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Abstract

The inverse problem of electrocardiography describes the recon-
struction of the cardiac electrophysiological activity from remote mea-
surements of its generated electrical potential. In this work we present
a method to solve this ill-posed problem in real time under simultane-
ous regularization in time and space. Furthermore we propose a fast
post-processing step that recovers the speed of the traveling potential.

Numerical examples are presented to illustrate the robustness and
efficiency of the new method.

1 Introduction

In the inverse problem of electrocardiology the aim is to recover electro-
physiological activity of the heart without measuring directly on its surface
(see [19] for a review). In the classical setup the data are acquired by plac-
ing electrodes (typically 64) on the torso surface to recover the epicardial
potential [9, 22, 24]. This is a non-invasive technique, but only yields a very
low resolution (in particular due to the partly large distance between elec-
trodes and heart). Recently an alternative method has been proposed: Via
a catheter a balloon with 64 electrodes on its surface is moved into the right
atrium to recover the endocardial potential [29]. The goal is to obtain better
reconstructions than with the standard technique.
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Considering the usual model for solving the inverse problem of electrocardiol-
ogy [11, 19], from the mathematical point of view, both techniques lead to a
severely ill-posed problem related to the Laplace equation, where the Cauchy
data (potential and electrical field) of the solution are known in a part of the
boundary of the physical domain and no information about boundary con-
ditions in the remaining part of the boundary is available. In both cases the
measurements cannot be taken directly on the heart surface, and therefore
the solution is very sensitive to small errors in data; to solve the problem in
a stable way we have to apply regularization techniques.

Concerning the unknown in the inverse problem of electrocardiography there
are two different approaches:

Identification of the endocardial potential. This approach is valid for
the diagnosis of any dysfunction in the myocardial activity and yields
a linear ill-posed problem. In [4] a natural regularization is proposed,
where constraints in space and time are imposed; but unfortunately
the resulting system is extremely large and therefore very expensive to
solve. We present a careful implementation of a similar approach with
multiple restrictions in order to obtain the solutions in real time.

In [24] a regularization based on inequalities to ensure the monotonic
behaviour of the transmembrane potential pattern (TMP) is applied.
This approach yields a quadratic optimization problem with linear re-
strictions; as reported in [24] solving this problem takes several hours.

Finally, in [17, 18] it is proposed to interpret the data values as a
matrix and apply a singular value decomposition of this matrix (not
the operator!) to filter the noise. Nevertheless it is not clear that
the noise has any relation with such a decomposition, moreover this
approach involves infinitely many regularization parameters without
giving a sound rule for determining these.

Identification of the myocardial activation time. In this approach it
is assumed that the shape of the TMP is known, and that all cells have
the same TMP (also called activation function). The latter assumption
is valid in healthy tissue and also in some pathological situations, e. g.,
the Wolf-Parkinson-White syndrome, but is not valid for the important
cases of infarcts or ischemia.

In [16, 22] it is shown that knowledge of critical points and critical
values of the activation time can in principle be used to stabilize the
problem. Nonetheless, the resulting methods are difficult to be imple-
mented in an automated way.
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In general, approaches for recovering the activation time directly lead
to a reduction of the dimension by one but also to large nonlinear and
non-convex optimization problems.

Both approaches were compared in different situations in [8, 9] where it
turned out that (under optimal choice of parameters) they perform similarly.

In this work we propose a different strategy: We present an efficient algorithm
to solve the problem of the first approach in real-time. Instead of determining
the activation time afterwards, we propose to use a post processing step to
recover the velocity of the wave on the surface. In contrast to the methods
described above, it is possible to perform this step without knowledge of the
TMP. Moreover, it can again be implemented in real-time, and gives similar
information as the activation time in a stable way.

We exemplify the new techniques by applying them to a 2D-problem closely
related to the method involving interior measurements on a balloon. This
simplified problem still contains the essential complications of the corre-
sponding 3D problems, especially those associated to the number of un-
knowns and the computation time; furthermore the singular values decay
equally fast. The main difference is that determining a tangential derivative
in the 2D problem is more straightforward than the computation of surface
derivatives in a 3D problem.

Another point we want to discuss is the choice of regularization parame-
ters. A crucial point is to choose these parameters such that the aspiration
“the lower the noise level, the more accurate the solution” is fulfilled, i. e.,
for the solution of this problem a convergent regularization strategy [13]
should be used. In the context of the inverse problem of endocardiology very
often noise free strategies are applied to choose regularization parameters
(e. g. [4, 8, 9, 11, 17, 18, 24]). In section 3 we want to recall that noise
free methods can never yield convergent regularization methods in the sense
mentioned above, the deeper reason behind this fact is a classical result due
to Bakushinskii [2]. In contrast the discrepancy principle yields convergence
rates of optimal order.

This report is organized as follows. In sections 2 and 3 we present theoretical
results on the behavior of the forward and the inverse problem, and show
that under weak assumptions on the true solution the discrepancy principle
yields an order-optimal rate of convergence. The main results of this paper
are contained in sections 4 and 5 where we describe how the linear problem
can be solved in real-time, and how the speed of the wave can be detected
without knowledge of the shape of the TMP. Finally numerical examples
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are given in section 6 to illustrate the efficiency and robustness of the new
method. The appendix contains the proof of one of the theorems and a
detailed description of the boundary element method that is used in order to
solve the inverse problem.

In the next section we analyze properties of the forward operator, i. e., the
operator that maps a potential on the endocardium to a corresponding mea-
surement on the balloon.

2 Forward Problem

The forward problem we now consider is the mapping of potentials on the
surface of the heart onto corresponding potentials on the balloon. Although
the electrocardial potential changes over time, we can deal with a sequence
of electrostatic problems, instead of an electrodynamic one—the time de-
pendence is due to chemical reactions and cell-to-cell interaction, not due to
electrodynamic effects.

The proper model of the problem under consideration is Laplace’s equation
in Ω ⊂ R3, where Ω is a smooth deformation of the set {x ∈ R3 | 1/2 < ‖x‖ <
1}, and ∂Ω = Γo ∪ Γi, with Dirichlet conditions on the outer boundary Γo

and Neumann conditions on the inner boundary Γi.

The forward problem can be formulated via the following boundary value
problem

∆u = 0 in Ω (1a)

u = uo on Γo (1b)

∂u

∂ν
= 0 on Γi (1c)

where ∂/∂ν denotes the normal derivative. The unknown is ui := u|Γi
, the

potential on the balloon.

The Neumann-condition (1c) on the balloon is due to current conservation:
since the balloon is insulated, no current can flow through its boundary and
any current close to it must be tangential to the surface. Since blood is a
conducting fluid, we obtain via Ohm’s law that also the electrical field near
the balloon is tangential (cf. [10]).

In order to show the main difficulties and some powerful techniques to solve
the inverse problem explained in section 3, we investigate a closely related
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Figure 1: Domain of the test problem.

two-dimensional problem. We want to emphasize that all methods proposed
in the following can be implemented such that—given the same number of
electrodes—there is no significant increase in the computation time when
they are applied to the full 3D-setting.

So from now on we consider a 2D test problem as shown in Figure 1. The
inner and the outer boundary Γi and Γo now correspond to concentric circles
with radii Ri and Ro respectively.

The forward problem is to determine the potential u on Γi (the balloon),
given uo on Γo (the endocardium). This problem can be formulated via a
linear operator A, which maps a function uo on Γo to the corresponding
potential ui on Γi.

A : L2(Γo) → L2(Γi)
uo 7→ ui := u|Γi

where u solves problem (1)
(2)

Due to the radial setup of problem (1), it can be solved analytically by
separation of variables, to this end we need Fourier-series.
Notation 2.1 (Fourier-series). For the coefficients of the Fourier-series of
a 2π-periodic function u in L2([0, 2π]) we use the following convention

û(0) =
1

π

∫ 2π

0

u(x) dx

û(o,i) =
1

π

∫ 2π

0

u(x) sin(ix) dx (3)

û(e,i) =
1

π

∫ 2π

0

u(x) cos(ix) dx

where the superscripts “o” and “e” denote odd and even coefficients. The
Fourier-series of u is than given as

u(x) =
û(0)

2
+

∞∑
i=1

û(o,i) sin(ix) +
∞∑
i=1

û(e,i) cos(ix)
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where the equality holds in the L2-sense.

With this setting we are able to give explicit expressions for the solution of
the forward problem.
Theorem 2.2. Let uo be given on Γo and u denote the solution of problem (1)
with Ω as in Figure 1. Then ui can be computed via its Fourier series, the
coefficients are given as

ûi
(·,n) = ρn 2

1 + ρ2n
ûo

(·,n) for n ≥ 0 (4a)

∂̂uo

∂ν

(·,n)

=
n

Ro

ρn − ρ−n

ρn + ρ−n
ûo

(·,n) for n ≥ 0 (4b)

where ûi
(·,n) denotes the n-th Fourier coefficient of the 2π-periodic function

ui(t) := u(Ri cos(t), Ri sin(t)) and ρ := Ri/Ro is the ratio of outer and inner
radius.

Proof. Formulating equation (1a) in polar coordinates (with radius r and
angle ϕ) it can be seen easily that the functions

1, log(r), rn sin(nϕ), rn cos(nϕ) for n = ±1,±2, . . . (5)

are solutions of Laplace’s equation on the annulus. Applying Gauß’ theorem∮
Γi∪Γo

u
∂v

∂ν
− v

∂u

∂ν
=

∫
Ω

u∆v − v∆u

to the solution u of (1) and functions v as in (5) we obtain an identity for the
integrals along Γi and Γo. Inserting the boundary conditions (1b) and (1c)
into this identity yields∫

Γo

uo
∂v

∂ν
−

∫
Γo

v
∂u

∂ν
=

∫
Γi

u
∂v

∂ν
.

Inserting functions v as in (5), this gives a decoupled system of linear equa-
tions for the Fourier-coefficients of u and ∂u/∂ν. Solving this system we
obtain (4).

According to this theorem we can formally define the operator A that maps
uo to ui as

A : L2(Γo) → L2(Γi)

uo 7→ ui := F−1ΣFuo,
(6)

where the operator Σ denotes multiplication of the nth Fourier coefficient
with the corresponding factor in (4a).

6



Remark 2.3 (Structure of singular values). Note the different decay
properties of the factors in (4a) and (4b). Taking the normal derivative of uo

in (4b) is approximately equal to multiplication of the nth Fourier-coefficient
of uo with n, hence this is a mildly ill-posed problem. In contrast, propagation
from the outer to the inner boundary in (4a) corresponds to multiplication
with ρn, i. e., this process is exponentially smoothing; the corresponding in-
verse problem of propagating from the inner to the outer boundary is severely
ill-posed. For the numerical example considered in section 6 we have ρ = 0.5,
therefore e. g., an error in the 10th Fourier component would be amplified
by the factor 512. This (exponential) increase of the coefficients will not
change when the test problem is replaced by a less symmetric geometry or
the 3D-case (cf. also [15]).

Already this short amount of analysis indicates that it will not be possible to
obtain highly accurate reconstructions of the potential when noise is present.
In the next section we give a detailed analysis of the inverse problem and
show which type of convergence rates are achievable.

3 Inverse Problem

In this section we turn to theoretical investigations of the inverse problem.
Here the goal is to recover the potential on the endocardium, given the mea-
sured potential on the balloon, and the physical Neumann-boundary condi-
tion (1c). The resulting equations describe a Cauchy problem for the Laplace
equation where the unknown is u on Γo (see also [14]).

∆u = 0 in Ω

u = f on Γi

∂u

∂ν
= 0 on Γi

 (IP)

The main difference to equation (1) is that both boundary conditions are
stated on Γi, which has dramatic influence on the behavior of the solutions.
Solving problem (IP) for u on Γo is equivalent to inversion of the operator A
in (6); the singular values of this operator tend to zero as O(ρn), therefore
this inversion is exponentially (or severely) ill-posed.

In practice not the exact right hand side f of (IP) will be available, but
only a noisy version1 f δ, with

∥∥f − f δ
∥∥ ≤ δ. Hence, in order to solve (IP) we

1Not only measurement errors are an issue here, but also uncertainty due to incomplete/
inexact knowledge of the geometry of the heart or the position of the balloon (cf. also [9]).
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have to apply a regularization technique, in particular we consider Tikhonov-
regularization. Here, instead of solving the equation Au = f δ, we minimize
a related functional:∥∥Au− f δ

∥∥2
+ α ‖u‖2 → min , (7)

the corresponding solution is denoted by uδ
α.

A crucial point when (7) is solved, is the correct choice of the regularization
parameter α. If α is chosen too small then we will obtain unstable solutions,
if α is too large, the results will be very smooth and stable, but bad ap-
proximations to the true solution. Morozov’s discrepancy principle suggests
to choose the regularization parameter such that the residual is of the same
order of magnitude as the noise level.
Remark 3.1 (Discrepancy Principle). Choose the largest regularization
parameter α = α(δ, f δ), α ≤ exp(−1) for which the regularized solution uδ

α

satisfies∥∥Auδ
α − f δ

∥∥ ≤ τδ (8)

with some τ > 1.

Hohage [21] has shown that for severely ill-posed problems the discrepancy
principle yields order optimal convergence rates. Although being optimal,
due to the fast decay of the singular values of A together with the weak
smoothness condition fulfilled by u†, the resulting convergence rates are only
logarithmic. The proof of the following theorem is given in appendix A.
Theorem 3.2. Let u† ∈ Hp(Γo) and α be chosen according to the discrepancy
principle (8), then for noise level δ → 0 we obtain the convergence rate∥∥u† − uδ

α

∥∥
L2(Γo)

= O
(
(− ln(δ))−p

)
.

Since a typical value for p is e. g., p = 3/2−ε (see appendix A), the resulting
convergence rate is rather slow. This again indicates that it will not be
possible to reconstruct sharp features of the potential.

Theorem 3.2 shows that the discrepancy principle yields an order optimal
convergence rate; but in the inverse problem of electrocardiology also other
parameter choice rules are widely used. Another common method for choos-
ing the regularization parameter in this context is the L-curve method (used
e. g., in [4, 8, 9, 24]). The L-curve method is a so called error-free method,
i. e., a method that does not utilize information about the noise level. We
want to point out that the L-curve method (as well as any other error free
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method) cannot yield a convergent regularization method, in particular it
can never yield results of the form of Theorem 3.2 (this general result is
contained in a famous paper by Bakushinskii [2]; for further remarks on the
L-curve method see also [12, 20, 28]).

Furthermore we would like to mention that the point of maximum curvature
is often determined by hand; in contrast, in [13, Chap. 9] efficient algorithms
are proposed to determine the regularization parameters for the discrepancy
principle as well as the L-curve method in an automated way.

4 Efficient Regularization in Space and Time

By a priori information related to real data, we may assume that u(x, · ) is
at least piecewise differentiable, but as we will see in section 6 the numerical
solutions obtained by standard Tikhonov regularization (7) are not smooth
with respect to time, although they are very smooth in x-direction. A natural
next step is therefore to consider penalties on higher order Sobolev norms
in time. Fortunately, there is an efficient way to couple all the time-steps,
when an L2-penalty with respect to space, and an Hs-penalty with respect to
time is used (cf. also [27]). Utilizing additional knowledge about the singular
values of A we can even implement higher order penalties in space efficiently.

In the following we consider an equation of the form

Au(·, t) = f(·, t) for all t, (9)

where the linear operator A does not depend on the time variable. We solve
problem (9) using simultaneous regularization in space and time, in particular
we consider the minimization problem

‖Ãu− f‖2
L2(Γi×T ) + α ‖u‖2

L2(Γo×T ) + β ‖Du‖2
L2(Γo×T ) → min

u
, (10)

where Ã : L2(Γo × T ) → L2(Γi × T ) is the pointwise extension of the op-
erator A and D is a differential operator with respect to time t. Under the
assumption that we know a singular system (σn, wn, vn) of A, i. e.,

Avn = σnwn

A∗wn = σnvn

(11)

For the small problem sizes under consideration (ng = 64 electrodes) such
a singular system can be computed numerically at a negligible cost, the
contribution to the total computation time in section 6 is less than 1%.
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Theorem 4.1. Let (σn, wn, vn) be a singular system of A, then the minimiz-
ing element u of (10) is given as

u(x, t) =
∑

n

(
σn

(
(σ2

n + α)I + βD∗D
)−1 〈

f (·, t), wn(·)
〉)

vn(x). (12)

Proof. Observe that for arbitrary t the minimizer u(·, t) of the functional
in (10) is necessarily an element of N (A)⊥ and that it does only depend on
the projection of f(·, t) onto R (A). Hence, without loss of generality we may
assume f(·, t) ∈ R (A) and expand u and f in Fourier-series with respect to
the orthogonal function system in (11):

u(x, t) =
∑

n

〈u(·, t), vn(·)〉 vn(x) =:
∑

n

un(t)vn(x) (13)

f(x, t) =
∑

n

〈f(·, t), wn(·)〉wn(x) =:
∑

n

fn(t)wn(x) (14)

If we plug these relations into (10) we obtain∫
T

∫
Γi

((
A

∑
n
un(t)vn(x)

)
−

∑
n
fn(t)wn(x)

)2

(15)

+

∫
Γo

α

(∑
n
un(t)vn(x)

)2

+ β

(∑
n

(
Dun(t)

)
vn(x)

)2

dx dt → min

Using (11) and the orthogonality relations 〈vm, vn〉 = δmn and 〈wm, wn〉 =
δmn, expression (15) simplifies to∫

T

∑
n

(
σnun(t)− fn(t)

)2
+ α

∑
n

un(t)2 + β
∑

n

(
Dun(t)

)2
dt → min (16)

This minimum is attained if and only if it is attained individually for each
n. The resulting equations can now easily be solved and we obtain (12).

In [4] it has been proposed to not only use penalties on derivatives in time
but also on derivatives in space in (10). Unfortunately, if a penalty on space
derivatives is used we cannot perform a diagonalization as in Theorem 4.1.

Nevertheless, due to the results of section 2 and Proposition A.1 in the ap-
pendix we are able to add a penalty that has the same properties as differen-
tiation, but does commute with the operator A: Instead of adding a penalty
of the form γ ‖u‖L2(T,Hp(Γo)) to (10), we consider the functional

‖Ãu− f‖2 + α ‖u‖2 + β ‖Du‖2 + γ‖1/ϕp(Ã
∗Ã)u‖2 → min

u
, (17)
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According to Proposition A.1 we know that the operator 1/ϕp(A
∗A) gener-

ates the same norm as p times differentiating, and thus the last term just
generates the L2(T,Hp(Γo))-norm. For this modified problem again an effi-
cient formula for computing u is available.
Theorem 4.2. Let (σn, wn, vn) be a singular system of A, then the minimiz-
ing element u of (17) is given as

u(x, t) = (18)∑
n

(
σn

((
σ2

n + α + γ/ϕp(σ
2
n)

)
I + βD∗D

)−1 〈
f (·, t), wn(·)

〉)
vn(x).

In the following remark we describe how the solution of (10) is computed
numerically after discretization.
Remark 4.3 (Implementation of dynamic regularization). If we de-
note the matrix corresponding to the operator A by A, the algorithm for
computing (u)i,j ≈ u(xi, tj) is given as follows:

• Setup the matrix A as described in appendix B and compute the sin-
gular value decomposition A = UΣVT , Σ = diag(σ1, . . . , σng).

• Transform the data (F)i,j := f δ(xi, tj) via

F̂ = UTF

• Compute an intermediate solution û as

û =
∑ng

n=1
σn

(
(σ2

n + α)I + DTD
)−1

F̂

• Transform the result to obtain the regularized solution u

u = Vû

If the operator D represents differentiating once, then in the third step only
tri-diagonal systems of small size (e. g., nt = 200) have to be solved. There-
fore a typical execution time for this algorithm is in the order of 0.1 seconds.

Observe that due to the fast decay of σn, even some time could be saved
in the third step by stopping the summation early. This also indicates that
increasing the number of grid points ng will in general not improve the quality
of the reconstruction significantly, since components for large n (small σn)
have only a small impact on the regularized solution.
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Figure 2: Activation time and corresponding speed of the wave. The speed
in healthy tissue is 1, there are two unhealthy regions, with speed 2 and 0.5
respectively.

5 Recovery of the Wave Speed

In the preceding section we have presented an efficient method to recover
the electrical potential on the endocardial surface. But as already mentioned
in section 3, we cannot expect a precise reconstruction of this potential,
due to the exponential decay of the singular values of the forward problem.
Furthermore, especially in the 3D-case, the resulting time-dependent solution
is difficult to display and to analyze for a physician (e. g., when the physician
intends to compare consecutive heart beats). A natural solution to the latter
problem is to display the so called activation time (see Figure 2), i. e., the
time when the cell changes from a resting to an activated state.

Given the potential, there are different methods to derive this activation
time ta(x) at a given point in space, e. g., by recovering the time of maximal
potential or maximal slope2 of the potential [8]. For the case that the shape of
the wave with respect to time is only varying slowly, in [23] a cross correlation
technique has been presented to determine the activation time.

In the following we present an alternative method, where instead of deter-
mining the activation time ta, we recover the speed of the wave, which is given
by 1/ |∇ta| (see Figure 2). Using additional information about the physio-
logical properties of the heart, the speed can be recovered directly, without
the necessity of computing the activation time in advance (as opposed to
the approach in [23]). The new method can be efficiently implemented also

2Note that both values are only vaguely defined for the smooth potentials that are
typically recovered.
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in 3D and works under the weak assumption that the activation pattern is
almost the same for all cells—it is known that this assumption is satisfied
well even when the tissue is not healthy (see e. g. [22]). Thus the wave can
be described as

u(x, t) = h(x, ta(x)− t) (19)

where ta denotes the activation time of the cell at position x and the activa-
tion pattern h varies only slowly in space. Computing the partial derivatives
of the potential u(x, t) we obtain

∂u(x, t)

∂t
= ht(x, ta(x)− t)

∇xu(x, t) = ∇xh(x, ta(x)− t) + ht(x, ta(x)− t)∇ta(x)

Assuming that hx is negligibly small compared to the second part in the last
line we obtain for the speed v(x)

|v(x)| := 1/ |∇ta(x)| = ∂u(x, t)

∂t
/ |∇xu(x, t)−∇xh(x, ta(x)− t)|

≈ ∂u(x, t)

∂t
/ |∇xu(x, t)| (20)

i. e., we can recover the speed without knowledge of the function h. Since it
is necessary to divide by |∇xu(x, t)|, some care has to be taken in this step.
The speed does depend on x only, therefore it is possible to multiply (20)
with weight functions and integrate with respect to time, in particular we
use the equality

|v(x)|
∫ tmax

tmin

|∇u(x, t)| ∂u(x, t)

∂t
dt =

∫ tmax

tmin

(
∂u(x, t)

∂t

)2

dt (21)

to compute the speed. In the latter division step a very small penalty is added
to avoid divisions by zero (in our examples 1e−10 was used). Observe that in
the new approach a differentiation step is involved to obtain the speed, which
could in principle introduce additional instabilities. Nevertheless, we only
have to differentiate functions which are obtained as solution of (10). Since
these are always very smooth and do not contain high-frequency components
(see Figure 3) the differentiation does not introduce significant additional
error.

To compute the partial derivatives we use a fast method proposed in [25].
The main idea is to use regularized cubic splines to approximate the data and
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Figure 3: The activation pattern h with respect to time (dashed line) and
the reconstructions obtained without (left) and with (right) additional regu-
larization in time.

to use their derivative as approximation to the true derivative. Since only tri-
diagonal linear systems have to be solved, the numerical effort for this step
is very low. Typical computation times for ux and ut are in the order of 0.01
seconds respectively, when the regularization parameter is chosen a-priorily.
If the discrepancy principle is used to determine the regularization parameter
then the effort increases, since each derivative has to be computed several
times. The total effort depends on the initial guess for the regularization
parameter and the update strategy, using the globally convergent Newton-
type method presented in [13, Chapter 9], this effort can well be kept below
0.2 seconds on our machine (see below).

6 Numerical Examples

In this section we demonstrate the applicability and efficiency of the methods
described above on simulated data. All computations were performed on an
Intel Pentium M with 1.3GHz and 1.0GB RAM using the software package
Matlab. As activation function h we choose

h(x, ta(x)− t) =

{
exp(−c t(x)) t(x) ≥ 0

0 t(x) < 0

with t(x) = t− ta(x) and c = 20 (see Figure 3). Note that this function has a
jump and is only in H1/2−ε. The activation time ta(x) is shown in Figure 2.
It is chosen such that the speed of healthy tissue equals 1, furthermore there
are two regions of unhealthy tissue and speed 2 and 1/2 respectively.
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Figure 4: Reconstruction of the speed. The dashed line indicates the exact
speed, the black line shows the reconstruction. The lighter the background,
the more data were used to compute the result; in black regions no stable
reconstruction can be expected, because too few data were available.

To avoid an inverse crime the exact data are generated according to The-
orem 2.2, i. e., via a Fourier transform. As discretization level we choose
nt = 200 measurements on ng = 64 electrodes. These 200 measurements are
then perturbed by 5% Gaussian noise each.

The linear inverse problem is solved via the dynamic method proposed in
section 4, where the operator A is generated by a boundary element method
(see appendix B). Next, the partial derivatives of the reconstructed potential
u(x, t) are computed via the method described in [25] (for the choice of
regularization parameters see Remark 6.2).

Figure 4 shows the speed, reconstructed according to (21). To get some
qualitative information about the reliability of this reconstruction we use the
following simple procedure: For a point x we compute the energy e(x) :=
(
∫

T
u(x, t)2 dt)1/2, which indicates how long the wave was present, and thus

how much information is available to recover the speed at this point (cf.
Figure 5). The background of Figure 4 is now scaled such that regions with
0 ≤ e(x) < 1/4 max(e(x)) appear black and regions with 3/4 max(e(x)) ≤
e(x) appear white (see also Remark 6.1).

As Figure 4 shows, in the light regions the speed is recovered in a stable way.
In particular, the speed is recovered very well in the interval [0.7, 0.8] where
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Figure 5: Left: Developement of the potential in time; the regions in the
middle and on the borders are hardly hit by the wave. The right plot shows
the energy (

∫
T

u(x, t)2 dt)1/2.

it is lower than usual. The region with higher speed is also detected, but
with less accuracy. A possible explanation for this fact is that due to the
higher speed the wave passes faster through this interval, and so there only
few data can be collected. Another effect is that the exact potential in the
slower region is flatter with respect to time, and can therefore also be better
resolved by smooth functions.

The effort for the reconstruction of the speed in Figure 4 is in the order of
0.5 seconds, thus the proposed method yields a good and stable recovery of
the essential features in real time.
Remark 6.1 (Data Acquisition). Observe that the exact potential shows
a special behavior at two points in time, namely when it emerges from the
point x = 0 and when it collapses into the point x = 0.575 (cf. Figure 5).
For these two points no reasonable speed can be defined, moreover, due to
regularization the behavior at these points will also interfere with the recon-
struction of the speed at points nearby and bias it towards zero. Therefore
it is advantageous to discard data that correspond to these points in time,
in particular we considered the time-interval [tmin, tmax] with tmin = 0.1 and
tmax = 0.45. In practice this may for instance be done by triggering the data
acquisition to an external signal (e. g., an ECG). Caused by this truncation,
in Figure 4 regions around the starting and the end point of the wave appear
black, at the benefit of a better reconstruction in the white regions.

In the next remark we explain the choice of the regularization parameters.
Remark 6.2 (Regularization Parameters). In formula (12) we set β :=
α∆t. The value of α is determined via the discrepancy principle with τ =

16



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

Figure 6: Left: Reconstructions for noise levels 5%, 0.05% and 0.0005%.
Right: Dependence of L2-error in the domain [0.1, 0.4] ∪ [0.65, 0.9] on the
noise level. The slope of the interpolating line is −0.91.

1.05. In the differentiation step another regularization parameter has to be
chosen. We again use the discrepancy principle, now with τ = 1.20. In both
cases the residual is measured in the full L2(Γi × T )-norm. Observe that
only three parameters have to be chosen, in particular, the number of these
parameters does not depend on the number of measurements nt.

This rule for choosing the regularization parameters gives good results for
various noise levels as can be seen in Figure 6. As exact speed we choose a
function in H5/2−ε(Γo). The left plot shows reconstructions with noise levels
5%, 0.05% and 0.0005%. As the noise level decreases, the reconstruction
quality improves, although the benefit from decreasing the noise level from
0.05% to 0.0005% is rather small; this is due to the logarithmic convergence
rate of the solutions. In the right plot this convergence rate is investigated in
detail: for various noise levels the speed is reconstructed and the difference
to the exact speed is computed. Since we know that the reconstruction
will be bad in the dark regions, we only measure the error in the domain
[0.1, 0.4] ∪ [0.65, 0.9]. The plot shows log(error) versus log(− log(δ)), which
exhibits a linear behavior. The slope of the interpolating line is −0.91, i. e.,
numerically the error behaves as (− log(δ))−0.91; as for the linear problem (see
Theorem 3.2) we obtain a logarithmic convergence rate for the speed, also the
exponent is similar. Analogous experiments with the piecewise continuous
speed given in Figure 4 yield a numerical convergence rate of (− log(δ))−0.40.
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A Proof of Theorem 3.2

This section is devoted to the derivation of Theorem 3.2. To obtain con-
vergence rates for

∥∥u† − uδ
α

∥∥ when δ → 0, the least-squares solution u† has
to satisfy a smoothness condition. In the following we discuss smoothness
assumptions on u† and the corresponding attainable convergence rates. The
combination of these results will yield Theorem 3.2.

Typically the solution u† will be piecewise differentiable, but already the
first derivative may have jumps. Thus, the proper Sobolev-space for u† is
H3/2−ε(Γo). Compared to the smoothing properties of the forward operator
(A maps functions in L2 to analytic functions) this is a rather weak condi-
tion on u†. It turns out that therefore for exponentially ill-posed problems
logarithmic source conditions are appropriate. We define the function

ϕp(λ) :=

{
(− ln(λ/e))−p 0 < λ ≤ 1

0 λ = 0
(22)

This function transfers A∗A : L2(Γo) → C∞(Γo) to an operator that maps
L2(Γo) onto Hp(Γo), as the following theorem shows.
Proposition A.1. For ϕp(·) as in (22) the range of the operator ϕp(A

∗A)
is

R (ϕp(A
∗A)) = Hp(Γo) .

Proof. First of all we note that, for σn = 2ρn(1 + ρ2n)−1 and ϕp(·) as above,
there are constants c, C with

0 < c ≤ ϕp(σ
2
n)(1 + n2)p/2 ≤ C for n = 0, 1, 2, . . . .

For arbitrary w ∈ L2 we now have

‖ϕp(A
∗A)w‖2

Hp :=
∥∥∥∑

ϕp(σ
2
n) 〈w, vn〉 vn

∥∥∥2

Hp

:=
∑

ϕp(σ
2
n)2(1 + n2)p |〈w, vn〉|2 ≤ C2 ‖w‖2

L2
< ∞.

The second equality is due to the fact that the eigenfunctions of A∗A are
just sine and cosine (cf. (3) and (4)) and Parseval’s theorem. Altogether we
obtain R (ϕp(A

∗A)) ⊆ Hp.
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To show the converse inclusion we choose some arbitrary φ ∈ Hp and define
w :=

∑
ϕp(σ

2
n)−1 〈φ, vn〉 vn, for which obviously ϕp(A

∗A)w = φ. This yields

‖w‖2
L2

:=
∑ 1

ϕp(σ2
n)2

|〈φ, vn〉|2

=
∑

(1 + n2)p |〈φ, vn〉|2
(
(1 + n2)pϕp(σ

2
n)2

)−1

≤ c−2 ‖φ‖2
Hp < ∞

hence w ∈ L2 and therefore Hp ⊆ R (ϕp(A
∗A)).

According to this theorem, we obtain that the least-squares solution u† is in
the range of ϕp(A

∗A), with p = 3/2 − ε. We need this abstract smoothness
condition for obtaining convergence rates in the following theorem [21].
Proposition A.2. Let u† ∈ R (ϕp(A

∗A)) for ϕp(·) as in (22) and α be
chosen according to the discrepancy principle (8), then for noise level δ → 0
we obtain the convergence rate∥∥u† − uδ

α

∥∥ = O (ϕp(δ)) .

Theorem 3.2 now follows by combining Proposition A.1 and A.2.

B Boundary Element Method

In the following we describe a boundary integral formulation that can be
used in order to numerically implement the operator A in (2).

The potential data taken by the electrodes depend on time, therefore we
introduce a time dependence in (IP) and obtain the following boundary value
problems for the Laplace equation in the domain Ω (cf. Figure 1):

∆u = 0 in Ω

u = f(x, t) on Γi × [0, T ]

∂u

∂ν
= 0 on Γi × [0, T ]

(23)

For solving the electrocardial problem it is not necessary to compute u(x, t)
in the whole domain Ω × [0, T ], but already knowledge of u(x, t) on the
boundary Γo× [0, T ] is sufficient. Therefore a boundary integral formulation
is the method of choice for recovering u|Γo×[0,T ], in particular we propose an
(indirect) boundary element method to solve the problem. In the following
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we will assume that the boundaries are sufficiently smooth. We look for a
solution of (23) via a single layer potential in Ω× [0, T ], i. e.,

S[(λo, λi)](x, t) :=

∫
Γo

φ(x, y)λo(y, t)dγ(y) +

∫
Γi

φ(x, y)λi(y, t)dγ(y),

where the fundamental solution φ is given by

φ(x, y) =


− 1

2π
log(|x− y|), 2D problems,

1
4π

1
|x−y| , 3D problems.

and λo and λi denote charges on the inner and outer boundary respectively.
These charges will be used in (25) to recover the potential u on Γo. Applying
the jump properties of the single layer potential [3, 7], we arrive at the
following boundary integral equation on Γi × [0, T ]∫

Γo

φ(x, y)λo(y, t)dγ(y) +

∫
Γi

φ(x, y)λi(y, t)dγ(y) = f(x, t),∫
Γo

∂n(x)φ(x, y)λo(y, t)dγ(y) +
1

2
λi(y, t) +

∫
Γi

∂n(x)φ(x, y)λi(y, t)dγ(y) = 0.

In order to obtain a matrix formulation where the potential on the exterior
boundary uo = u|Γo is the unknown, we introduce the following boundary
operators

Vio[λo]( · , t) =

∫
Γi

φ( · , y)λo(y, t)dγ(y) : Hs(Γo) → C∞(Γi)

Vii[λi]( · , t) =

∫
Γi

φ( · , y)λi(y, t)dγ(y) : Hs(Γi) → Hs+1(Γi)

Kio[λo]( · , t) =

∫
Γi

∂n(·)φ( · , y)λo(y, t)dγ(y) : Hs(Γo) → C∞(Γi)

(−1

2
I +Kii)[λi]( · , t) = −1

2
λi( · , t) +

∫
Γi

∂n(·)φ( · , y)λi(y, t)dγ(y)

where (−1
2
I+Kii)[λi]( · , t) : Hs(Γi) → Hs(Γi) and all given mapping proper-

ties hold for arbitrary s < ∞. Operators Voo and Voi are defined analogously.
Using this setup we obtain the following system of equations[

Kio −1
2
I +Kii

Vio Vii

] [
λo

λi

]
=

[
0

f(·, t)

]
, (24)

the solution uo is given in terms of λo and λi as

uo = Vooλo + Voiλi . (25)

20



Instead of first solving the large system (24) and computing uo afterwards, we
can eliminate the charge variables λo and λi, leaving uo as the only unknown,
proceeding as follows:

λi = (
1

2
I − Kii)

−1Kio)λo

λo = (Voo + Voi(
1

2
I − Kii)

−1Kio)
−1uo (26)

λi = (
1

2
I − Kii)

−1Kio)(Voo + Voi(
1

2
I − Kii)

−1Kio)
−1uo (27)

Finally, defining the linear, one-to-one and smoothing operator A : Hs(Γo) →
C∞(Γi) ⊂ L2(Γi), for any s ∈ R,

A := (Vio + Vii(
1

2
I − Kii)

−1Kio)(Voo + Voi(
1

2
I − Kii)

−1Kio)
−1, (28)

and plugging (26) and (27) in the last row of (24) we arrive at the severely
ill-posed problem

Auo(·, t) = f(·, t). (29)

In order to reduce (29) to a finite dimensional problem, we can approximate
the operator A given in (28) via the approximation of the operators involved
in its definition. One possibility is to use spectral approximations of such
operators, in order to obtain highly convergent methods; but since we are
only given function values on a very coarse grid (64 grid points), collocation
or quadrature methods are more natural for the inverse problem of electro-
cardiology.

In order to discretize the 2D problem we use the 1
6
-shifted-quadrature method

(see [5, 26]) for the operators Voo,Vii, and Nyström or full-collocation meth-
ods [1, 6] for the remaining; substituting the continuous operators in (28) by
their approximations, an approximation of the operator A is obtained. Ob-
serve that the typical anomaly, which may appear in 2D problems for some
special boundaries, can simply be avoided by re-scaling of the domain Ω.

For 3D problems, the theory about boundary element methods based on
collocation or quadrature is still not complete, but collocation is the most
common method in practical applications with satisfactory results. In [1]
and [3] discretizations of the boundary operators Voo,Vii, . . . for 3D problems
are given.
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