de-
tail the class of acclererated Newton-Landweber respectively accelerated Newton-
Landweber methods, we have in mind, and recall some convergence results for semi-
iterative regularization methods for linear problems. Section 3 then presents the
convergence rate analysis for the proposed Newton-type methods under the a priori
and a posteriori stopping rules of Theorem 1.1 and 1.2. In Section 4, we verify our
assumptions for several test examples, and present numerical tests confirming the
theoretical results.

2 A class of regularized Newton methods

Newton’s method for the solution of nonlinear problems (1) relies on the solution
of linearized equations (11), which, are usually ill-posed, if (3) is, and thus some
kind of regularization has to be used for their stable solution. Application of a
Tikhonov-type regularization with an appropriate regularization parameter αn, for
instance, yields

[F ′(xn)∗F ′(xn) + αnI](xn+1 − xn) = F ′(xn)∗(y − F (xn)) + αn(x0 − x̂n), (21)

which corresponds to the iteratively regularized Gauß-Newton (x̂n = xn), respec-
tively the Levenberg-Marquardt (x̂n = x0) method (cf. [1, 6]).

Alternatively, (11) can be solved by an iterative regularization method (inner
iteration), in which case, the Newton iteration takes the form (10). In this case, the
regularization method for the linerized problems (11) is specified by the iteration
polynomials gkn , and kn is an appropriate stopping index for the nth inner iteration
(10). For

gk+1(λ) =
k

∑

j=0

(1 − λ)j ,

which are the iteration polynomials of Landweber iteration, (10) amounts to the
Newton-Landweber iteration (cf. [9]). Since Landweber iteration is known to con-
verge rather slow, it seems advantageaous to use faster semiiterative regularization
methods for the solution of (11) (accelerated Landweber iterations (cf. [3, 5]).
We will call this class of Newton-type iterations accelerated Newton-Landweber and
investigate their stability and convergence behaviour in detail below.

2.1 Semiiterative regularization methods

Before we formulate and discuss the regularizing properties of the iterative algorithm
(10), we recall some results of the convergence theory for semiiterative regularization
method (12) (cf. [3, 5]), which will be needed later on. For this purpose, consider
the linear equation

Ax = yδ,
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with A : X → Y. Let gk(λ) define a semiiterative method and rk(λ) := 1 − λgk(λ)
be the corresponding residual polynomials. Then the approximation error xk − x†

and the propagated data error xk − xδ
k have the form

xk − x† = rk(A
∗A)(x0 − x†) and xδ

k − xk = gk(A
∗A)A∗(yδ − y), (22)

where xk, x
δ
k denote the iterates obtained for data y, yδ, respectively. The important

property, which lets a sequence of residual polynomials {rk}k∈N define a regular-
ization method is

ωµ(k) ≤ cµk−µ, 0 ≤ µ ≤ µ0, k ∈ N. (23)

A largest value µ0 for which (23) holds is often called qualification of the regulariza-
tion method under consideration. Landweber iteration, for instance, satisfies (23)
for any µ > 0, and thus has qualification µ0 = +∞.

Especially attractive from a numerical point of view are algorithms, that satisfy
the stronger estimate (13), which yield optimal rates of convergence with approx-
imately the square root of iterations compared to, e.g., Landweber iteration. As
shown in [5], such an estimate is the best possible (in terms of powers of k), which
motivates the notion of optimal speed of convergence for such methods. A prominent
example of semiiterative regularization methods with optimal speed of convergence
are the ν−methods by Brakhage (cf. [2, 5]), which are defined by (12) with m1 = 0,
w1 = (4ν + 2)/(4ν + 1), and

mk = (k−1)(2k−3)(2k+2ν−1)
(k+2ν−1)(2k+4ν−1)(2k+2ν−3) ,

wk = 4 (2k+2ν−1)(k+ν−1)
(k+2ν−1)(2k+2ν−1) , k > 1,

(24)

The ν−methods satisfy (13) for µ0 = ν and will also be used in our numerical tests
in Section 4.

The following theorem summarizes the main convergence results for semiiterative
regularization methods:

Theorem 2.1 (Theorem 6.11 in [3]) Let y ∈ R(A), and let the residual polyno-
mials rk satisfy (13) for some µ0 > 0. Then the semiiterative method {rk}k∈N is a
regularization method of optimal order for T †y ∈ R((T ∗T )µ) with 0 < µ ≤ µ0 − 1/2
provided the iteration is stopped with k∗ = k∗(δ, y

δ) according to the discrepancy

principle (9) with fixed τ > supk∈N ‖rk‖C[0,1]. In this case we have k∗ = O(δ−
1

2µ+1 )

and ‖xδ
k − x†‖ = O(δ

2µ
2µ+1 ). The same rate holds for 0 < µ ≤ µ0, if the iteration is

stopped according to the a priori rule k∗ = O(δ
− 1

2µ+1 ).

An analogous result holds for iterative methods satisfying only (23), in which case

one has k∗ = O(δ
− 2

2µ+1 ).

3 Convergence rate analysis

In [9], the convergence of some Newton-type methods under a priori stopping rules
has been investigated. The analysis there explicitly relies on certain properties of
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the regularization methods used for the solution of the linearized equations (11),
e.g.,

‖rk(A
∗A) − rk(A

∗
nAn)‖ ≤ C ‖A − An‖ ,

for bounded linear operators A, An, which are not verified for the general class of
semiiterative methods under consideration. Thus, in a first step, we will prove the
corresponding (a priori) convergence rate results also for our class of accelerated
Newton-Landweber methods.

3.1 A priori stopping

Our convergence analysis below is based on an interpretation of the source condition
x† − x0 ∈ R((A∗A)µ) in terms of R((A∗

nAn)µ):

Lemma 3.1 Let A, B, R be bounded linear operators between Hilbert spaces X and
Y. If B = RA with ‖I −R‖ < 1, then for every 0 < µ ≤ 1/2 and w ∈ X there exist
positive constants c, c and an element v ∈ X such that

(A∗A)µw = (B∗B)µv, (25)

with c‖w‖ ≤ ‖v‖ ≤ c‖w‖.

Proof. Observing that R((A∗A)1/2) = R(A∗) = R(B∗) = R((B∗B)1/2), the result
follows by the inequality of Heinz and duality arguments (cf., e.g., [10] for details).

The following lemma is based on an integral representation of fractional powers
of selfadjoint operators due to Krasnoselskii, see, e.g., [13]:

Lemma 3.2 Let A,B be linear bounded operators between Hilbert spaces. Then for
µ ≥ 0 we have

‖(A∗A)µ − (B∗B)µ‖

≤ c(µ)







‖A − B‖2µ, µ < 1/2,
‖A − B‖ [1 + ‖A‖ + ‖B‖ + | ln(‖A − B‖)|] , µ = 1/2,
‖A − B‖ (‖A‖ + ‖B‖)µ , µ > 1/2.

(26)

Proof. First note that by scaling, we can always assume ‖A‖ , ‖B‖ ≤ 1. Addi-
tionally, for A = B, the assertion is always true, so we may assume A 6= B. Then
observe that

(A∗A + tI)−1 − (B∗B + tI)−1

= −(A∗A + tI)−1(A∗A − B∗B)(B∗B + tI)−1

= −(A∗A + tI)−1[A∗(A − B) + (A∗ − B∗)B](B∗B + tI)−1,

which yields the following estimate

‖(A∗A + tI)−1 − (B∗B + tI)−1‖

≤ min

(

2‖A − B‖

t3/2
,
‖A − B‖(‖A‖ + ‖B‖)

t2
,
1

t

)

.
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Next, for µ ∈ (0, 1), we use the following identity (cf. [13]),

(A∗A)µ − (B∗B)µ =
sinµπ

π

∫ ∞

0
tµ[A∗A + tI)−1 − (B∗B + tI)−1]dt,

which yields

‖(A∗A)µ − (B∗B)µ‖

≤
sinµπ

π

[
∫ t1

0
tµ−1dt + 2‖A − B‖

∫ t2

t1

tµ−3/2dt + ‖A − B‖(‖A‖ + ‖B‖)

∫ ∞

t2

tµ−2dt

]

Now, the estimates for 0 < µ < 1 follows with the following setting: t1 ∼ ‖A−B‖2,
t2 = ∞ for 0 < µ < 1/2; t1 ∼ ‖A−B‖2, t2 ∼ ‖A−B‖ for 1/2 ≤ µ < 1. In the case
µ = 1/2, the logarithmic term in (26) is due to the second integral.

For µ = 1, we have

‖A∗A − B∗B‖ = ‖A∗(A − B) + (A∗ − B∗)B‖ ≤ ‖A − B‖(‖A‖ + ‖B‖).

Similarly, for 1 < µ ≤ 2, we have

(A∗A)µ−(B∗B)µ = (A∗A)µ/2[(A∗A)µ/2−(B∗B)µ/2]+[(A∗A)µ/2−(B∗B)µ/2](B∗B)µ/2

and thus with the above estimate for µ/2,

‖(A∗A)µ − (B∗B)µ‖

≤ c(µ/2)‖A − B‖(‖(A∗A)µ/2‖ + ‖(B∗B)µ/2‖)(‖A‖ + ‖B‖)µ/2.

The estimate for µ > 0 then follows in the same manner.

We are now in the position to derive an estimate of the iteration error in terms
of the number of inner iterations kn, which we assume to grow not too rapidly, i.e.,
(15) holds.

Proposition 3.3 Let x† denote a solution of (3), with

x0 − x† = (A∗A)µw, for some µ > 0, A := F ′(x†)

and ‖w‖ ≤ ω with ω sufficiently small, in particular x0 ∈ Bρ(x
†) for some suffi-

ciently small ρ > 0. Additionally, let yδ be such that (2) holds with δ sufficiently
small, and xn denote the iterates defined by (10) for a semiiterative method {rk}k∈N

with (13) for some µ0 ≥ 1, and let kn satisfy (15) for n ∈ N. If

(a) µ ≤ 1/2 and (3)-(5) holds, with Q = 0 for µ < 1/2, and 4β2µ+1CR ≤ 1,

or if

(b) µ > 1/2 and (8) holds,

then there exists a constant Cµ independent of n and δ, such that

‖xδ
n+1 − x†‖ ≤ Cµk−2µ

n ω, 0 ≤ n < N(δ) (27)

for µ ≤ µ0 and, with An+1 = F ′(xδ
n+1),

‖An+1(x
δ
n+1 − x†)‖ ≤ Cµk−2µ−1

n ω, 0 ≤ n < N(δ) (28)
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for µ ≤ µ0 − 1/2, where N(δ) denotes the largest integer such that

kn ≤
(

cµ
ω

δ

)
1

2µ+1

, (29)

for all 0 ≤ n ≤ N(δ). Additionally, xn ∈ Bρ(x
†) for n ≤ N(δ).

Proof. We start with the case µ < 1/2 and prove the assertion by induction: for
n = 0 the result follows if δ and ω are small enough, since gk0

(A∗
0A0) is a continuous

operator. Now let (27)-(29) hold for some n > 0, Cµ > 0, and xn ∈ Bρ(x
†). Then

with the notation eδ
n = xδ

n − x† and (10), we get the closed form representation

eδ
n+1 = rkn(A∗

nAn)(x0 − x†) + gkn(A∗
nAn)A∗

n(yδ − y + ln), (30)

with ln =
∫ 1
0 (F ′(x† + teδ

n) − F ′(xδ
n))eδ

ndt. Together with wn such that (A∗A)µw =
(A∗

nAn)µwn, which exists by Lemma 3.1, the nonlinearity conditions (3), (4) yield

‖en+1‖ ≤ ‖rkn(A∗
nAn)(x0 − x†‖ + ‖gkn(A∗

nAn)A∗
n(yδ − y + ln)‖

≤ ‖rkn(A∗
nAn)(A∗

nAn)µwn‖ + 2knδ

+‖gk(A
∗
nAn)A∗

n

∫ 1

0
(R(x† + teδ

n, xδ
n) − I)dt‖ ‖Aneδ

n‖

≤ k−2µ
n ω

[

cµ + 2CRCµβ2µ+1 + 2k1+2µ
n δ/ω

]

.

Now, by assumption 4β2µ+1CR ≤ 1, and it suffices to require

cµ + 2k1+2µ
n δ/ω ≤

Cµ

2
,

which holds for Cµ ≥ 6cµ and kn ≤
(

cµ
ω
δ

)
1

2µ+1 . Furthermore, if ω is sufficiently
small, xδ

n+1 ∈ Bρ(x
†) follows by (27). In the same manner, one derives the estimate

‖Anen+1‖ ≤
Cµ

1 + CR
k−2µ−1

n ω,

under the additional condition

Cµ ≥ 4cµ+1/2 + 8
δ

ω
,

where we used CR ≤ 1
4 . Finally, by (3) and (4), we have

‖An+1e
δ
n+1‖ ≤ (1 + CR)‖Aneδ

n+1‖ ≤ Cµk−2µ−1
n ω.

This yields (27), (28) for 0 < µ < 1/2.

The case µ = 1/2 is treated in a similar way, using

(A∗A)1/2w = A∗w̃ = (A∗
n − Q(x†, xn)∗)[R(x†, xn)∗]−1w̃,

cf. (3)-(5).
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We now turn to the case µ > 1/2. Similarily as above, we get with (30), (8) and
Lemma 3.2,

‖eδ
n+1‖ ≤ ‖rkn(A∗

nAn)(A∗
nAn)µw‖ + ‖rkn(A∗

nAn)[(A∗A)µ − (A∗
nAn)µ]w‖

+‖gkn(A∗
nAn)A∗

n(yδ − y + ln)‖

≤ cµk−2µ
n ω + 2C(µ)L‖en‖ω + 2kn[δ + L‖en‖

2]

≤ k−2µ
n ω

[

cµ + 2C(µ)β2µCµLω + 2β4µC2
µLk1−2µ

n ω + 2k1+2µ
n δ/ω

]

.

For sufficiently large Cµ ≥ 6cµ and sufficiently small ω, such that

4[C(µ)β2µ + β4µCµk1−2µ
n ]Lω ≤ 1,

this yields (27), and xδ
n ∈ Bρ(x

†) as in the case µ < 1/2. Note, that k0 ≤
(

cµ
ω
δ

)
1

2µ+1

for δ sufficiently small. The estimate for ‖F ′(xn+1)e
δ
n+1‖ is derived in the same way

as above where we require (13) to hold for µ0 ≥ µ + 1/2 only for (28).

Remark 3.4 Proposition 3.3 immediately implies the convergence rate result of
Theorem 1.1. An estimate for µ ≥ 1/2 under the nonlinearity condition (3) with
Q 6= 0 can be proven under additional, restrictive assumptions on the regularization
method {rk}k∈N for the linearized problem (cf. [10, Lemma 2.1]), which have not
been verified for general semiiterative methods, and thus the results there are not
applicable in our case.

Remark 3.5 Theorem 1.1 states optimal rates of convergence for 0 < µ ≤ µ0−1/2,
extending the corresponding results for the iteratively regularized Gauß-Newton
method and the Newton-Landweber iteration in [9] to the class of accelerated
Newton-Landweber methods considered in this paper. In [9], special properties
of the applied regularization methods, e.g.,

‖[rk(A
∗
nAn) − rk(A

∗A)](A∗A)µ‖ ≤ C ‖An − A‖ ,

were used, which could not been verified for the general class of semiiterative al-
gorithms under consideration. In principle, the above results also apply to more
general regularization algorithms used for the solution of the linearized problems,
in which case additional (standard) conditions on gα have to be satisfied, (cf. [3]),
which are automatically fulfilled for iterative methods by Markov’s inequality. In
particular, the above results hold with obvious modification also for iterative regu-
larization methods satisfying only the weaker condition (23) instead of (13). Con-
vergence for µ = 0 under the weaker nonlinearity condition

‖F (x) − F (x†) − F ′(x†)(x − x†)‖ ≤ η‖F (x) − F (x†)‖ , η < 1/2, (31)

has been proven in [6]. If the increasing sequence of inner iterations kn satisfies

kn ∼ βn, n ≥ 0, (32)

with some β > 1, then the overall number of iterations is bounded by

k∗ =

N(δ)
∑

n=0

kn = O(δ−
1

2µ+1 ),

whereas for the Newton-Landweber iteration, one only has k∗ = O(δ−
2

2µ+1 ), cf. [9].
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3.2 A posteriori stopping

In [10], convergence rates under an appropriate a posteriori stopping rule are proven
in case (14) holds for some 0 < µ ≤ 1/2. The aim of this section is to show that
better convergence rates than O(δ1/2) can be obtained for µ > 1/2, if a lower bound
(16) on the number of iterations is included in the stopping rule. The following
Lemma guarantees stability of our class of Newton-type methods (10), when stopped
according to the stopping rule 1:

Lemma 3.6 Let the assumption of Proposition 3.3 be valid, and the iteration (10)
(with rk satisfying (13) for µ ≤ µ0) be stopped according to the stopping rule 1 with
1/2 < µmin ≤ µ0 − 1/2, τ > 1 sufficiently large, and σ > 0 sufficiently small. Then,
for µ ≤ µmin, (29) holds, i.e.,

kn∗
≤

(

cµ
ω

δ

)
1

2µ+1

. (33)

Proof. The assertion follows from Proposition 3.3.

In the convergence rate proof below, we utilize the following Lemma:

Lemma 3.7 Let A, B, Q be bounded, linear operators between Hilbert spaces X
and Y with ‖A‖ , ‖B‖ ≤ 1, and R be a linear operator on Y, such that

B = RA + Q and ‖I − R‖ < 1. (34)

Then, for µ > 1/2,

(A∗A)µw = (B∗B)µwB + B∗PwP + Q∗wQ, (35)

with

‖P‖ ≤ c (‖I − R‖min(2µ−1,1) + ‖Q‖),

and ‖wB‖ , ‖wP ‖ , ‖wQ‖ ≤ c‖w‖.

Proof. We start with the estimate for 1/2 < µ < 1: Since R(A∗) = R((A∗A)1/2),
there exists a w̃ such that

(A∗A)µw = (A∗A)νA∗w̃ = A∗(AA∗)νw̃

with ν = µ − 1/2. Now rewrite

A∗(AA∗)ν = B∗(R−1)∗(AA∗)ν − Q∗(R−1)∗(AA∗)ν

= B∗(BB∗)ν + B∗((R−1)∗ − I)(BB∗)ν

+ B∗(R−1)∗[(AA∗)ν − (BB∗)ν ] − Q∗(R−1)∗(AA∗)ν

The first assertion now follows with P = ((R−1)∗ − I)(BB∗)ν + (R−1)∗[(AA∗)ν −
(BB∗)ν ] and Lemma 3.2.

Next consider the case µ = 1, where we have

A∗A = B∗B + B∗[((R−1)∗R−1 − I)B − (R−1)∗R−1Q]

− Q∗((R−1)∗R−1B − (R−1)∗R−1Q),

11



which yields the assertion with (3). The case µ ∈ N can be treated similarily, using
the expansion

(B∗B)µ − (A∗A)µ =

µ
∑

j=1

(B∗B)µ−j(B∗B − A∗A)(A∗A)j−1.

Finally, for n < µ < n + 1, we use the decomposition

(A∗A)µ = (A∗A)n(A∗A)µ−n,

and proceed as in the case 1/2 < µ < 1.

We are now in the position to prove Theorem 1.2:

Proof of Theorem 1.2. We start with the case 0 < µ ≤ 1/2 and Q = 0:
Observe, that for n = n∗ and n = n∗ − 1, by (2) and (3),(4),

‖Aneδ
n‖ = ‖y − F (xδ

n) −

∫ 1

0
[F ′(xδ

n + teδ
n) − An]eδ

ndt‖

≤ δ + ‖F (xδ
n) − yδ‖ + CR‖Aneδ

n‖

holds, and hence, with CR < 1 and (17),

‖Aneδ
n‖ ≤ Cδ, for n ∈ {n∗ − 1, n∗}. (36)

Next, by (10), and denoting n = n∗ − 1, we have

Aneδ
n∗ = An(x0 − x†) + Angkn(A∗

nAn)A∗
n[yδ − F (xδ

n) + An(xδ
n − x0)]

= Anrkn(A∗
nAn)(x0 − x†) + AnA∗

ngkn(AnA∗
n)[yδ − F (xδ

n) + An(xδ
n − x†)]

and thus with (3),(4), (36) and (17),

‖Anrkn(A∗
nAn)(x0 − x†)‖ = ‖Aneδ

n∗

− Angkn(A∗
nAn)A∗

n[yδ − F (xδ
n) + An(xδ

n − x†)]‖

≤ (1 + CR)‖Aneδ
n∗

‖ + ‖yδ − F (xδ
n)‖ + ‖Aneδ

n‖

≤ Cδ.

Finally, the error can be estimated as follows:

‖xδ
n∗

− x†‖ ≤ ‖rkn(A∗
nAn)(A∗A)µw‖ + ‖gkn(A∗

nAn)A∗
n(yδ − y − ln)‖

≤ ‖rkn(A∗
nAn)(A∗

nAn)µwn‖ + 2kn(δ + cCR‖Aneδ
n‖)

≤ ‖rkn(A∗
nAn)(A∗

nAn)µwn‖ + cknδ

Now, the interpolation inequality and (20) yield

‖rkn(A∗
nAn)(A∗

nAn)µwn‖ ≤ 2‖Anrkn(A∗
nAn)(A∗

nAn)µwn‖
2µ

2µ+1 ‖wn‖
1

2µ+1

≤ cδ
2µ

2µ+1 ω
1

2µ+1 ,

which completes the proof for the case µ ≤ 1/2, since kn∗ = O(δ−
1

2µ+1 ) (cf. Lemma
3.6).
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The case µ = 1/2 and Q 6= 0, follows by with ‖Q(xδ
n, x†)‖ ≤ CQ‖Aneδ

n‖ and minor
modifications.

For 1/2 < µ < 1, Lemma 3.7 with B replaced by An yields together with
‖xδ

k − x†‖ ≤ Cδ1/2 (see above)

‖rkn(A∗
nAn)(A∗A)µw‖ ≤ c‖rkn(A∗

nAn)(A∗
nAn)µ‖ ‖w‖

+ (‖rkn(A∗
nAn)A∗

nP‖ + ‖Q‖)‖w‖ (37)

≤ C[k−2µ
n + k−1

n δ
2µ−1

2 + δ]‖w‖ .

By Lemma 3.6, and the lower bound on the number of iterations, we have

cδ
− 1

2µmin+1 ≤ kn ≤ Cδ
− 1

2µ+1 ,

and hence

‖xδ
k − x†‖ ≤ C ‖w‖(k−2µ

n + knδ) ≤ δ
min( 2µ

2µmin+1
, 2µ
2µ+1

)
.

For µ ≥ 1, the last estimate in (37) is replaced by

≤ C[k−2µ
n + k−1

n δ1/2 + δ]‖w‖ .

The rest follows similarly as above. Note that Proposition 3.3 can only be applied
for µ ≤ µ0 − 1/2, since we implicitly used the estimate (28) to bound the number
of iterations.

Remark 3.8 The number µmin in (16) determines the minimal number of inner
iterations, which have to be performed before the iteration may be stopped by the
discrepancy principle. The larger µmin is, the lower the corresponding bound in
(16) on the minimal number of inner iterations. Depending on the specific choice
of µmin, a second range of values of µ exists, for which improved convergence can
be guaranteed, e.g., with µmin = 1 and µ0 = 3/2, Theorem 1.2 guarantees optimal
convergence rates for µ ∈ (0, 1/2] ∩ {1} and improved convergence for µ ∈ (3/4, 1)
(cf. Figure 1).

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

f(µ)
optimal

Figure 1: Convergence behaviour guaranteed by Theorem 1.2 for µmin = 1
and µ0 ≥ 3/2.

For µmin = 7/4, the lower bound of iterations, which have to be performed before

stopping may occur is kN(δ) ∼ δ−
2

9 , which is less than the number of iterations one
would expect by Theorem 1.1. Note, that the nonlinearity conditions in Theorem
1.2 are stronger than the ones for the a priori result of Theorem 1.1 in casse µ > 1/2.
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Remark 3.9 Like the results above, Theorem 1.2 with kn replaced by αn gener-
alizes to arbitrary regularization methods {gα}α>0, as long as the usual conditions
(cf. [3]) are satisfied. Note, that the iteratively regularized Gauß-Newton method
exhibits saturation at µ = 1/2, which is due to the finite qualification of Tikhonov
regularization used for the solution of the linearized problems. Hence, in view of
Theorem 1.2, semiiterative methods for the solution of (11) with sufficiently high
qualification will show improved convergence in comparison with the iteratively reg-
ularized Gausß-Newton method for µ > 1/2 (cf. the numerical results in Section
4).

The rates of Theorem 1.2 can also be derived for iterations {rn} only satisfying
the weaker estimate (23) instead of (13). There, however, the estimate (18) for

the number of iterations has to be replaced by kN(δ) = O(δ
− 2

2µ+1 ), which shows
that, as for linear problems, accelerated Newton-Landweber methods should yield
a significant speed-up in comparison to, e.g., the Newton-Landweber method.

4 Some examples and numerical tests

In this section, we give some examples and verify the assumptions made in the
convergence rate results of the previous section. Additionally, we present numerical
tests confirming the theoretical results including a comparison of an accelerated
Newton-Landweber iteration (the linearized equations are solved by a ν−method
with ν = 2, with the iteratively regularized Gauß-Newton method and the Newton-
Landweber iteration (cf. [9]).

In the numerical tests we use the following sequence of iteration numbers re-
spectively regularization parameters

kn = k0β
n, and αn = α0/β

n. (38)

The equations are discretized by piecewise linear finite elements (both, the param-
eter and state variables). In order to avoid inverse crimes, the data are calculated
on a finer grid and random noise is added.

We start with a nonlinear integral equation and then turn to the investigation
of certain parameter identification problems:

Example 4.1 A nonlinear Hammerstein integral equation, cf. [16].
Let F : H1[0, 1] → L2[0, 1] be defined by

(F (x))(s) =

∫ s

0
x(t)2dt,

with Fréchet derivative given by

(F ′(x)h)(s) = 2

∫ s

0
x(t)h(t)dt.

If x† ≥ γ > 0, this yields

(F ′(x)h)(s) =

∫ s

0

x(t)

x†(t)
[F ′(x†)(h)]′(t)dt. (39)
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Since x ∈ H1[0, 1], we have x̄ ≥ γ̄ > 0 for x̄ ∈ Bρ(x
†) with ρ sufficiently small, and

thus x† can be replaced by x̄ in (39) yielding assumptions (3)-(5) with Q = 0 and

(R(x̄, x)v)(s) =
x(s)

x̄(s)
v(s) −

∫ s

0
[
x(t)

x̄(t)
]′v(t)dt.

This in turn yields ‖R(x̄, x) − I‖ ≤ c‖x − x̄‖ .

In a first numerical test, we try to identify

x† = 3/2 − |erf(4(t − 1/2))|, (40)

from a starting guess x0 = 1/2. We choose β = 2, k0 = 5 and α0 = 0.1. The
iterations are stopped according to (17) with τ = 1.2. The results or the numerical
test are listed in Table 1.

δ/‖y‖ n∗
accNLW

erraccNLW n∗
IRGN

errIRGN n∗
NLW

errNLW

0.08 6 0.6025 7 0.6864 9 0.6616
0.04 7 0.4065 9 0.5186 11 0.4904
0.02 7 0.4429 10 0.4807 12 0.4557
0.01 8 0.3577 12 0.3761 13 0.4022
0.005 9 0.2901 13 0.3382 15 0.3289

Table 1: Iteration numbers n∗ and error ‖xδ
n∗ − x†‖ for the acceler-

ated Newton-Landweber (accNLW), the iteratively-regularized Gauß-Newton
(IRGN) and the Newton-Landweber method (NLW) applied to Example 4.1
and (40).

As expected, the number of Newton iterations grows logarithmically with de-
creasing δ. The three iterations yield very similar results and a convergence rate of
approximately δ0.25.

In a second test, we consider the reconstruction of a smooth solution

x† = t + 10−6(196145 − 41286t2 + 19775t4 + 70t6 + 436t7), (41)

from a starting value x0 = t. It was shown in [16] in this case (7) holds with
µ = 3/2 and thus a rate of δ3/4 is optimal whereas only a rate of O(δ1/2) can be
expected for the Gauß-Newton method. The results in Table 2 were obtained by
stopping the iteration according to (17) without the additional lower bound on the
iteration number. The corresponding convergence rates are approximately O(δ0.5)
for all methods. For the numerical results listed in Table 3, an additional bound
on the lower number of iterations (cf. (17)) has been used, i.e., n∗ ≥ c1 + c2 ∗
N , where N denotes the index of the noise level, i.e., δ ∼ 0.5N . Here we chose
c1 = 2 for all iterations and c2 = 1 for the accelerated Newton-Landweber and the
iteratively regularized Gauß-Newton method, and c2 = 2 for the Newton-Landweber
iteration. The results correspond to rates δ0.77, and δ0.78 for the accelerated Newton-
Landweber and the Newton-Landweber method, and δ0.48 for the Gauß-Newton
method.
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δ/‖y‖ n∗
accNLW

erraccNLW n∗
IRGN

errIRGN n∗
NLW

errNLW

0.02 2 0.10972 2 0.15824 2 0.11807
0.01 2 0.10829 4 0.10133 3 0.10956
0.005 4 0.03474 5 0.06884 5 0.06569
0.0025 4 0.03759 6 0.05006 6 0.04312
0.00125 4 0.03874 7 0.04019 7 0.03442

Table 2: Iteration numbers n∗ and error ‖xδ
n∗ − x†‖ for the acceler-

ated Newton-Landweber (accNLW), the iteratively-regularized Gauß-Newton
(IRGN) and the Newton-Landweber method (NLW) applied to Example 4.1
and (41).

δ/‖y‖ n∗
accNLW

erraccNLW n∗
IRGN

errIRGN n∗
NLW

errNLW

0.02 2 0.10522 2 0.15476 2 0.11507
0.01 3 0.07800 4 0.09954 4 0.09009
0.005 4 0.03781 5 0.06814 6 0.04243
0.0025 5 0.02050 6 0.04994 8 0.02376
0.00125 6 0.01314 7 0.04114 10 0.01484

Table 3: Iteration numbers n∗ and error ‖xδ
n∗ − x†‖ for the acceler-

ated Newton-Landweber (accNLW), the iteratively-regularized Gauß-Newton
(IRGN) and the Newton-Landweber method (NLW) applied to Example 4.1bb.

Example 4.2 Parameter identification 1, cf. [8]
In this example we try to identify the parameter c in the elliptic equation

−∆u + cu = f in Ω,
u = g in ∂Ω,

(42)

from distributed measurements of the state u.
We assume Ω to be an interval in R1 or a bounded domain in R2 or R3 with

smooth boundary (or a parallelepiped), f ∈ L2(Ω) and g ∈ H3/2(∂Ω). The non-
linear operator F : D(F ) ⊂ L2(Ω) → L2(Ω) is defined as the parameter-to-solution
mapping F (c) = u(c), which is well-defined and Fréchet differentiable on

D(F ) := {c ∈ L2(Ω) : ‖c − c‖ ≤ γ for some c ≥ 0 a.e.}

where u(c) denotes the solution of (42) and γ > 0 has to be sufficiently small. In
this setting, we have

F ′(c)∗w = u(c)A(c)−1w,

where A(c) : H2(Ω) ∩ H1
0 (Ω) → L2(Ω) is defined by A(c)u = −∆u + cu. If u(c†) ≥

κ > 0 a.e. in Ω, then for all c with ‖c − c†‖ ≤ ρ ≤ γ (see [8] for details)

F ′(c)∗ = F ′(c†)Rc(c
†), (43)

with
‖Rc(c

†) − I‖ ≤ C ‖c − c†‖0.

The estimate is again valid for c̄ ∈ Bρ(c
†), since by continuity of the parameter to

solution map between spaces L2 and H2 ∩ H1
0 we have u(c̄) ≥ κρ for some κρ > 0
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as long as ρ > 0 is small enough.

For a numerical test, we consider the two dimensional case Ω = [0, 1]2, set g = 1,
f = 1, α0 = 0.1, k0 = 5, and try to identify

c† = 1 + sign(x − 1/2)sign(y − 1/2)

from the initial guess c0 = 0. By (43) we have R(F ′(c†)∗) ⊂ H1
0(Ω)∩H2(Ω). Thus,

c† − c0 /∈ R((F ′(c†)∗F ′(c†))µ) for any µ > 1/8, and at most a convergence rate of
O(δ1/5) can be expected. The results of the numerical reconstruction are listed in
Table 4. The corresponding convergence rates lie between δ0.24 and δ0.22 for all

δ/‖u‖ n∗
accNLW

erraccNLW n∗
IRGN

errIRGN n∗
NLW

errNLW

0.08 1 1.0934 2 0.9866 2 1.0745
0.04 3 0.7191 4 0.7111 5 0.7234
0.02 4 0.6107 5 0.6369 6 0.6440
0.01 4 0.6051 6 0.5857 7 0.5959
0.005 5 0.5166 8 0.4932 9 0.5036

Table 4: Iteration numbers n∗ and error ‖xδ
n∗ − x†‖ for the acceler-

ated Newton-Landweber (accNLW), the iteratively-regularized Gauß-Newton
(IRGN) and the Newton-Landweber method (NLW) applied to Example 4.2.

methods.

Example 4.3 Parameter identification 2.
We study the identification of a diffusion coefficient a in

−∇ · (a∇u) = f, u|∂Ω = 0, (44)

from distributed measurements of the state u. The operator F : K ⊂ H1(Ω) →
L2(Ω) is defined by the parameter-to-solution mapping F (a) := u(a), where u(a)
denotes the solution of (44). Let A(a) with D(A(a)) = H2(Ω) ∩H2(Ω) ⊂ L2(Ω) be
defined by A(a)u = −∇ · (a∇u), then F (a) = A(a)−1f and

F ′(a)h = −A(a)−1A(h)F (a)

= −A(a)−1A(h)F (b) + A(a)−1A(h)[F (b) − F (a)]

= A(a)−1A(b)F ′(b)h + A(a)−1A(h)[F (b) − F (a)]

= R(a, b)F ′(b)h + Q(a, b)h,

which shows (3). Additionally, we have ‖R(a, b) − I‖ ≤ c‖a − b‖ and ‖Q‖ ≤
‖F (a) − F (b)‖ . It was shown in [8], that F (a) satisfies the nonlinearity condition
(31), which yields

‖F (a) − F (b)‖ ∼ ‖F ′(a)(a − b)‖ ∼ ‖F ′(b)(a − b)‖ ,

and thus (5) holds.
As a numerical test, we try to reconstruct

q† = 1 + 0.5 sin(πx) sin(2πy),
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δ/‖u‖ n∗
accNLW

erraccNLW n∗
IRGN

errIRGN n∗
NLW

errNLW

0.08 1 0.2328 1 0.2340 1 0.2328
0.04 1 0.2319 1 0.2333 1 0.2320
0.02 4 0.1312 5 0.1442 6 0.1395
0.01 5 0.0626 7 0.0847 8 0.0757
0.005 6 0.0307 8 0.0572 9 0.0506

Table 5: Iteration numbers n∗ and error ‖xδ
n∗ − x†‖ for the acceler-

ated Newton-Landweber (accNLW), the iteratively-regularized Gauß-Newton
(IRGN) and the Newton-Landweber method (NLW) applied to Example 4.3.

from the initial guess q0 = 0.5. As in the previous example, we choose β = 2
and τ = 1.5. The results of the numerical reconstruction are listed in Table
5. The corresponding convergence rates are O(δ0.77) and O(δ0.60) for the accel-
erated Newton-Landweber and Newton-Landweber iteration, while the rate for the
iteratively-regularized Gauß-Newton method is only O(δ0.55). Like in Example 4.1,
the Newton-Iterative methods exhibit improved convergence when stopped accord-
ing to the modified discrepancy principle (17).

5 Conclusions

A class of Newton-type iterations has been analyzed in the framework of regulariza-
tion. The results of this paper contribute to the convergence analysis of Newton-type
methods for the solution of ill-posed problems in two ways: first, the convergence
theory of Newton-type iterations (cf., e.g., [9]) are extended to the proposed class
of accelerated Newton-Landweber iterations. Secondly, improved convergence rates
can be achieved when the iteration is stopped according to a modified discrep-
ancy principle, where the minimal number of iterations is bounded from below. As
shown in our numerical tests, the proposed accelerated Newton-Landweber method
may yield faster convergence than the iteratively-regularized Gauß-Newton method,
while needing much fewer inner iterations than the Newton-Landweber method.

Some open question in our convergence analysis are, if the convergence rates
(cf. Theorem 1.2 and Remark 3.8) are optimal under the given assumptions, in

particular, if the rates O(δ
2µ

2µ+1 ) can also be established for the range µ ∈ (1/2, µmin),
and/or if the Lipschitz condition (8) suffices to obtain the convergence rates in case
µ > 1/2.
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